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Abstract. A kernel conditional quantile estimate of a real-valued non-stationary spatial process is proposed
for a prediction goal at a non-observed location of the underlying process. The originality is based on
the ability to take into account some local spatial dependency. Large sample properties based on almost
complete and Lq -consistencies of the estimator are established.

Résumé. Dans cette note, nous présentons un estimateur à noyau du quantile conditionnel d’un processus
spatial non-stationnaire, pour un but de prédiction du processus considéré en un site non-observé. L’ori-
ginalité vient du fait que l’estimateur permet de prendre en compte une éventuelle dépendance locale des
données. Une étude asymptotique basée sur les convergences presque complète et en moyenne d’ordre q de
l’estimateur est proposée.
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1. Introduction

Spatial statistical modeling is undergoing significant developments because of its recurrent use
in many fields such as epidemiology, econometrics, environmental and earth sciences, forestry,
agronomy, images analyses, among others. A main goal in spatial analyses, is prediction of some
features on un-sampled locations by taking into account some spatial dependence. There is a
wide literature on parametric spatial prediction compare to the nonparametric setting.

Some results in this direction are those of Biau and Cadre [1] on kernel prediction of a strictly
stationary real-valued random field indexed in (N∗)N . This work has been extended to several
directions. Dabo-Niang and Yao [5] considered kernel regression estimation and prediction of
continuously indexed and strictly stationary random fields.

Dabo-Niang et al. [3] proposed a new kernel spatial predictor of non-stationary processes
based on a conditional mean regression model. This last predictor depends on two kernels in
order to control both the distance between observations and that between spatial locations. The
regression model used by these authors may not be relevant in some situations. This could be
for instance the case of presence of extreme or outliers values. In fact, mean regression model is
much more sensitive to extreme or outliers values than the quantile one. Conditional quantile
spatial regression model may then be an alternative to mean regression one and is our interest in
this work.

In the spatial real-valued setting, we refer to Koenker and Mizera [11] for parametric quantile
estimation while Hallin et al. [8], proposed a non-parametric local linear conditional quantile es-
timator for strictly stationary spatial data. The last authors established consistency of their esti-
mate by Bahadur representation and an asymptotic normality result. Dabo-Niang and Thiam [4]
studied a kernel conditional quantile estimator for strictly stationary spatial processes and estab-
lished its asymptotic normality. Abdi et al. [12] established consistency in L2r (r ∈N∗) of a condi-
tional quantile estimator for a strictly stationary spatial random field. Some of these results have
been extended in the case of functional data.

All non-parametric conditional quantile estimators considered in the previous papers dealt
with strictly stationary spatial processes. For a recent review on non-parametric estimation in a
spatial context, refer to El Machkouri et al. [6], among others. The current work goes beyond and
extends the spatial regression model of Dabo-Niang et al. [3] on non-stationary processes to the
quantile regression context.

Namely, this note proposes a nonparametric conditional quantile estimator of locally sta-
tionary processes for a prediction purpose. Compare to Abdi et al. [12] and Dabo-Niang and
Thiam [4], the proposed estimator depends on a multiplicative kernel taking into account the
spatial positions of observations. This allows to take into account in the predictor, the number
of closest neighbors locations of the non-observed location to predict the process of interest.
In addition, the considered model does not assume strict stationary of the spatial process. This
idea was used for density function and prediction estimations in Dabo-Niang et al. [2] and Dabo-
Niang et al. [3], respectively.

The note is organized as follow. Section 2 introduces the proposed quantile predictor and gives
some large sample properties, namely almost complete and Lq -norm (q ∈N∗) consistencies with
rates when the considered sample is α-mixing. Some comments and main lines of the proofs are
given in the last section.

2. New kernel quantile estimator

We consider a spatial process (Zi = (Xi,Yi) ∈ Rd × R, i ∈ ZN ) defined over some probability
space (Ω,F ,P). The main purpose of this work is to estimate the quantile of (Yi, i ∈ ZN ), given
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(Xi, i ∈ ZN ) at an unobserved location i0 ∈ ZN , in order to predict Yi0 . We assume that the
process is observable over the rectangular domain In = {i = (i1, . . . , iN ),1 ≤ ik ≤ nk , k = 1, . . . , N }
(a basic assumption in the non-parametric literature) and observed on a spatial set On ⊂ In,
n = (n1, . . . , nN ) of finite cardinality tending to ∞ as n →∞ (defined later), with i0 ∉On.

We do not suppose strict stationarity, rather we consider the following hypothesis. Let (Xi0 ,Yi0 )
has the same distribution as (X ,Y ) and the variables (Xi,Yi)i∈On be locally identically distributed
(see for instance Klemelä [10] who considered density estimation for locally identically time-
series data). Assume that, there is a sufficient number of (Xi,Yi) with a distribution closed to
that of (X ,Y ). One may imagine that when i is closed to i0, and if there is enough sites i closed
to i0, then the sequence (Xi,Yi)i∈On may be used to predict Yi0 under the condition Xi0 = xi0 ,
denoted by x in the following with abuse of notation. Then, a spatial predictor of Yi0 may account
which locations of On have an influence on the site i0 of interest. Let (X ,Y ) and (Xi,Yi) have
unknown densities with respect to Lebesgue measure, let fX Y and f be the densities of (X ,Y )
and X respectively.

Let n̂ = n1 × . . . ×nN be the size of In. We assume for simplicity that n1 = n2 = . . . = nN = n.
However the following results can be extended to a more general framework. We write n →∞ if
n →∞.

For the location i0, let kn = kn,i0 = ∑
i 1[∥i−i0∥≤dn] denote the number of neighbors i for which

the distance between i and i0 is less than or equal to dn > 0 such that dn → ∞ as n → ∞. This
last assumes that the number of neighbors locations increases (eventually) as the sample size
increases.

The used method is model free. It uses nonparametric kernel techniques to estimate condi-
tional quantiles, it is useful for prediction and may be an alternative to classical regression, see
Huang and Nguyen [9] for more details.

Let the conditional distribution function of Y given X , denoted by

F x (y) =P(
Y ≤ y

∣∣ X = x
)

.

For 0 <α< 1,

tα = tα(x) = inf
{

y : F x (y) ≥α}
,

is called the α-th conditional quantile of Y given X = x.
This quantile is the solution of

F x (tα(x)) =α.

To insure the existence and uniqueness of tα(x), we assume that F x is strictly increasing. The
conditional distribution F x is estimated by the following proposed estimator

F̂ x (y) =


∑

i∈On K1

(
x−Xi

bn

)
K2

(
ρ−1

n

∥∥∥ i0−i
n

∥∥∥)
K3

(
y−Yi
hn

)
∑

i∈On K1

(
x−Xi

bn

)
K2

(
ρ−1

n

∥∥∥ i0−i
n

∥∥∥) , if
∑

i∈On

K1

(
x−Xi

bn

)
K2

(
ρ−1

n

∥∥∥ i0−i
n

∥∥∥)
̸= 0

0 otherwise,

(1)

where K1 defined on Rd and K2 defined on R are kernels functions, while K3 defined on R is a
distribution function. Moreover, bn, ρn and hn are sequences of positive numbers tending to 0
such as n̂ρN

n bd
n hn →∞, when n goes to ∞.

Let in what follow K2,ρn (∥i0 − i∥) = K2(ρ−1
n ∥ i0−i

n ∥) and note that
∥ i0−i

n ∥ denotes the distance between normalized locations i0
n = i01

n , . . . , i0N
n and i

n = i1
n , . . . , iN

n .
As in Dabo-Niang et al. [13], ρ−1

n ∥ i0−i
n ∥ ≤ 1 stands for ∥i0 − i∥ ≤ nρn.

The conditional quantile kernel estimate t̂α(x) is linked to the conditional distribution esti-
mate in the following way

F̂ x (
t̂α(x)

)=α.
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The proposed predictor of Yi0 is then Ŷ i0 = t̂α(x). Its large sample properties are studied in the
following with the help of some assumptions.

2.1. Assumptions

Let C or C ′ denote any nonnegative constant whose value is unimportant and may vary from line
to line. Let ε be an arbitrary small nonnegative number and un = ∏N

i=1(logni )(loglogni )1+ε. It is
obvious that

∑
1/(n̂un) <∞ (see Dabo-Niang and Thiam [4]), where the summation is over the

indice n such that ni ≥ 2, for all 1 ≤ i ≤ N . Let us assume the following conditions.
The random field (Zi, i ∈ZN ) is α-mixing: there is a function ϕ such that ϕ(t ) ↓ 0 as t →∞;

α
(
B(E),B

(
E′))= sup

B ∈B(E),C ∈B(E′ )
|P(B ∩C )−P(B)P(C )|

≤ψ(
Card(E),Card

(
E′))ϕ(

dist
(
E,E′)) .

(2)

where Card (E) (resp. Card (E′)) is the cardinality of the spatial set E (resp. E′), dist(E, E′) the eu-
clidian distance between E and E′ and ψ :N2 →R+ is a symmetric positive function nondecreas-
ing in each variable such that ϕ(0) = 1. We recall that (Zi, i ∈ ZN ) is said to be strongly mixing if
ψ≡ 1. In addition, we assume that

ϕ(t ) ≤C t−µ, µ> 4N . (3)

(H1) The densities fX Y and fX are continuous on Rd+1 and Rd respectively and fX > 0.
(H2) F x is of class C 1, f x (tα(x)) > 0, where f x is the conditional density of Y given X = x.

If f x (tα(x)) = 0, then one can use: F x (.) is of class C j , F x(k)
(tα(x)) = 0 for 1 ≤ k ≤ j and

0 <C < |F x(k)
(y)| <C

′ <∞. See Ferraty et al. [7] for more details.
(H3) For all (x1, x2) ∈Nx ×Nx , for all (y1, y2) ∈R2,∣∣F x (y1)−F x (y2)

∣∣≤C
(
∥x1 −x2∥b1 + ∣∣y1 − y2

∣∣b2
)

, b1 > 0, b2 > 0,

with Nx , a neighborhood of x.
(H4) (a) The densities fi and fXiYi of Xi and (Xi,Yi) respectively, verify

sup
x∈Rd ,∥i−i0∥≤h

∣∣ fi(x)− fX (x)
∣∣= oP(1),

sup
x∈Rd ,∥i−i0∥≤h

∣∣ fXiYi (x, y)− fX Y (x, y)
∣∣= oP(1), where h → 0.

(b) Local dependence condition. The joint probability density fXi Xi0
of (Xi, Xi0 ) exists, is

bounded such that | fXi Xi0
(z, t )− fi(z) fi0 (t )| ≤ C , for all z, t ∈ Rd , for all i ̸= i0, where

C is a positive constant.
(H5) There exist two constants C1i and C2i with 0 <C1i <C2i <∞, i = 1,2, such that

C111[0,1](s′s) < K1(s) <C121[0,1](s′s) for s ∈Rd ,

where s′ is the transpose of s.

C211[0,1](t ) < K2(t ) <C221[0,1](t ) for t ∈R.

(H6) K3 is of class C 1 and symmetric and its derivative K (1)
3 is a bounded kernel of compact

support. Moreover, we assume that the restriction of K3 on the set {t ∈ R,K3(t ) ∈ (0,1)} is
a strictly increasing function.

(H7) ψ(m,n) ≤C min(n,m) and n̂bdµ1
n ρ

Nµ1
n hµ1

n (log n̂)µ2 uµ3
n →∞withµ> N (q +2), q ≥ 2 and

µ1 = µ

µ−N (q +2)
, µ2 = µ−2N

µ−N (q +2)
, µ3 = 2N

N (q +2)−µ .
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(H8) ψ(m,n) ≤ C (m + n + 1)ν and n̂b
dµ′1
n h

µ′1
n ρ

Nµ′1
n (log n̂)µ

′
2 u

µ′3
n → ∞ with µ > N (q + 1 + 2ν),

ν> 1, q ≥ 2 and

µ′
1 =

d(N +µ)

µ−N (q +1+2ν)
, µ′

2 =
µ−N

µ−N (q +1+2ν)
,µ′

3 =
2N

N (q +1+2ν−µ)
.

Remark 1. (H5) is imposed for sake of simplicity and is satisfied by several kernels with compact
support. (H6) is classical in non-parametric quantile inference and is satisfied by kernels with
compact support. Gaussian kernel K (1)

3 is also possible, it suffices to replace the compact support
assumption by

∫
Rd |t |b2 K (1)

3 (t )d t <∞. (H6) ensures the existence and uniquness of the quantile
estimate t̂α(x). This hypothesis is discussed in Abdi et al. [12].
(H7)-(H8) concern the bandwidths and are based on the mixing condition to achieve the follow-
ing consistency results.

2.2. Main results

The main following result gives the almost complete convergence (a.c) of the conditional quantile
estimate t̂α(x) considered as a predictor of Yi0 .

Theorem 2. Under hypotheses (H1)-(H6),(H7) or (H8) and (2)-(3), we have∣∣t̂α(x)− tα(x)
∣∣→ 0 a.c. (4)

A weak consistency is given in the following result.

Theorem 3. Under hypotheses (H1)-(H6) and (2)-(3), we have∥∥t̂α(x)− tα(x)
∥∥

q = E(∣∣t̂α(x)− tα(x)
∣∣q )1/q =O

(
bb1

n

)
+O

(
hb2

n

)
+O

((
n̂bd

nρ
N
n

)−1/2
)

. (5)

Conclusion

The Note presents a kernel quantile estimate as a predictor of a real-valued spatial locally
stationary process at a given location. Large sample properties of the predictor are given towards
an almost complete and mean of order q consistencies under mixing conditions. These results are
the baseline of a work in progress, concerning asymptotic normality and finite sample properties
of the proposed predictor.

3. Main lines of the proofs

Sketch of the proof of Theorem 2. Under (H2), F̂ x (.) is continuous and strictly increasing, then
F̂ x−1

(.) is also continuous and strictly increasing. The result is obtain, by using same arguments
as in the proof of Abdi et al. [12, Theorem 1] and applying Lemma 4. □

Lemma 4. Under conditions of Theorem 2,

F̂ x (tα(x))−F x (tα(x)) → 0, a.c. (6)

Sketch of the proof of Theorem 3. By the same decomposition as in the proof of Abdi et al. [12,
Theorem 2], and applying Lemmas 5, 6 and 7, we get the result. □

Lemma 5. Under assumptions of Theorem 3, we have

f̂ x (tα(x))− f x (tα(x)) → 0 a.c.
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Lemma 6. Under assumptions H2 −H5,

γn1 =O
(
bb1

n +hb2
n

)
,

with

γn1 =
∥∥∥∥∥ ∑

i∈In

Wi
(
E (Hi (tα(x)) |Xi)−F x (tα(x))

)∥∥∥∥∥
q

,

Wi = K1iK2i∑
i∈In K1iK2i

, K1i = K1

(
x −Xi

bn

)
, K2i = K2,ρn (∥i0 − i∥), and Hi(.) = K3

(
.−Yi

hn

)
.

Lemma 7. If the conditions of Theorem 3 are satisfied, then we get γn2 = O((n̂ρN
n bd

n )−1/2), and
γn3 =O((n̂ρN

n bd
n )−1/2), where

γn2 =
∥∥∥∥∥ ∑

i∈In

Wi (Hi (tα(x))−E (Hi (tα(x)) |Xi))

∥∥∥∥∥
q

,

and

γn3 =
(
P

( ∑
i∈In

Wi = 0

))1/q

.
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