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Abstract. We have developed a new simple iterative algorithm to determine entries of a normalized matrix
given its marginal probabilities. Our method has been successfully used to obtain two different solutions
by maximizing the entropy of a desired matrix and by minimizing its Kullback–Leibler divergence from the
initial probability distribution. The latter is fully equivalent to the well-known RAS balancing algorithm.
The presented method has been evaluated using a traffic matrix of the GÉANT pan-European network and
randomly generated matrices of various sparsities. It turns out to be computationally faster than RAS. We
have shown that our approach is suitable for efficient balancing both dense and sparse matrices.
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1. Introduction

We would like to find all elements ai j of the nonnegative m × n matrix A whose row and
column sums ri = ∑n

j=1 ai j ,1 ≤ i ≤ m and c j = ∑m
i=1 ai j ,1 ≤ j ≤ n, respectively, are given. This

problem known as matrix balancing occurs in economics, demography, statistics and stochastic
modeling. Matrix balancing is applicable to input–output analysis, supply and use tables, social
accounting matrices, urban and transportation planning, classifying items in contingency tables,
determining transition probabilities, estimating interregional migration, and modeling origin–
destination flows [15]. Assuming each ai j > 0 the trivial solution to this problem is given by
ai j = pri pc j T , where pri = ri /T and pc j = c j /T are the row and column sums normalized
with respect to the total sum of all the matrix elements T = ∑m

i=1 ri = ∑n
j=1 c j . A normalized

matrix P = A/T with entries pi j = pri pc j can be interpreted as a certain probability distribution.
Unfortunately this solution doesn’t work if A (and consequently P) has zero elements which
is common in some practical applications. For example, pi j = ai j = 0 if the original matrix A
represents network traffic and there is no flow from node i to node j .
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2. The RAS algorithm

In such a case, in order to find P whose structure (i.e. positions of all zero and nonzero elements)
is known, we can use the well-known RAS algorithm (see, e.g. [1,4,7,8,10,11,13–15] and references
therein). It iteratively employs proportional rescaling of all rows and columns of an initial matrix
Q with entries qi j until all the marginal probabilities pri and pc j are satisfactorily matched. Here
are the subsequent steps of this algorithm [15]:

Algorithm 1 (RAS).

(Step 1) Set the initial conditions k = 0 and Q(0) = Q.
(Step 2) Increase the iteration index k ← k +1.
(Step 3) For the i th row, 1 ≤ i ≤ m, find αi = pri /

∑n
j=1 q (k−1)

i j and rescale each element of this row

q (k−1)
i j ←αi q (k−1)

i j ,1 ≤ j ≤ n.

(Step 4) For the j th column, 1 ≤ j ≤ n, find β j = pc j /
∑m

i=1 q (k−1)
i j and rescale each element of this

column

q (k)
i j =β j q (k−1)

i j ,1 ≤ i ≤ m.

(Step 5) If the convergence criterion∣∣∣∣∣∣
pri −

∑n
j=1 q (k)

i j

pri

∣∣∣∣∣∣< ϵ,1 ≤ i ≤ m,

is met then go to Step 6, else go to Step 2.
(Step 6) P = Q(k).

RAS is applicable to balancing not only dense matrices but sparse ones with zero elements as
well. This algorithm is very intuitive and easy to implement but it is often used blindly. It simply
is not obvious that RAS minimizes the Kullback–Leibler divergence (see the proof in [2, 3, 9])

D(P||Q) =
m∑

i=1

n∑
j=1

pi j log
pi j

qi j
, (1)

hence most papers reporting successful RAS application completely disregard this important
property. Previous attempts to relate RAS to entropy optimization were made in, e.g. [10, 12–14].
As a consequence of minimizing (1), RAS results in P which is the least distinguishable from Q
and satisfies the aforementioned constraints pri and pc j . If this is our goal, RAS provides a perfect
solution but what if there is no reason to favor any specific initial probability distribution Q?

3. Maximum entropy solution

Under such circumstances the uniform distribution qi j = 1(ai j > 0)/k , where
k = ∑m

i=1

∑n
j=1 1(ai j > 0) is the number of positive entries in matrix A counted with the indi-

cator function 1(◦), seems a natural and reasonable choice for Q. This simplifies formula (1)
to

D(P||Q) = logk +
m∑

i=1

n∑
j=1

pi j log pi j . (2)

Since k is a constant, minimizing the Kullback–Leibler divergence (2) is equivalent to maximizing
the entropy of P

H(P) =−
m∑

i=1

n∑
j=1

pi j log pi j . (3)
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Let’s introduce a vector of Lagrange multipliers λ and set partial derivatives of the Lagrangian
function

L(P,λ) =−
m∑

i=1

n∑
j=1

pi j log pi j +
m∑

i=1
λri

(
n∑

j=1
pi j −pri

)
+

n∑
j=1

λc j

(
m∑

i=1
pi j −pc j

)
(4)

to zeros for all positive entries pi j > 0, the first of which in the i th row is denoted by pi ic , 1 ≤ i ≤ m

∂L(P,λ)

∂pi ic

=− log pi ic −1+λri +λcic
= 0 (5)

∂L(P,λ)

∂pi j
=− log pi j −1+λri +λc j = 0, ic < j ≤ n. (6)

Subtracting (6) from (5) and using the natural log with base e, we get pi j = pi ic exp(λc j −λcic
)

which along with the marginal value
∑n

j=ic
pi j = pri gives a formula for nonzero entries of P

pi j = pri

exp
(
λc j

)
∑

pi l ̸=0,1≤ l ≤n
exp

(
λcl

) . (7)

It follows immediately from the requirement
∑m

i=1 pi j = pc j imposed on all the probabilities of
column j that

exp
(
λc j

)
=

pc j∑
pi j ̸=0,1≤ i ≤m

pri∑
pi l ̸=0,1≤ l ≤n

exp
(
λcl

) . (8)

We can obtain an analogous solution if we follow a columnwise approach instead of a rowwise
one ((5)–(6)).

4. Iterative algorithm to determine the maximum entropy matrix P

It’s obvious from (8) that variables exp(λc j ), 1 ≤ j ≤ n, can be determined as a function of them-
selves, hence the following iterative algorithm to maximize the entropy H(P) (3) is straightfor-
ward:

Algorithm 2.

(Step 1) Set the initial conditions k = 0 and exp(λ(0)
c j

), 1 ≤ j ≤ n.
(Step 2) Increase the iteration index k ← k + 1 and use formula (8) to determine new numerical

values of exp(λ(k)
c j

), 1 ≤ j ≤ n.
(Step 3) If the convergence criterion∣∣∣∣∣∣

exp
(
λ(k)

c j

)
−exp

(
λ(k−1)

c j

)
exp

(
λ(k)

c j

)
∣∣∣∣∣∣< ϵ,1 ≤ j ≤ n,

is met then go to Step 4, else go to Step 2.
(Step 4) Use formula (7) to find desired numerical values of the nonzero matrix entries pi j ,

1 ≤ i ≤ m, 1 ≤ j ≤ n.

5. A RAS-equivalent algorithm

Let’s systematically analyze the RAS algorithm. As we already know it minimizes the Kullback–
Leibler divergence (1) between the resulting matrix P and the initial one Q. The corresponding
Lagrangian has the form

L(P,λ) =−
m∑

i=1

n∑
j=1

pi j log
pi j

qi j
+

m∑
i=1

λri

(
n∑

j=1
pi j −pri

)
+

n∑
j=1

λc j

(
m∑

i=1
pi j −pc j

)
. (9)
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Using the approach identical to that presented in Section 3 we get formulas

pi j = pri

qi j exp
(
λc j

)
∑

pi l ̸=0,1≤ l ≤n
qi l exp

(
λcl

) (10)

and

exp
(
λc j

)
=

pc j∑
pi j ̸=0,1≤ i ≤m

pri qi j∑
pi l ̸=0,1≤ l ≤n

qi l exp
(
λcl

) (11)

analogous to (7) and (8), respectively, but dependent on the initial probability distribution Q.
Hence, Algorithm 2 with ((10)–(11)) replacing ((7)–(8)) is fully equivalent to RAS.

It is clear from equations ((7)–(8)) and ((10)–(11)) that in order to implement and execute
Algorithm 2 we need the initial values of exp(λ(0)

c j
), 1 ≤ j ≤ n, successfully set to pc j in Step 1

of all our computations, and positions of all zero (if any) and nonzero elements of the matrix. We
assume that its structure is known. Thus, the introduced Algorithm 2 is easy to implement, and
applicable to balancing both dense and sparse matrices.

6. Performance comparison of the matrix balancing algorithms

First we compared the performance of our new algorithm and RAS using a traffic matrix of
the GÉANT network [5] interconnecting Europe’s national research and education networks
with a high-speed backbone. GÉANT, cofunded by the European Commision, is a result of a
collaboration of over 40 partners. Currently it serves 50 million users in over 10,000 organizations.

Topology of the GÉANT pan-European high-bandwidth backbone network evolves over time.
It consisted of 31 nodes interconnected with 96 links over a two-year period from June 1st, 2018 to
May 31st, 2020 when we collected traffic measurements. The corresponding 31×31 sparse matrix
of 961 entries with only 96 nonzero link loads was investigated. We gathered link load statistics
accessible online with the public Cacti tool [6].

For numerical experiments reported in this paper we selected GÉANT’s traffic of January 15th,
2020. The traffic measurements recorded for subsequent 5-minute intervals determine 288 daily
traffic matrices Mk , 1 ≤ k ≤ 288. We tried to balance each of them given the marginal probabilities
pri and pc j ,1 ≤ i , j ≤ 31, obtained by normalizing the measurements ri and c j of total original
and transit traffic outgoing from node i and incoming to node j , respectively.

We started the performance analysis by comparing RAS (Algorithm 1) with our new Algo-
rithm 2, both implemented in Python. As we pointed out in Sections 2 and 3, these algorithms
optimize different entropy-based criteria but if our primary objective is to balance a matrix, such
a comparison makes sense. We used the modified gravity model [16]

bi j = ri
c j∑

pi l ̸=0,1≤ l ≤31
cl

, 1 ≤ i , j ≤ 31, pi j ̸= 0 (12)

to determine nonzero elements qi j = bi j /T of the initial matrix Q required in Step 1 of Algo-
rithm 1 (RAS). They were normalized with respect to T =∑31

i=1 ri =∑31
j=1 c j . We examined running

times of both the investigated methods for all daily traffic matrices Mk , 1 ≤ k ≤ 288. Our proposed
Algorithm 2 was on average 14.4495 times (standard deviation σ= 0.9732) faster than RAS.

When the nonzero elements of the initial matrix Q of Algorithm 1 (RAS) were determined by
the uniform distribution which (as we know from Sections 3 and 4) makes RAS and Algorithm 2
fully equivalent with respect to the maximized optimization criterion (3), the execution time of
RAS was shortened on average 14.4136 times (standard deviation σ= 1.7069).
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Our top objective was a comprehensive performance evaluation of two different implemen-
tations minimizing the Kullback–Leibler divergence (1). Therefore, RAS (Algorithm 1) was com-
pared with a modified version of Algorithm 2 using equations ((10)–(11)) instead of ((7)–(8)). The
initial matrix Qk , 1 ≤ k ≤ 288, identical for both algorithms, was randomly generated for each of
the 288 daily traffic matrices Mk . RAS and Algorithm 2 were implemented in three programming
languages: C++, Java and Python, and run 100 times for each pair of matrices (Qk ,Mk ) to average
an impact of background processes on the measured execution times tR AS and tA2 required by
both the examined methods to produce the balanced matrix Pk . Statistics of 288 × 100 = 28800
samples of tR AS and tA2 collected for each of three numerical values 10−6, 10−9 and 10−12 of
the convergence criterion ϵ (cf. Step 5 of Algorithm 1 and Step 3 of Algorithm 2) are given
in Tables 1–3.

Java and Python provide the fastest and slowest of all the observed executions of the examined
algorithms taking on average 64.179 µs and 569.35 ms, respectively. The measured running times
differ by 2–3 orders of magnitude for each algorithm implemented in both these programming
languages. Performance of C++ is also inferior to that of Java but the difference between them isn’t
that significant. It’s obvious that decreasing the convergence criterion ϵ increases the running
times tR AS and tA2. The mean ratio tR AS /tA2 of their corresponding measurements ranges from
around 5 for Java to around 10 for C++ and Python, as is clearly seen from Table 3. The introduced
Algorithm 2 is always faster than RAS and consistently beats it.

Both the investigated algorithms produce exact (i.e. not approximate) results but they employ
iteration so numerical values of the convergence criterion ϵ affect computational accuracy of
obtained 96 nonzero probabilities p(k)

i j (10), 1 ≤ i , j ≤ 31, of the balanced matrix Pk corresponding
to each pair (Qk ,Mk ), 1 ≤ k ≤ 288. To comparatively evaluate this accuracy we found out the
relative percentage difference

d (k)
i j =

∣∣∣p(k,R AS)
i j −p(k,A2)

i j

∣∣∣
p(k,R AS)

i j +p(k,A2)
i j

2

×100% 1 ≤ i , j ≤ 31,1 ≤ k ≤ 288, p(k)
i j ̸= 0 (13)

between elements of each pair of corresponding nonzero probabilities (p(k,R AS)
i j , p(k,A2)

i j ) obtained
by applying RAS and Algorithm 2, respectively. Our C++, Java and Python programs performed all
the calculations with double precision.

Table 4 shows statistics of d (13) based on 288 × 96 = 27648 available samples. All the
relative percentage differences reported for Algorithm 2 and RAS are absolutely negligible. The
highest numerical value of d = 0.0963% was obtained for C++ and ϵ = 10−6. The more stringent
convergence criterion ϵ, the lower the values of d for all the programming implementations of
the algorithms, as expected. Setting ϵ = 10−6 seems absolutely satisfactory in practice but this
parameter can be easily adjusted if the results of super high numerical accuracy are required.

The studied 31-node GÉANT pan-European backbone network has only 96 links, which is
why the sparsity of the corresponding 31× 31 traffic matrix s = (961− 96)/961 = 90.01% is very
high. In order to show the versatility of our iterative algorithm we have applied the investigation
methodology, similar to that successfully used to produce the results reported in Tables 1–4, to
less sparse and fully dense matrices as well. For each of the five selected numerical values of the
matrix sparsity s ∈ {0%,10%,40%,70%,90%} we have randomly generated 100 pairs of 100×100
matrices (Qk (s),Mk (s)), 1 ≤ k ≤ 100, each of which has s×100×100 zero elements. s = 0 implies a
fully dense matrix with no zero elements. The corresponding statistics of the running times tR AS

and tA2, their ratios tR AS /tA2, and the relative percentage differences d determined by (13) (with
modified ranges of the indices 1 ≤ i , j ≤ 100 and 1 ≤ k ≤ 100) are presented in Tables 5–8. Each
resulting matrix Pk (s) determined by (Qk (s),Mk (s)), 1 ≤ k ≤ 100, was balanced 100 times to get
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a statistically significant sample of 10000 execution times tR AS and tA2 for the given numerical
value of matrix sparsity s.

Table 7 clearly shows that RAS is comparable with Algorithm 2 in terms of execution time
for small values of the matrix sparsity s only. As s increases and ϵ decreases the superiority of
Algorithm 2 is more and more visible which means that our approach is especially suitable for
balancing very sparse matrices with high requiremens for numerical accuracy of the results. The
statistics of d reported in Table 8 reinforce the conclusions we have already drawn above from
the analysis of the analogous results given in Table 4 for the GÉANT network.

7. Conclusions

In this paper we revisited the well-known RAS matrix balancing algorithm. We reexamined its im-
plicit and usually completely omitted property, i.e. the entropy-based minimization criterion (1)
which we optimized by using the Lagrange multipliers. This systematic approach results in a sur-
prisingly simple iterative scheme for the variables exp(λc j ) (or exp(λri )) whose computed nu-
merical values can be used to easily determine the desired balanced matrix P which satisfies the
given marginal constraints. We developed two versions of this iterative procedure, i.e. insensitive
and sensitive to the initial matrix Q. The latter is fully equivalent to RAS but superior to it in terms
of analytical justification, mathematical formalism of derivations, and performance.

Execution times and numerical accuracy of the proposed algorithm were examined for 288
daily traffic patterns of the extremely sparse 31×31 traffic matrix (with s = 90.01%) of the GÉANT
pan-European backbone network, and 500 randomly generated 100 × 100 matrices of various
sparsities 0% ≤ s ≤ 90%. Our method is simple to implement regardless of the programming
language used, and the size and sparsity of a matrix. We didn’t experience any issues with setting
the initial conditions or the convergence of the proposed algorithm. It works well for all the
investigated matrices, both actual ones reflecting the existing network configuration and the
measured traffic volume of GÉANT, and randomly generated ones for given input values of s.
Our new iterative scheme outperformes RAS, as is seen from the outcomes of all the examined
programming implementations, reducing its running time even by one order of magnitude for
extremely sparse matrices without compromising numerical accuracy of the obtained results.

Table 1. The GÉANT traffic matrix: statistics of the execution times tR AS (in seconds)
for different programming implementations of RAS with various numerical values of the
convergence criterion ϵ.

Language ϵ Range Mean Standard
Min Max Deviation

C++ 10−12 1.6483 ×10−3 8.2756 ×10−3 2.4139 ×10−3 8.6565 ×10−4

10−9 1.1674 ×10−3 5.9977 ×10−3 1.7309 ×10−3 6.3468 ×10−4

10−6 5.5820 ×10−4 3.7181 ×10−3 1.0478 ×10−3 4.0706 ×10−4

Java 10−12 4.6904 ×10−4 2.4578 ×10−3 7.5155 ×10−4 3.0896 ×10−4

10−9 3.3710 ×10−4 1.7765 ×10−3 5.3908 ×10−4 2.2526 ×10−4

10−6 1.6987 ×10−4 1.1034 ×10−3 3.2666 ×10−4 1.4263 ×10−4

Python 10−12 3.8974 ×10−1 1.9744 5.6935 ×10−1 2.0856 ×10−1

10−9 2.7951 ×10−1 1.4271 4.0842 ×10−1 1.5262 ×10−1

10−6 1.3426 ×10−1 8.8661 ×10−1 2.4802 ×10−1 9.7824 ×10−2
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Table 2. The GÉANT traffic matrix: statistics of the execution times tA2 (in seconds) for
different programming implementations of Algorithm 2 with various numerical values of
the convergence criterion ϵ.

Language ϵ Range Mean Standard
Min Max Deviation

C++ 10−12 1.5740 ×10−4 7.3414 ×10−4 2.2351 ×10−4 7.0959 ×10−5

10−9 1.1809 ×10−4 5.4038 ×10−4 1.6733 ×10−4 5.2127 ×10−5

10−6 7.6277 ×10−5 3.4324 ×10−4 1.1125 ×10−4 3.3370 ×10−5

Java 10−12 6.9929 ×10−5 4.8373 ×10−4 1.3970 ×10−4 5.5130 ×10−5

10−9 5.1776 ×10−5 3.5363 ×10−4 1.0190 ×10−4 4.0597 ×10−5

10−6 3.3284 ×10−5 2.2504 ×10−4 6.4179 ×10−5 2.6400 ×10−5

Python 10−12 3.6308 ×10−2 1.8120 ×10−1 5.4158 ×10−2 1.8964 ×10−2

10−9 2.6078 ×10−2 1.3250 ×10−1 3.9406 ×10−2 1.3931 ×10−2

10−6 1.4812 ×10−2 8.2768 ×10−2 2.4724 ×10−2 8.9330 ×10−3

Table 3. The GÉANT traffic matrix: statistics of the ratios of the execution times tR AS /tA2 for
different programming implementations of RAS and Algorithm 2 with various numerical
values of the convergence criterion ϵ.

Language ϵ Range Mean Standard
Min Max Deviation

C++ 10−12 9.1789 12.8413 10.7190 0.5459
10−9 8.1509 13.0099 10.2450 0.6804
10−6 6.0654 12.3235 9.2831 0.9308

Java 10−12 3.0040 22.2358 5.4858 1.5778
10−9 2.8759 22.0625 5.3923 1.5542
10−6 2.5178 21.3290 5.1934 1.5432

Python 10−12 8.6863 13.1169 10.4935 0.4984
10−9 7.8254 14.2760 10.3420 0.6362
10−6 6.7682 13.8256 9.9964 0.9072

Table 4. The GÉANT traffic matrix: statistics of the relative percentage differences d (13) for
different programming implementations of RAS and Algorithm 2 with various numerical
values of the convergence criterion ϵ.

Language ϵ Range Mean Standard
Min Max Deviation

C++ 10−12 0 0 0 0
10−9 0 0 0 0
10−6 0 9.63 ×10−2 6.74 ×10−5 1.58 ×10−3

Java 10−12 0 3.83 ×10−9 7.84 ×10−11 2.39 ×10−10

10−9 0 3.84 ×10−6 7.88 ×10−8 2.39 ×10−7

10−6 3.42 ×10−14 3.84 ×10−3 7.81 ×10−5 2.30 ×10−4

Python 10−12 0 3.83 ×10−9 7.85 ×10−11 2.39 ×10−10

10−9 0 3.84 ×10−6 7.88 ×10−8 2.39 ×10−7

10−6 5.12 ×10−14 3.84 ×10−3 7.81 ×10−5 2.30 ×10−4
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Table 5. The randomly generated 100×100 matrices of different sparsities: statistics of the
sample of 10000 execution times tR AS (in seconds) for the Python programming implemen-
tation of RAS with various numerical values of the convergence criterion ϵ.

Sparsity ϵ Range Mean Standard
s Min Max Deviation

0% 10−12 1.1263 ×10−1 1.2662 ×10−1 1.2085 ×10−1 4.6746 ×10−3

10−9 8.9145 ×10−2 1.0591 ×10−1 9.6370 ×10−2 4.6578 ×10−3

10−6 5.9771 ×10−2 7.9746 ×10−2 6.7061 ×10−2 5.6219 ×10−3

10% 10−12 1.2549 ×10−1 1.4411 ×10−1 1.3392 ×10−1 4.6912 ×10−3

10−9 1.0113 ×10−1 1.2134 ×10−1 1.0687 ×10−1 4.8764 ×10−3

10−6 7.4044 ×10−2 8.1293 ×10−2 7.6455 ×10−2 1.2706 ×10−3

40% 10−12 1.7242 ×10−1 1.9315 ×10−1 1.8136 ×10−1 5.0508 ×10−3

10−9 1.3174 ×10−1 1.6175 ×10−1 1.4432 ×10−1 5.9942 ×10−3

10−6 8.6096×10−2 1.0540 ×10−1 9.8039×10−2 5.6630 ×10−3

70% 10−12 2.4456 ×10−1 3.1806 ×10−1 2.6372 ×10−1 9.7593 ×10−3

10−9 1.8327 ×10−1 2.0532 ×10−1 1.9343 ×10−1 5.7941 ×10−3

10−6 1.2376 ×10−1 1.4914 ×10−1 1.3550 ×10−1 6.5494 ×10−3

90% 10−12 5.2929 ×10−1 9.6860 ×10−1 6.1602 ×10−1 5.2761 ×10−2

10−9 3.8629 ×10−1 6.9003 ×10−1 4.5483 ×10−1 3.7816 ×10−2

10−6 2.5027 ×10−1 4.8563 ×10−1 3.0601 ×10−1 2.8711 ×10−2

Table 6. The randomly generated 100×100 matrices of different sparsities: statistics of the
sample of 10000 execution times tA2 (in seconds) for the Python programming implemen-
tation of Algorithm 2 with various numerical values of the convergence criterion ϵ.

Sparsity ϵ Range Mean Standard
s Min Max Deviation

0% 10−12 8.9289 ×10−2 9.7341 ×10−2 9.0225 ×10−2 8.5198 ×10−4

10−9 7.4168 ×10−2 9.2356 ×10−2 7.9497 ×10−2 5.0402 ×10−3

10−6 6.5505 ×10−2 7.8184 ×10−2 7.0388 ×10−2 1.8639 ×10−3

10% 10−12 8.1484 ×10−2 9.8452 ×10−2 8.8399 ×10−2 4.5759 ×10−3

10−9 7.8466 ×10−2 9.2174 ×10−2 8.2270 ×10−2 2.1960 ×10−3

10−6 6.2700 ×10−2 7.0551 ×10−2 6.5223 ×10−2 1.4246 ×10−3

40% 10−12 7.1191 ×10−2 8.1459 ×10−2 7.6576 ×10−2 2.7609 ×10−3

10−9 6.0643 ×10−2 7.5507 ×10−2 6.7175 ×10−2 2.8427 ×10−3

10−6 5.2840 ×10−2 6.1184 ×10−2 5.5397 ×10−2 1.3084 ×10−3

70% 10−12 5.5872 ×10−2 7.3954 ×10−2 5.9421 ×10−2 2.4112 ×10−3

10−9 4.7069 ×10−2 5.1978 ×10−2 4.8864 ×10−2 1.1949 ×10−3

10−6 4.0591 ×10−2 4.5647 ×10−2 4.2245 ×10−2 8.8261 ×10−4

90% 10−12 4.8315 ×10−2 6.5324 ×10−2 5.2995 ×10−2 2.4413 ×10−3

10−9 4.1187 ×10−2 5.0542 ×10−2 4.3975 ×10−2 1.7201 ×10−3

10−6 3.3335 ×10−2 3.9874 ×10−2 3.6013 ×10−2 1.4768 ×10−3
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Table 7. The randomly generated 100 × 100 matrices of different sparsities: statistics of
the sample of 10000 ratios tR AS /tA2 of the execution times for the Python programming
implementations of RAS and Algorithm 2 with various numerical values of the convergence
criterion ϵ.

Sparsity ϵ Range Mean Standard
s Min Max Deviation

0% 10−12 1.2486 1.3929 1.3394 0.0502
10−9 1.0465 1.3350 1.2157 0.0790
10−6 0.8429 1.1012 0.9532 0.0818

10% 10−12 1.3191 1.6605 1.5178 0.0725
10−9 1.1827 1.4837 1.2992 0.0518
10−6 1.0947 1.2856 1.1727 0.0294

40% 10−12 2.1724 2.6072 2.3709 0.0948
10−9 1.9409 2.3692 2.1497 0.0713
10−6 1.5385 1.9341 1.7708 0.1112

70% 10−12 4.0306 4.8991 4.4414 0.1583
10−9 3.6270 4.3375 3.9604 0.1417
10−6 2.8492 3.5824 3.2079 0.1507

90% 10−12 9.5022 14.8275 11.6199 0.7110
10−9 8.7802 13.6526 10.3378 0.6456
10−6 7.2530 12.3962 8.4959 0.6776

Table 8. The randomly generated 100×100 matrices of different sparsities: statistics of the
sample of 100×(1−s)×10000 relative percentage differences d for the Python programming
implementations of RAS and Algorithm 2 with various numerical values of the convergence
criterion ϵ.

Sparsity ϵ Range Mean Standard
s Min Max Deviation

0% 10−12 0 1.12 ×10−10 1.07 ×10−11 1.47 ×10−11

10−9 1.51 ×10−14 1.11 ×10−7 1.37 ×10−8 1.68 ×10−8

10−6 6.75 ×10−12 1.12 ×10−4 1.75 ×10−5 1.87 ×10−5

10% 10−12 0 1.14 ×10−10 1.18 ×10−11 1.53 ×10−11

10−9 0 1.08 ×10−7 1.52 ×10−8 1.53 ×10−8

10−6 0 7.61 ×10−5 8.42 ×10−6 7.76 ×10−6

40% 10−12 0 1.23 ×10−10 9.28 ×10−12 1.37 ×10−11

10−9 0 1.12 ×10−7 8.70 ×10−9 1.22 ×10−8

10−6 0 1.21 ×10−4 8.15 ×10−6 1.34 ×10−5

70% 10−12 0 1.41 ×10−10 5.52 ×10−12 1.22 ×10−11

10−9 0 1.38 ×10−7 5.86 ×10−9 1.28 ×10−8

10−6 0 1.31 ×10−4 5.78 ×10−6 1.26 ×10−5

90% 10−12 0 2.46 ×10−10 2.36 ×10−12 1.04 ×10−11

10−9 0 2.40 ×10−7 2.27 ×10−9 9.86 ×10−9

10−6 0 2.29 ×10−4 2.26 ×10−6 9.71 ×10−6
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