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Abstract. We prove a uniqueness result of the unbounded solution for a quadratic backward stochastic
differential equation whose terminal condition is unbounded and whose generator g may be non-Lipschitz
continuous in the state variable y and non-convex (non-concave) in the state variable z, and instead satisfies
a strictly quadratic condition and an additional assumption. The key observation is that if the generator is
strictly quadratic, then the quadratic variation of the first component of the solution admits an exponential
moment. Typically, a Lipschitz perturbation of some convex (concave) function satisfies the additional
assumption mentioned above. This generalizes some results obtained in [1] and [2].
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1. Introduction

Since the seminal paper [7] on nonlinear backward stochastic differential equations (BSDEs
in short), a lot of efforts have been made to study the well posedness, and many applications
have been found in various fields such as mathematical finance, stochastic control and PDEs. In
particular, quadratic BSDEs were first investigated in [6] for bounded terminal conditions, which
have attracted much attention and are the subject of this article.
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We consider the following quadratic BSDE:

Yt = ξ+
∫ T

t
g (s,Ys , Zs )ds −

∫ T

t
Zs ·dBs , t ∈ [0,T ], (1)

where the terminal value ξ is an unbounded random variable, and the generator g has a quadratic
growth in the variable z. In [1], the authors obtained the first existence result for this kind of
BSDEs, when the terminal value has a certain exponential moment. The uniqueness results were
established in [2], [4] and [5] when the generator g is Lipschitz continuous in y , and either
convex or concave in z. The case of a non-convex generator g was tackled in [8] and [3], but
more assumptions are required on the terminal value ξ than the exponential integrability. In this
paper, we prove a uniqueness result for the unbounded solution of quadratic BSDEs, where the
generator g may be non-Lipschitz and has a general growth in y , and non-convex (non-concave)
in z. Rather than imposing any additional assumption on the terminal value, we suppose that
the generator g satisfies an additional assumption which holds typically for a (locally) Lipschitz
perturbation of some convex (concave) function (see (H4) and Proposition 3 together with (H4′)
and Remark 7 for details), and is strictly quadratic, i.e., either

g (ω, t , y, z) ≥ γ

2
|z|2 −β|y |−αt (ω),

or

g (ω, t , y, z) ≤−γ
2
|z|2 +β|y |+αt (ω)

holds for two constants γ > 0,β ≥ 0 and a nonnegative process α·. Under this condition, we
can prove that if (Y·, Z·) is a solution satisfying E[supt∈[0,T ] exp(p|Yt |+p

∫ t
0 αs ds)] <+∞ for some

p > 0, then there exists a constant ε> 0 such that E[exp(ε
∫ T

0 |Zt |2dt )] <+∞. See Proposition 2 for
details.

Let us close this introduction by introducing some notations that will be used later. Fix the
terminal time T > 0 and a positive integer d , and let x · y denote the Euclidean inner product for
x, y ∈Rd . Suppose that (Bt )t∈[0,T ] is a d-dimensional standard Brownian motion defined on some
complete probability space (Ω,F ,P). Let (Ft )t∈[0,T ] be the natural filtration generated by B· and
augmented by all P-null sets of F . All the processes are assumed to be (Ft )-adapted.

Denote by 1A( · ) the indicator of set A, and sgn(x) :=1x>0−1x≤0. Let a∧b be the minimum of
a and b, a− := −(a ∧0) and a+ := (−a)−. For any real p ≥ 1, let S p be the set of all progressively
measurable and continuous real-valued processes (Yt )t∈[0,T ] such that

‖Y ‖S p :=
(
E

[
sup

t∈[0,T ]
|Yt |p

])1/p

<+∞,

and M p the set of all progressively measurable Rd -valued processes (Zt )t∈[0,T ] such that

‖Z‖M p :=
{
E

[(∫ T

0
|Zt |2dt

)p/2
]}1/p

<+∞.

As mentioned before, we will study BSDEs of type (1). The terminal condition ξ is real-valued
and FT -measurable, and the process g ( · , · , y, z) : Ω× [0,T ] → R is progressively measurable for
each pair (y, z) and continuous in (y, z). By a solution to (1), we mean a pair of progressively
measurable processes (Yt , Zt )t∈[0,T ], taking values in R×Rd such that P−a.s., the function t 7→ Yt

is continuous, t 7→ Zt is square-integrable, t 7→ g (t ,Yt , Zt ) is integrable, and verifies (1). And, we
usually denote by BSDE (ξ, g ) the BSDE whose terminal condition is ξ and whose generator is g .

Finally, we recall that a process (X t )t∈[0,T ] belongs to class (D) if the family of random variables
{Xτ : τ is any stopping time taking values in [0,T ]} is uniformly integrable.
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2. Main result

We define for any non-negative integrable function f (·) : [0,T ] → [0,+∞) and any constants κ≥ 0
and λ> 0 the following function:

ψ(s, x; f ,κ,λ) = exp

(
λeκs x +λ

∫ s

0
f (r )eκr dr

)
, (s, x) ∈ [0,T ]× [0,+∞). (2)

It is easy to verify that for each x ∈ [0,+∞), ds −a.e. on [0,T ], it holds that

−ψx (s, x; f ,κ,λ)( f (s)+κx)+ψs (s, x; f ,κ,λ) = 0 (3)

and

−λψx (s, x; f ,κ,λ)+ψxx (s, x; f ,κ,λ) ≥ 0, (4)

where and hereafter, ψs ( · , · ; f ,κ,λ) denotes the first-order partial derivative with respect to time,
and ψx ( · , · ; f ,κ,λ) and ψxx ( · , · ; f ,κ,λ) are the first-order and second-order partial derivatives
with respect to space of the time-space function ψ( · , · ; f ,κ,λ).

In the whole paper, we always fix a progressively measurable non-negative process (αt )t∈[0,T ]

and several real constants β ≥ 0, 0 < γ ≤ γ, k ≥ 0, k ≥ 0 and δ ∈ [0,1). Let us first introduce the
following two assumptions on the generator g .

(H1) dP×dt −a.e., for each (y, z) ∈R×Rd , it holds that

sgn(y)g (ω, t , y, z) ≤αt (ω)+β|y |+ γ

2
|z|2;

(H2) There exists a deterministic nondecreasing continuous function φ(·) : [0,+∞) → [0,+∞)
with φ(0) = 0 such that dP×dt −a.e., for each (y, z) ∈R×Rd ,

|g (ω, t , y, z)| ≤αt (ω)+φ(|y |)+ γ

2
|z|2.

The following proposition gives a slight generalization of the existence result of [2] for qua-
dratic BSDEs with unbounded terminal conditions.

Proposition 1. Suppose that the function ψ is defined in (2) and that ξ is a terminal condition
and g is a generator which is continuous in (y, z) and satisfies assumptions (H1) and (H2).

(i) Let (Y·, Z·) be a solution to BSDE (ξ, g ) such that (ψp (t , |Yt |;α·,β,γ))t∈[0,T ] belongs to class
(D) for some real p ≥ 1. Then, P−a.s., for each t ∈ [0,T ],

pγ|Yt | ≤ψp (t , |Yt |;α·,β,γ)+ 1

2
p(p −1)γ2E

[∫ T

t
|Zs |2ds

∣∣∣Ft

]
≤ E[ψp (T, |ξ|;α·,β,γ)

∣∣Ft ]. (5)

(ii) If E[ψp (T, |ξ|;α·,β,γ)] <+∞ for some real p ≥ 1, then BSDE (ξ, g ) admits a solution (Y·, Z·)
such that (ψp (t , |Yt |;α·,β,γ))t∈[0,T ] belongs to class (D). Moreover, if p > 1, then there exists
a constant C > 0 depending only on p such that

E

[
sup

t∈[0,T ]
ψp (

t , |Yt |;α·,β,γ
)]≤CE[ψp (T, |ξ|;α·,β,γ)] (6)

and Z· ∈M 2. And, if p > 2, then Z· ∈M p .

C. R. Mathématique, 2020, 358, n 2, 227-235
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Proof.

(i). Let L· denote the local time of Y· at 0. Itô-Tanaka’s formula applied to ψ(s, |Ys |;α·,β, pγ) =
ψ(s, |Ys |;0,β, pγ)ψ(s,0;α·,β, pγ) gives, in view of assumption (H1),

dψ(s, |Ys |;α·,β, pγ)

=−ψx (s, |Ys |;α·,β, pγ)sgn(Ys )g (s,Ys , Zs )ds +ψx (s, |Ys |;α·,β, pγ)sgn(Ys )Zs ·dBs

+ψx (s, |Ys |;α·,β, pγ)dLs + 1

2
ψxx (s, |Ys |;α·,β, pγ)|Zs |2ds +ψs (s, |Ys |;α·,β, pγ)ds

≥ [−ψx (s, |Ys |;α·,β, pγ)(αs +β|Ys |)+ψs (s, |Ys |;α·,β, pγ)
]

ds

+ 1

2

[−γψx (s, |Ys |;α·,β, pγ)|Zs |2 +ψxx (s, |Ys |;α·,β, pγ)|Zs |2
]

ds

+ψx (s, |Ys |;α·,β, pγ)sgn(Ys )Zs ·dBs , dP×ds −a.e.

Then, by virtue of (3) and (4) together with the fact that ψx ( · , · ; f·,κ,λ) ≥λ, we have

dψ(s, |Ys |;α·,β, pγ) ≥ 1

2
p(p −1)γ2|Zs |2ds +ψx (s, |Ys |;α·,β, pγ)sgn(Ys )Zs ·dBs , dP×ds −a.e. (7)

Let us denote, for each t ∈ [0,T ] and each integer m ≥ 1, the following stopping time

τt
m := inf

{
s ∈ [t ,T ] :

∫ s

t

(
ψx (r, |Yr |;α·,β, pγ)

)2 |Zr |2dr ≥ m

}
∧T

with the convention inf;=+∞. It follows from (7) and the definition of τt
m that for each m ≥ 1,

ψ(t , |Yt |;α·,β, pγ)+ 1

2
p(p −1)γ2E

[∫ τt
m

t
|Zs |2ds

∣∣∣∣∣Ft

]
≤ E

[
ψ(τt

m , |Yτt
m
|;α·,β, pγ)

∣∣∣Ft

]
, t ∈ [0,T ].

Thus, since (ψ(s, |Ys |;α·,β, pγ))s∈[0,T ] belongs to class (D), the desired inequality (5) follows by
letting m →∞ and using Fatou’s lemma in the last inequality.

(ii). Thanks to (i), proceeding as in the proof of Proposition 3 in [2] with a localization argument,
we conclude that if E[ψp (T, |ξ|;α·,β,γ)] <+∞ for some real p ≥ 1, then BSDE (ξ, g ) has a solution
(Y·, Z·) such that (ψp (t , |Yt |;α·,β,γ))t∈[0,T ] belongs to class (D) and (5) holds. Moreover, for p > 1,
it is clear from (5) that Z· ∈M 2. Since (5) holds for p = 1, we apply Doob’s maximal inequality to
get (6). Finally, the conclusion that Z· ∈M p for p > 2 has been given in Corollary 4 of [2]. �

To obtain a stronger integrability with respect to the process Z·, we need the following assump-
tion, called hereafter the strictly (positive) quadratic condition:

(H3) dP×dt −a.e., for each (y, z) ∈R×Rd , it holds that

g (ω, t , y, z) ≥ γ

2
|z|2 −β|y |−αt (ω). (8)

Proposition 2. Let ψ be defined in (2), ξ be a terminal condition, g be a generator satisfing (H3),
and (Y·, Z·) be a solution to BSDE (ξ, g ). If E[supt∈[0,T ]ψ(t , |Yt |;α·,0, p0)] < +∞ for some real

p0 > 0, then for each real ε ∈ (0,ε0] with ε0 := γ2

18 ∧ p0γ
12+6βT , we have

E

[
exp

(
ε

∫ T

0
|Zs |2ds

)]
<+∞. (9)

In particular, for each p > 0 and δ ∈ [0,1), E[exp(p
∫ T

0 |Zs |1+δds)] <+∞.

Proof. Since (Y·, Z·) is a solution to BSDE (ξ, g ) and (8) holds, we have for each n ≥ 1,

γ

2

∫ σn

0
|Zs |2ds ≤ Y0 −Yσn +

∫ σn

0
(αs +β|Ys |)ds +

∫ σn

0
Zs ·dBs ≤ X +

∫ σn

0
Zs ·dBs ,
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where X := (2+βT )supt∈[0,T ] |Yt |+
∫ T

0 αs ds, and

σn := inf

{
s ∈ [0,T ] :

∫ s

0
|Zr |2dr ≥ n

}
∧T.

Then, for each ε> 0 such that 3ε(2+βT ) ≤ p0, we have

exp

(
γ

2
ε

∫ σn

0
|Zs |2ds

)
≤ exp(εX )exp

(
ε

∫ σn

0
Zs ·dBs − 3

2
ε2

∫ σn

0
|Zs |2ds

)
exp

(
3

2
ε2

∫ σn

0
|Zs |2ds

)
.

Observe that the process

H(t ) := exp

(
3ε

∫ t∧σn

0
Zs ·dBs − 9

2
ε2

∫ t∧σn

0
|Zs |2ds

)
is a positive martingale with H(0) = 1. Taking expectation in both sides of the last inequality and
applying Hölder’s inequality, we obtain

E

[
exp

(
γ

2
ε

∫ σn

0
|Zs |2ds

)]
≤ (
E
[
exp(3εX )

]) 1
3

(
E

[
exp

(
9

2
ε2

∫ σn

0
|Zs |2ds

)]) 1
3

.

Consequently, for ε≤ γ/9, we have(
E

[
exp

(
γ

2
ε

∫ σn

0
|Zs |2ds

)]) 2
3

≤ (
E
[
exp(3εX )

]) 1
3 <+∞,

which yields the inequality (9) immediately from Fatou’s lemma. Finally, for each p > 0, δ ∈ [0,1),
x ≥ 0 and ε ∈ (0,ε0], it follows from Young’s inequality that

px1+δ =
(

2

1+δεx2
) 1+δ

2

(
p

2
1−δ

(
2

1+δε
)− 1+δ

1−δ
) 1−δ

2

≤ εx2 + 1−δ
2

p
2

1−δ
(

1+δ
2ε

) 1+δ
1−δ

.

Thus, the last desired assertion follows from (9). The proof is complete. �

In what follows, the following assumption on the generator g will be used.

(H4) dP×dt −a.e., for each (yi , zi ) ∈R×Rd , i = 1,2 and each θ ∈ (0,1), it holds that

1{y1−θy2>0}
(
g (ω, t , y1, z1)−θg (ω, t , y2, z2)

)
≤ (1−θ)

(
β

∣∣δθy
∣∣+γ |δθz|2 +h(ω, t , y1, y2, z1, z2,δ)

)
, (10)

where

δθy := y1 −θy2

1−θ , δθz := z1 −θz2

1−θ ,

and

h(ω, t , y1, y2, z1, z2,δ) :=αt (ω)+k(|y1|+ |y2|)+k
(
|z1|1+δ+|z2|1+δ

)
.

One typical example of (H4) is

g (ω, t , y, z) := g1(z)+ g2(z),

where g1 : Rd → R is convex with quadratic growth, and g2 : Rd → R is Lipschitz continuous, i.e.,
g is a Lipschitz perturbation of some convex function. More generally, we have

Proposition 3. Assumption (H4) holds for the generator g as soon as it is continuous in (y, z) and
satisfies (H1) together with anyone of the following conditions:

(i) dP×dt −a.e., g (ω, t , · , · ) is convex;
(ii) g is Lipschitz in the variable y and δ-locally Lipschitz in the variable z, i.e., dP×dt −a.e.,

for each (yi , zi ) ∈R×Rd , i = 1,2, we have

|g (ω, t , y1, z1)− g (ω, t , y2, z2)| ≤β|y1 − y2|+γ(1+|z1|δ+|z2|δ)|z1 − z2|; (11)

(iii) dP×dt −a.e., for each (y, z) ∈R×Rd , g (ω, t , ·, z) is Lipschitz, and g (ω, t , y, ·) is convex;

C. R. Mathématique, 2020, 358, n 2, 227-235
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(iv) dP× dt − a.e., for each (y, z) ∈ R×Rd , g (ω, t , ·, z) is convex, and g (ω, t , y, ·) is δ-locally
Lipschitz, i.e., (11) holds with y1 = y2 = y.

Proof. Given (yi , zi ) ∈R×Rd , i = 1,2 and θ ∈ (0,1).

(i). Assume that dP×dt −a.e., g (ω, t , · , · ) is convex. In view of (H1), if δθy > 0, then

g (ω, t , y1, z1) = g
(
ω, t ,θy2 + (1−θ)δθy,θz2 + (1−θ)δθz

)
≤ θg (ω, t , y2, z2)+ (1−θ)g

(
ω, t ,δθy,δθz

)
≤ θg (ω, t , y2, z2)+ (1−θ)

(
αt (ω)+β|δθy |+ γ

2
|δθz|2

)
.

Thus, the inequality (10) holds with (γ,k,k) being replaced with (γ/2,0,0).

(ii). Let the inequality (11) holds. Note by (H1) that |g (ω, t ,0,0)| ≤αt (ω). Then, in view of the fact
that 2δ< 1+δ, using Young’s inequality, we deduce that for each ε> 0,

g (ω, t , y1, z1)−θg (ω, t , y2, z2)

≤ |g (ω, t , y1, z1)− g (ω, t , y2, z2)|+ (1−θ)|g (ω, t , y2, z2)|
≤β|y1 − y2|+γ

(
1+|z1|δ+|z2|δ

)
|z1 − z2|+ (1−θ)

(
|g (ω, t ,0,0)|+β|y2|+γ

(
1+|z2|δ

)
|z2|

)
≤β(|y1 −θy2|+ (1−θ)|y2|)+γ

(
1+|z1|δ+|z2|δ

)
(|z1 −θz2|+ (1−θ)|z2|)

+ (1−θ)
(
αt (ω)+β|y2|+γ

(
1+|z2|δ

)
|z2|

)
≤ (1−θ)

[
β|δθy |+2β|y2|+αt (ω)+ε|δθz|2 + c

(
1+|z1|1+δ+|z2|1+δ

)]
,

where c is a constant depending only on (γ,δ,ε). Thus, the inequality (10) holds with (γ,α·,k,k)
being replaced with (ε,α·+ c,2β,c).

(iii). Assume that dP×dt −a.e., for each (y, z) ∈ R×Rd , g (ω, t , ·, z) is Lipschitz, and g (ω, t , y, ·) is
convex. Then, noticing by (H1) that |g (ω, t ,0, z)| ≤αt +γ|z|2/2, we have

g (ω, t , y1, z1)−θg (ω, t , y2, z2)

≤ |g (ω, t , y1, z1)− g (ω, t , y2, z1)|+ g (ω, t , y2, z1)−θg (ω, t , y2, z2)

≤β|y1 − y2|+ g (ω, t , y2,θz2 + (1−θ)δθz)−θg (ω, t , y2, z2)

≤β(|y1 −θy2|+ (1−θ)|y2|)+ (1−θ)
(|g (ω, t , y2,δθz)− g (ω, t ,0,δθz)|+ |g (ω, t ,0,δθz)|)

≤ (1−θ)
(
β|δθy |+2β|y2|+αt (ω)+ γ

2
|δθz|2

)
,

Thus, (10) holds with (γ,k,k) being (γ/2,2β,0).

(iv). Assume that dP×dt − a.e., for each (y, z) ∈ R×Rd , g (ω, t , · , z) is convex, and g (ω, t , y, · ) is
δ-locally Lipschitz. In view of (H1) and the fact that 2δ< 1+δ, we can apply Young’s inequality to
get that if δθy > 0, then for each ε> 0,

g (ω, t , y1, z1)−θg (ω, t , y2, z2)

≤ g (ω, t , y1, z1)−θg (ω, t , y2, z1)+θ|g (ω, t , y2, z1)− g (ω, t , y2, z2)|
≤ g (ω, t ,θy2 + (1−θ)δθy, z1)−θg (ω, t , y2, z1)+θγ

(
1+|z1|δ+|z2|δ

)
|z1 − z2|

≤ (1−θ)
(|g (ω, t ,δθy, z1)− g (ω, t ,δθy,0)|+ g (ω, t ,δθy,0)

)
+γ

(
1+|z1|δ+|z2|δ

)
(|z1 −θz2|+ (1−θ)|z2|)

≤ (1−θ)
[
αt (ω)+β|δθy |+ε|δθz|2 + c

(
1+|z1|1+δ+|z2|1+δ

)]
,
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where c is a constant depending only on (γ,δ,ε). Thus, the inequality (10) holds with (γ,α·,k,k) :=
(ε,α·+ c,β,c). The proposition is then proved. �

Remark 4. It is easy to verify that the sum of generators satisfying assumption (H4) still satis-
fies (H4). Hence, in view of Proposition 3, the generator g satisfying assumption (H4) is neither
necessarily convex nor Lipschitz in the variables (y, z), and it may have a general growth in the
variable y .

The main result of this paper is stated as follows.

Theorem 5. Suppose that the functionψ is defined in (2) and that ξ is a terminal condition, g is a
generator which is continuous in the state variables (y, z) and satisfies assumptions (H1) and (H2),
and E[ψp (T, |ξ|;α·,β,γ)] <+∞ for each real p ≥ 1. Then, we have

(i) If g also satisfies assumption (H4) with k = 0, then BSDE (ξ, g ) admits a unique solution
(Y·, Z·) such that for each p ≥ 1, E

[
supt∈[0,T ]ψ

p
(
t , |Yt |;α·,β,γ

)]<+∞. Moreover, Z· ∈M p

for each p ≥ 1.
(ii) If g also satisfies assumptions (H3) and (H4), then BSDE (ξ, g ) admits a unique solu-

tion (Y·, Z·) such that for each p ≥ 1, E
[
supt∈[0,T ]ψ

p
(
t , |Yt |;α·,β,γ

)] < +∞. Moreover,
E[exp(ε

∫ T
0 |Zs |2ds)] <+∞ for some real ε> 0.

Proof. The existence is a direct consequence of Propositions 1 and 2. We now show the unique-
ness part. Let us assume that (H4) holds.

Let both (Y·, Z·) and (Y ′· , Z ′· ) be solutions to BSDE (ξ, g ) such that for each p ≥ 1,

E

[
sup

t∈[0,T ]
ψp (

t , |Yt |;α·,β,γ
)]<+∞ and E

[
sup

t∈[0,T ]
ψp (

t , |Y ′
t |;α·,β,γ

)]<+∞. (12)

We use the θ-difference technique developed in [2]. For each fixed θ ∈ (0,1), define

δθU· := Y·−θY ′·
1−θ and δθV· := Z·−θZ ′·

1−θ .

Then, the pair (δθU·,δθV·) solves the following BSDE:

δθUt = ξ+
∫ T

t
δθg (s)ds −

∫ T

t
δθVs ·dBs , t ∈ [0,T ], (13)

where

δθg (s) := 1

1−θ
[
g (s,Ys , Zs )−θg (s,Y ′

s , Z ′
s )

]
.

It follows from (10) that

1{δθUs>0}δθg (s) ≤αs +β|δθUs |+γ|δθVs |2, (14)

with

αs :=αs +k(|Ys |+ |Y ′
s |)+k

(
|Zs |1+δ+|Z ′

s |1+δ
)

.

(i). Let k = 0. In view of (12), using Hölder’s inequality, it is not hard to verify that

E

[
sup

t∈[0,T ]
ψ

(
t , |δθUt |;α·,β,γ

)]<+∞. (15)

Thus, in view of (13), (14) and (15), we apply Itô-Tanaka’s formula toψ(s,δθU+
s ;α·,β,γ) and argue

as in the proof of Proposition 1 to deduce that for each t ∈ [0,T ],

γδθU+
t ≤ψ(t ,δθU+

t ;α·,β,γ) ≤ E[
ψ(T,ξ+;α·,β,γ)|Ft

]≤ E[
ψ(T, |ξ|;α·,β,γ)|Ft

]
,

and then

γ(Yt −θY ′
t )+ ≤ (1−θ)E

[
ψ(T, |ξ|;α·,β,γ)|Ft

]
.
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Letting θ→ 1 in the last inequality yields that P−a.s., for each t ∈ [0,T ], Yt ≤ Y ′
t . Thus, the desired

conclusion follows by interchanging the position of Y· and Y ′· .

(ii). Let assumption (H3) hold. Thanks to Proposition 2, we have E[exp(p
∫ T

0 |Zs |1+δds)] < +∞
and E[exp(p

∫ T
0 |Z ′

s |1+δds)] < +∞ for each p ≥ 1. Then, in view of (12), using Hölder’s inequality,
we can conclude that (15) still holds. Thus, the same computation as above yields the uniqueness
result.

The proof is then complete. �

Remark 6. In view of Proposition 3 and Remark 4, Theorem 5 generalizes the uniqueness
result for quadratic BSDEs with unbounded terminal conditions obtained in [2]. Indeed, for the
uniqueness of solutions to quadratic BSDEs with unbounded terminal conditions, Theorem 5
covers the case of a Lipschitz perturbation of some convex function when the strictly quadratic
condition holds.

The following Remark 7 illustrates that some previous results remain true when some other
conditions are satisfied. For this, let us introduce the following assumptions on the generator g .

(H3′) dP×dt −a.e., for each (y, z) ∈R×Rd , it holds that

g (ω, t , y, z) ≤−γ
2
|z|2 +β|y |+αt (ω).

(H4′) dP×dt −a.e., for each (yi , zi ) ∈R×Rd , i = 1,2 and each θ ∈ (0,1), it holds that

1{θy1−y2>0}
(
θg (ω, t , y1, z1)− g (ω, t , y2, z2)

)
≤ (1−θ)

(
β

∣∣δ̄θy
∣∣+γ ∣∣δ̄θz

∣∣2 +h(ω, t , y1, y2, z1, z2,δ)
)

, (16)

where

δ̄θy := θy1 − y2

1−θ , δ̄θz := θz1 − z2

1−θ ,

and

h(ω, t , y1, y2, z1, z2,δ) :=αt (ω)+k(|y1|+ |y2|)+k
(
|z1|1+δ+|z2|1+δ

)
.

Remarks 7.

(a) It is easy to check that the conclusions in Proposition 2 still hold if assumption (H3) is
replaced with assumption (H3′).

(b) It is not difficult to verify that the assertions in Proposition 3 and Remark 4 still hold if
assumption (H4) is replaced with assumption (H4′) and the word “convex” is replaced
with “concave”. In particular, a (locally) Lipschitz perturbation of some concave function
satisfies (H4′).

(c) By virtue of (a) and (b), in the same way as in Theorem 5, we can prove that all the
conclusions in Theorem 5 still hold if assumptions (H3) and (H4) are replaced with (H3′)
and (H4′), respectively.

Remarks 8.

(a) Letting y1 = y2 = y and z1 = z2 = z in (10) and (16) respectively yields that

1{y>0}g (ω, t , y, z) ≤β|y |+γ|z|2 +αt (ω)+2k|y |+2k|z|1+δ

and

−1{y<0}g (ω, t , y, z) ≤β|y |+γ|z|2 +αt (ω)+2k|y |+2k|z|1+δ,

whose combination implies assumption (H1).
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(b) Letting first z1 = z2 = z in (10) or (16) and then letting θ→ 1 yields that

1{y1−y2>0}
(
g (ω, t , y1, z)− g (ω, t , y2, z)

)≤β|y1 − y2|,
which means that g satisfies the monotonicity condition in the state variable y .

Example 9. For each (ω, t , y, z) ∈Ω× [0,T ]×R×Rd , define

g1(ω, t , y, z) = |z|2 −|z| 3
2 + sin |z|+ y21y≤0 −|y |+ |Bt (ω)|

and
g2(ω, t , y, z) =−|z|2 + sin |z| 4

3 +|z|− y31y≥0 + sin |y |+ |Bt (ω)|.
By virtue of Proposition 3 together with Remark 7(b), it is not difficult to verify that g1 (resp. g2)
is continuous in (y, z) and satisfies assumptions (H1)—(H4) (resp. (H1), (H2), (H3′) and (H4′)).
However, both of them are non-convex (non-concave) in z and non-Lipschitz in y .

Acknowledgements

The authors are grateful to the anonymous referee for their helpful suggestions.

References

[1] P. Briand, Y. Hu, “BSDE with quadratic growth and unbounded terminal value”, Probab. Theory Relat. Fields 136 (2006),
no. 4, p. 604-618.

[2] ——— , “Quadratic BSDEs with convex generators and unbounded terminal conditions”, Probab. Theory Relat. Fields
141 (2008), no. 3-4, p. 543-567.

[3] P. Briand, A. Richou, “On the uniqueness of solutions to quadratic BSDEs with non-convex generators”, https:
//arxiv.org/abs/1801.00157v1, 2017.

[4] F. Delbaen, Y. Hu, A. Richou, “On the uniqueness of solutions to quadratic BSDEs with convex generators and
unbounded terminal conditions”, Ann. Inst. Henri Poincaré 47 (2011), no. 2, p. 559-574.

[5] ——— , “On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal
conditions: the critical case”, Discrete Contin. Dyn. Syst. 35 (2015), no. 11, p. 5273-5283.

[6] M. Kobylanski, “Backward stochastic differential equations and partial differential equations with quadratic growth”,
Ann. Probab. 28 (2000), no. 2, p. 558-602.

[7] É. Pardoux, S. Peng, “Adapted solution of a backward stochastic differential equation”, Syst. Control Lett. 14 (1990),
no. 1, p. 55-61.

[8] A. Richou, “Markovian quadratic and superquadratic BSDEs with an unbounded terminal condition”, Stochastic
Processes Appl. 122 (2012), no. 9, p. 3173-3208.

C. R. Mathématique, 2020, 358, n 2, 227-235

https://arxiv.org/abs/1801.00157v1
https://arxiv.org/abs/1801.00157v1

	1. Introduction
	2. Main result
	Acknowledgements

	References



