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Abstract. This paper is concerned with the blow-up of solutions to the following hyperbolic-elliptic chemo-
taxis system: {

ut =−∇· (χu∇v)+ g (u), x ∈Ω, t > 0,

0 =∆v − v +u, x ∈Ω, t > 0,

under homogeneous Neumann boundary conditions in a bounded domain Ω ⊂ Rn ,n ≥ 1, with smooth
boundary and the function g is assumed to generalize the logistic source:

g (s) ≤ as −bsγ for s > 0

with 1 < γ≤ 2. For b <χ and some suitable conditions on parameters of problem, we prove that the solutions
of this problem blow up in finite time. This result extend the obtained results for this problem.
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1. Introduction

The mathematical model which describes the movement of cells towards the gradient of sub-
stance produced by the cells themselves is in the following form:{

ut =∇· (ϕ(u)∇u −ψ(u)∇v
)+ g (u), x ∈Ω, t > 0,

τvt =∆v − v +u, x ∈Ω, t > 0,

whereΩ⊂Rn ,n ≥ 1, is a bounded domain with smooth boundary and τ ∈ {0,1}. Also, the function
g satisfies:

g (0) ≥ 0, g (s) ≤ as −bsγ for s > 0 (1)
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with constants a ≥ 0,b > 0 and γ > 1. Here, u = u(x, t ) is the cell density and v = v(x, t ) denotes
the concentration of the chemical substance. While the functions ϕ and ψ are the diffusivity and
chemotactic sensitivity, respectively and g denotes the growth of cells [4, 6].

This problem has been studied by many authors. In the absence of logistic source, i.e. g ≡ 0,
if ϕ ≡ 1,ψ(s) = χs with χ > 0 and τ = 1, it is known that: the blow-up can not occur in the
one dimensional case [10]. In the two dimensional case, under the condition ‖u0‖L1(Ω) < 4π

χ , all
solutions are global and bounded [9]. The same result is true for radial solutions provided that
‖u0‖L1(Ω) < 8π

χ [9]. While for ‖u0‖L1(Ω) > 8π
χ , there exist radial solutions that blow up in finite

time [3]. In the higher dimensional case, solutions are global and bounded when the initial data
are small enough [14], whereas, radial solutions become unbounded in finite time under some
suitable conditions on initial data [17]. Also, in the absence of logistic source, when the second
equation is replaced with 0 =∆v −M +u, where M denotes the mean value of initial data u0 and
ϕ(s) ≥ c1s−p and ψ(s) ≤ c2sq for all s > 0 with c1,c2 > 0, p ≥ 0 and q ∈ R, then all solutions are
global and bounded provided that p + q < 2

n . While, for p + q > 2
n , there exist radial solutions

which become unbounded in finite time [19].
In the presence of logistic source, i.e. g 6= 0, ifϕ≡ 1 andψ(s) =χs with χ> 0, then solutions are

global and bounded with τ = 0 and b > n−2
n χ [12]. The same result holds with τ > 0 if n = 2 [11]

or n ≥ 3 and b > b∗, where b∗ is sufficiently large [15]. If ϕ(s) ≥ c1sp ,ψ(s) = χs and τ = 0, where
p ∈R and χ is some positive constant, then solutions are global and bonded with γ= 2 under the
condition b > χ(1− 2

n(1−p)+ ), or, equivalently, p > 1− 2χ
n(χ−b)+ [2]. For γ ≥ 2 and p ≥ 0, under the

condition b > b∗ with b∗ = 0 for p ≥ 2− 2
n and b∗ = (2−p)n−2

(2−p)n χ for p < 2− 2
n , then solutions are

global and bounded [13]. Also, the same result is true for 1 < γ < 2 and p > 2− 2
n [13]. Recently,

it is proved that in the case of γ > 2, solutions are global and bounded without any restrictions
on p and b [7]. Other results about this problem are: under the conditions ϕ(s) ≥ (s +1)−p and
ψ(s) ≤ sq with p, q ∈R, all solutions are global and bounded provided that p +q < 2

n and γ> 1 or

p + q ≥ 2
n ,b > (p+q)n−2

(p+q)n χ and γ ≥ q +1 with q ≥ 1 [20]. Also, if ϕ(s) ≥ c1sp and c2sq ≤ψ(s) ≤ c3sq

with ci > 0, i = 1,2,3, and τ> 0, it is proved that if q < 1, then solutions are global and bounded [1].
Recent results have been shown that the blow-up phenomenon can occur in the presence of
logistic source. The known results are: whenΩ is a ball in Rn ,n ≥ 5, and ϕ≡ 1 and ψ(s) = χs with
χ> 0, if the second equation is replaced with 0 =∆v +u − 1

|Ω|
∫
Ωu(x, t )d x and g satisfies (1) with

a = 0 and other additional conditions, then radially symmetric solutions become unbounded in
finite time provided that 1 < γ < 3

2 + 1
2n−2 [16]. Also, for n ≥ 5, if ϕ(s) ≤ s−p and ψ(s) = sq for

all s > 0 with p, q ∈ R and g as before with a ≥ 0, then radially symmetric solutions blow up in
finite time if 2

n −1 < p < 1 and q > 1 with 2p +3q < 4, also, 1 < γ < (3−p)n−2
2n−2 [20]. The following

hyperbolic-elliptic chemotaxis system is studied by Winkler [18]:

ut =−∇· (χu∇v
)+ g (u), x ∈Ω, t > 0,

0 =∆v − v +u, x ∈Ω, t > 0,
∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x,0) = u0, v(x,0) = v0, x ∈Ω,

(2)

whereΩ⊆Rn ,n ≥ 1, is a bounded domain with smooth boundary and ν denotes the unit outward
normal vector to ∂Ω. Here, g is a smooth function which satisfies (1) with γ > 1 and u0(x) and
v0(x) are the initial value functions. For the one-dimensional case with χ = 1 and γ = 2, it is
proved that the solution of this problem is global in time with b ≥ 1, and for b < 1 and p > 1

1−b ,
there exist solutions which become unbounded in finite time with ‖u0‖Lp (Ω) sufficiently large. In
the the higher dimensional case, whenΩ is a ball, solutions are global in time with b ≥ 1, whereas
b < 1 and p > 1

1−b , there exist radial symmetric solutions that blow up in finite time with ‖u0‖Lp (Ω)

sufficiently large [8]. The authors in [5] studied this problem in bounded domains as well as whole
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space. In the case of 1 < γ ≤ 2, they obtained the similar results with one-dimensional case and
extend the results in [18] to the higher dimensional case. Moreover, in the case of γ > 2, they
proved that solutions are global.

In the present paper, we will study problem (2) under the condition (1) with 1 < γ ≤ 2. For
b <χ, we will prove that the solutions of this problem blow up in finite time under some suitable
conditions. Our main result is stated in the following theorem:

Theorem 1. Assume that the function g satisfies

g (s) ≤ as −bsγ for s > 0

with 1 < γ≤ 2. Define:

Ck,λ,µ,ε =λ
(
χ(k −1)−bk −µ

(
k

ε(k +1)

)k
)

− (1−θ)

(
2C 2

GN

k +1

(
2εk

µ

)k (
k +1

k

)k(k−1) (
χ(k −1)

)k+1

) 1
1−θ (

(k +1)θ

2kµ

) θ
(1−θ)

− 2C 2
GN

k +1

(
2εk

µ

)k (
k +1

k

)k(k−1) (
χ(k −1)

)k+1 ,

where k > χ
χ−b , 0 < µ < ((χ−b)k −χ)( k+1

k )k , λ ∈ [0,1) and k
k+1 ( µ

(χ−b)k−χ )
1
k < ε ≤ 1,θ = nk

2+nk and
CGN is the constant in the Gagliardo–Nirenberg inequality. If there exist some constants k,µ,λ and
ε such that the following conditions hold:

(i) 1 < γ< 2 :

{
b <χ and b ≤ a, if Ck,λ,µ,ε ≥ 0,

b < min{a,χ} and M ≤ k(a−b)|Ω|1−k

−Ck,λ,µ,ε
, if Ck,λ,µ,ε < 0,

(3)

(ii) γ= 2 :

{
b <χ, if Ck,λ,µ,ε ≥ 0,

b <χ and M ≤ ka|Ω|1−k

−Ck,λ,µ,ε
, if Ck,λ,µ,ε < 0

(4)

with M = (min{1, b
a })−

1
γ−1 max{‖u0‖L1(Ω), |Ω|}. Then the solution of problem (2) blows up in finite

time.

In the next section, we will prove the Theorem (1).

2. Blow up in finite time

Here, we state the well-posedness and solvability result.

Lemma 2. Let Ω ⊆ Rn ,n ≥ 1, be a bounded convex domain with smooth boundary, also g
satisfies (1). Moreover, we assume that 0 ≤ u0 ∈ W 2,q (Ω)∩L1(Ω) for all 1 < q < ∞. Then for any
1 < p < ∞, there exists a maximal time Tmax ∈ (0,∞] such that unique non-negative solutions
u ∈ Lp ([0, t ),W 1,p (Ω))∩L∞([0, t )×Ω) and v ∈ Lp ([0, t ),W 2,p (Ω))∩L∞([0, t )×Ω) exist for any time
t < Tmax. In addition, if Tmax <+∞, then

lim
t →Tmax

‖u(., t )‖L∞(Ω) =∞.

For details of the proof, we refer the reader to [5].
Although the proof of the following lemma is given in [8, 18], but for completeness, we

present it.
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Lemma 3. Assume that the function g satisfies (1). Then for all t ∈ (0,Tmax), there exists a constant
M > 0 such that

‖u(., t )‖L1(Ω) ≤ M (5)

with M = (min{1, b
a })−

1
γ−1 max{‖u0‖L1(Ω), |Ω|}.

Proof. We integrate from the first equation in (2) and use (1) to get

d

d t

∫
Ω

u d x =
∫
Ω

g (u)d x ≤ a
∫
Ω

u d x −b
∫
Ω

uγd x.

Making use of Hölder’s inequality, we obtain∫
Ω

uγd x ≥
(∫
Ω

u d x

)γ
|Ω|1−γ.

Hence, y(t ) = ∫
Ωu(x, t )d x satisfies

y ′(t ) ≤ ay(t )−b|Ω|1−γyγ(t ), for t > 0.

Set r (t ) = (y(t ))1−γ, thus we obtain

r ′(t )+a(γ−1)r (t ) ≥ b(γ−1)|Ω|1−γ,

which yields

r (t ) ≥ r (0)e−a(γ−1)t + b

a
|Ω|1−γ (

1−e−a(γ−1)t ) .

Therefore,

y(t ) ≤
(
(y(0))1−γe−a(γ−1)t + b

a
|Ω|1−γ (

1−e−a(γ−1)t ))− 1
γ−1

.

This inequality yields

y(t ) ≤ max
{|Ω|, y(0)

}
(
min

{
1, b

a

}) 1
γ−1

.

This inequality is desired result. �

We will use the Gagliardo–Nirenberg inequality in the proof of Theorem (1), for readers’
convenience, we state this inequality in the following lemma [13].

Lemma 4. LetΩ⊆Rn ,n ≥ 1, be a bounded domain with smooth boundary. For p(n −2) < 2n,r ∈
(0, p) and ψ ∈W 1,2(Ω)∩Lr (Ω), there exists a constant CGN > 0 depending on n andΩ such that

‖ψ‖Lp (Ω) ≤CGN

(∥∥∇ψ∥∥θ
L2(Ω)

∥∥ψ∥∥(1−θ)
Lr (Ω) +

∥∥ψ∥∥
Lr (Ω)

)
with

θ =
n
r − n

p

1− n
2 + n

r

.

We now prove our main result.
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Proof of Theorem 1. We use of integrating by parts and the second equation in (2) to obtain

d

d t

∫
Ω

uk d x = k
∫
Ω

uk−1ut d x

= k
∫
Ω

uk−1 (−∇· (χu∇v
)+au −buγ

)
d x

=χk(k −1)
∫
Ω

uk−1∇u ·∇v d x +ak
∫
Ω

uk d x −bk
∫
Ω

uk+γ−1 d x

=χ(k −1)
∫
Ω
∇uk ·∇v d x +ak

∫
Ω

uk d x −bk
∫
Ω

uk+γ−1 d x

=−χ(k −1)
∫
Ω

uk∆v d x +ak
∫
Ω

uk d x −bk
∫
Ω

uk+γ−1 d x

=−χ(k −1)
∫
Ω

uk v d x +ak
∫
Ω

uk d x +χ(k −1)
∫
Ω

uk+1 d x −bk
∫
Ω

uk+γ−1 d x.

(6)

Making use of Young ’s inequality to the first term on the right hand side of (6), we obtain

χ(k −1)
∫
Ω

uk v d x ≤ µ

2

(
k

ε(k +1)

)k ∫
Ω

uk+1 d x + c1

∫
Ω

vk+1 d x, (7)

where k
k+1 ( µ

(χ−b)k−χ )
1
k < ε≤ 1 and µ is some positive constant, also:

c1 = 1

k +1

(
2εk

µ

)k (
k +1

k

)k(k−1) (
χ(k −1)

)k+1 .

We need to obtain an upper bound to the second term on the right hand side of (7). In order to
do this, we apply the Gagliardo–Nirenberg inequality to get

c1

∫
Ω

vk+1 d x = c1

∥∥∥v
k+1

2

∥∥∥2

L2(Ω)
≤ 2c1C 2

GN

(∥∥∥∇v
k+1

2

∥∥∥2θ

L2(Ω)

∥∥∥v
k+1

2

∥∥∥2(1−θ)

L
2

k+1 (Ω)
+

∥∥∥v
k+1

2

∥∥∥2

L
2

k+1 (Ω)

)
with

θ =
n(k+1)

2 − n
2

1− n
2 + n(k+1)

2

= nk

2+nk
.

Because of θ = nk
2+nk < 1, then we can apply the Young inequality to obtain

c1

∫
Ω

vk+1 d x =≤ 2kµ

k +1

∥∥∥∇v
k+1

2

∥∥∥2

L2(Ω)
+ c2

∥∥∥v
k+1

2

∥∥∥2

L
2

k+1 (Ω)
+ c3

∥∥∥v
k+1

2

∥∥∥2

L
2

k+1 (Ω)

= 2kµ

k +1

∥∥∥∇v
k+1

2

∥∥∥2

L2(Ω)
+ c4

∥∥∥v
k+1

2

∥∥∥2

L
2

k+1 (Ω)

(8)

with c2 = (1−θ)(2c1C 2
GN )

1
1−θ ( (k+1)θ

2kµ )
θ

(1−θ) , c3 = 2c1C 2
GN and c4 = c2 + c3.

In the following, we obtain an upper bound to the first term on the right hand side of (8). In
order to do this, as in [16, Lemma 2.2], we multiply the second equation of (2) by vk to get

0 =
∫
Ω

vk∆v d x −
∫
Ω

vk+1 d x +
∫
Ω

vk u d x

=−k
∫
Ω

vk−1 |∇v |2 d x −
∫
Ω

vk+1 d x +
∫
Ω

vk u d x

=− 4k

(k +1)2

∫
Ω

∣∣∣∇v
k+1

2

∣∣∣2
d x −

∫
Ω

vk+1 d x +
∫
Ω

vk u d x.

Making use of Young ’s inequality, we obtain

4k

(k +1)2

∫
Ω

∣∣∣∇v
k+1

2

∣∣∣2
d x +

∫
Ω

vk+1 d x =
∫
Ω

vk u d x ≤ 1

k +1

(
k

ε(k +1)

)k ∫
Ω

uk+1 d x +ε
∫
Ω

vk+1 d x.
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This inequality implies that

4k

(k +1)2

∫
Ω

∣∣∣∇v
k+1

2

∣∣∣2
d x + (1−ε)

∫
Ω

vk+1 d x ≤ 1

k +1

(
k

ε(k +1)

)k ∫
Ω

uk+1 d x.

Since ε≤ 1, then we have

4k

k +1

∫
Ω

∣∣∣∇v
k+1

2

∣∣∣2
d x ≤

(
k

ε(k +1)

)k ∫
Ω

uk+1 d x.

Combining this inequality with (8) gives

c1

∫
Ω

vk+1 d x ≤ µ

2

(
k

ε(k +1)

)k ∫
Ω

uk+1 d x + c4

(∫
Ω

v d x

)k+1

. (9)

Integrating of the second equation in (2) and using (1), we get∫
Ω

v d x =
∫
Ω

u d x.

We now insert this equality in (9) to obtain

c1

∫
Ω

vk+1 d x ≤ µ

2

(
k

ε(k +1)

)k ∫
Ω

uk+1 d x + c4

(∫
Ω

u d x

)k+1

.

This inequality along with (7) yields

χ(k −1)
∫
Ω

uk v d x ≤µ
(

k

ε(k +1)

)k ∫
Ω

uk+1 d x + c4

(∫
Ω

u d x

)k+1

.

Thus,

−χ(k −1)
∫
Ω

uk v d x ≥−µ
(

k

ε(k +1)

)k ∫
Ω

uk+1 d x − c4

(∫
Ω

u d x

)k+1

.

Combining this inequality with (6), we can write

d

d t

∫
Ω

uk d x

≥
[
χ(k −1)−µ

(
k

ε(k +1)

)k
]∫

Ω
uk+1 d x − c4

(∫
Ω

u d x

)k+1

+ak
∫
Ω

uk d x −bk
∫
Ω

uk+γ−1 d x.

We set σ=χ(k −1)−µ( k
ε(k+1) )k . Thus, we have

d

d t

∫
Ω

uk d x ≥σ
∫
Ω

uk+1 d x − c4

(∫
Ω

u d x

)k+1

+ak
∫
Ω

uk d x −bk
∫
Ω

uk+γ−1 d x. (10)

In the rest of the proof, we consider the following two cases:

Case 1. γ= 2. The inequality (10) for γ= 2 gives

d

d t

∫
Ω

uk d x ≥ (σ−bk)
∫
Ω

uk+1 d x +ak
∫
Ω

uk d x − c4

(∫
Ω

u d x

)k+1

. (11)

Because of χ> b and k > χ
χ−b , then we can take

0 <µ< (
(χ−b)k −χ)(k +1

k

)k

.

Now
k

k +1

(
µ(

χ−b
)

k −χ
) 1

k < ε≤ 1

implies that

σ−bk =χ(k −1)−bk −µ
(

k

ε(k +1)

)k

> 0.
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We apply the Hölder inequality to the first and second terms on the right hand side of (11) as
follows: ∫

Ω
u d x ≤

(∫
Ω

uk d x

) 1
k |Ω| k−1

k ,
∫
Ω

u d x ≤
(∫
Ω

uk+1 d x

) 1
k+1 |Ω| k

k+1 ,∫
Ω

uk d x ≤ |Ω| 1
k+1

(∫
Ω

uk+1 d x

) k
k+1

.

These inequalities yield∫
Ω

uk d x ≥ |Ω|1−k
(∫
Ω

u d x

)k

,
∫
Ω

uk+1 d x ≥ |Ω|−k
(∫
Ω

u d x

)k+1

,∫
Ω

uk+1 d x ≥ |Ω|− 1
k

(∫
Ω

uk d x

) k+1
k

.

(12)

By inserting these inequalities in (11), we obtain

d

d t

∫
Ω

uk d x ≥ (1−λ)(σ−bk)|Ω|− 1
k

(∫
Ω

uk d x

) k+1
k

+
(
λ(σ−bk)|Ω|−k − c4

)(∫
Ω

u d x

)k+1

+ak|Ω|1−k
(∫
Ω

u d x

)k

= (1−λ)(σ−bk)|Ω|− 1
k

(∫
Ω

uk d x

) k+1
k +Ck,λ,µ,ε

(∫
Ω

u d x

)k+1

+ak|Ω|1−k
(∫
Ω

u d x

)k

with λ ∈ [0,1). If there exist some constants k,λ,µ,ε such that Ck,λ,µ,ε ≥ 0, then we can write:

d

d t

∫
Ω

uk d x ≥ (1−λ)(σ−bk)|Ω|− 1
k

(∫
Ω

uk d x

) k+1
k

. (13)

We now set z(t ) = ∫
Ωuk d x, then we can write

z ′(t ) ≥ (1−λ)(σ−bk)|Ω|− 1
k (z(t ))

k+1
k .

Then,

z−1− 1
k d z ≥ (1−λ)(σ−bk)|Ω|− 1

k d t . (14)

Integrating (14) from 0 to t , we obtain

z− 1
k (t ) ≤ z− 1

k (0)− 1

k
(1−λ)(σ−bk)|Ω|− 1

k t .

Sinceσ−bk > 0 and λ< 1, thus this inequality can not hold for all t > 0. Also, this inequality gives
an upper bound for the blow-up time, i.e.

Tmax ≤ T = (z(0))−
1
k

1
k (1−λ)(σ−bk)|Ω|− 1

k

.

Also, if for some constants k,λ,µ,ε; Ck,λ,µ,ε < 0, then from Lemma (3) and condition (4), for
y(t ) = ∫

Ωu d x, we obtain

Ck,λ,µ,ε
(
y(t )

)k+1 +ak|Ω|1−k (
y(t )

)k = (
y(t )

)k
(
Ck,λ,µ,ε y(t )+ak|Ω|1−k

)
≥ (

y(t )
)k

(
MCk,λ,µ,ε+ak|Ω|1−k

)
≥ 0.

Thus, we get again the inequality (13). Hence blow-up occurs in finite time.
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Case 2. 1 < γ< 2. In this case, we need to estimate a lower bound for the forth term on the right
hand side of (10). In order to obtain this, for each t > 0, we divideΩ into two sets,

Ω{<1} = {x ∈Ω : u(x, t ) < 1} , Ω{≥1} = {x ∈Ω : u(x, t ) ≥ 1} .

Thus, we can write

−bk
∫
Ω

uk+γ−1 d x =−bk
∫
Ω{<1}

uk+γ−1 d x −bk
∫
Ω{≥1}

uk+γ−1 d x

≥−bk
∫
Ω{<1}

uk d x −bk
∫
Ω{≥1}

uk+1 d x.

Now, the last inequality along with (10) gives

d

d t

∫
Ω

uk d x + c4

(∫
Ω

u d x

)k+1

≥σ
∫
Ω

uk+1 d x +ak
∫
Ω

uk d x −bk
∫
Ω{<1}

uk d x −bk
∫
Ω{≥1}

uk+1 d x

=σ
∫
Ω{<1}

uk+1 d x +ak
∫
Ω{<1}

uk d x −bk
∫
Ω{<1}

uk d x

+σ
∫
Ω{≥1}

uk+1 d x +ak
∫
Ω{≥1}

uk d x −bk
∫
Ω{≥1}

uk+1 d x

= (σ−bk)
∫
Ω{≥1}

uk+1 d x +k(a −b)
∫
Ω{<1}

uk d x +σ
∫
Ω{<1}

uk+1 d x +ak
∫
Ω{≥1}

uk d x

≥ (σ−bk)
∫
Ω{≥1}

uk+1 d x +k(a −b)
∫
Ω{<1}

uk d x

+ (σ−bk)
∫
Ω{<1}

uk+1 d x +k(a −b)
∫
Ω{≥1}

uk d x

= (σ−bk)
∫
Ω

uk+1 d x +k(a −b)
∫
Ω

uk d x.

Thus,
d

d t

∫
Ω

uk d x ≥ (σ−bk)
∫
Ω

uk+1 d x − c4

(∫
Ω

u d x

)k+1

+k(a −b)
∫
Ω

uk d x.

Combining this inequality with (12), we obtain

d

d t

∫
Ω

uk d x ≥ (1−λ)(σ−bk)|Ω|− 1
k

(∫
Ω

uk d x

) k+1
k +λ(σ−bk)|Ω|−k

(∫
Ω

u d x

)k+1

− c4

(∫
Ω

u d x

)k+1

+k(a −b)|Ω|1−k
(∫
Ω

u d x

)k

.

Similar to Case 1, if there exist some constants k,λ,µ,ε such that Ck,λ,µ,ε ≥ 0, or Ck,λ,µ,ε < 0, we
can conclude that

d

d t

∫
Ω

uk d x ≥ (1−λ)(σ−bk)|Ω|− 1
k

(∫
Ω

uk d x
) k+1

k .

This inequality gives the desired result.

�
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