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Abstract. The problem of nonparametric classification by k-nearest neighbors rule in a general metric space
will be considered. Consistency and strong consistency of the classifier will be established under mild
conditions.

Résumé. Le problème de la classification non paramétrique par la règle des k- plus proches voisins dans un
espace métrique général sera considéré. La consistance et la forte consistance du classifieur seront établies
sous des conditions légères.
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1. Introduction

Let X be a random variable defined on some probability space (Ω,A ,P) with values in a separable
metric space (F ,ρ) where F is a function space and ρ denotes the metric on F , and let Y be
a random variable with values 0 or 1. In this paper, we study the classical binary supervised
classification model for data from F . Given a new incoming observation X , our goal is to predict
its corresponding label Y . The distribution of the pair (X ,Y ) is well defined by (µ,η) where
µ(B) = P(X ∈ B), for all Borel sets B on F , and η(x) = E(Y |X = x) the regression function of Y
given X = x, for all x ∈ F . In order to predict the unknown label Y of an observation X = x, we
use a classifier that provides a decision rule for this problem. Formally, a classifier is a measurable
mapping g : F −→ {0,1}. Given a classifier g , its corresponding miss-classification error is given
by L = L(g ) = P{g (X ) 6= Y }. In practice, the best classifier is that associated with the smallest
possible error. It is well known that the Bayes classifier given by

g∗(x) =1{η(x)≥1/2},
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where 1A denotes the indicator function of the set A, leads to the lowest possible miss-
classification error, i.e.,

L∗ = L(g∗) = inf
g :F→{0,1}

P{g (X ) 6= Y }.

Unfortunately, g∗ is not available since it depends on the distribution of (X ,Y ) which is generally
unknown. But it is often possible to construct a classifier from a set of n independent and
identically distributed copies Dn = {(X1,Y1), . . . , (Xn ,Yn)} of (X ,Y ). The set Dn is called the
training data. Among the various ways to define a classifier from a training data, one of the most
wide spread and simplest is the k-nearest neighbors (k-N N ) classifier given by

gn(x) =
{

0 if
∑n

i=1 wni Yi ≤ 1/2

1 otherwise,
(1)

where wni = wni (x;Dn) is 1/k if Xi is one of the k-nearest neighbor of x in Dn with respect to the
metric ρ, and wni is zero otherwise with k = k(n) is a sequence of positive integers satisfying

k −→∞ and k/n −→ 0 as n →∞. (2)

Ties are broken by preferring points earlier in the sequence. According to the rule (1), an unclas-
sified element is assigned to the class represented by a majority of its k-nearest neighbors in the
training set. If we let ηn(x) = ∑n

i=1 wni Yi be the k-nearest neighbor estimator of η(x), the classi-
fier (1) can be re-written as follows

gn(x) =
{

0 if ηn(x) ≤ 1/2

1 otherwise.

Let Ln = L(gn) = P{gn(X ) 6= Y } be the miss-classification error of gn(x). The main challenge in
this supervised classification setting is to construct a classifier gn whose miss-classification error
will be as close as possible to L∗. In this context, the classifier gn(x) is called consistent if

ELn −→ L∗ as n →∞
and called strongly consistent if

Ln −→ L∗ with probability one as n →∞.

A classifier can be consistent for certain class of distribution of (X ,Y ), but not be consistent for
others. The classifier gn(x) is called (strongly) universally consistent, if it is (strongly) consistent
for all distribution of (X ,Y ). In finite-dimensional spaces, the k-nearest neighbors rule is univer-
sally strongly consistent under classical conditions. (see [5] and [9]). [2] prove the consistency of
the k-N N rule in separable Hilbert spaces. [3] give some examples showing that the results of [6]
on the consistency are no more valid in a general functional metric space (F ,ρ) and they estab-
lish consistency of the k-N N rule on a separable metric space. [1] show that the moving window
rule is not consistent in general metric spaces and give conditions on the space and the regres-
sion function to ensure the (strong) consistency of the estimator. More recently, [7] extend the
Stone’s seminal result to the case of metric spaces when the probability measure of the explana-
tory variables is tight. Then, under slight variations on the hypotheses, they extend the result to
some general metric measure spaces. In this paper, the consistency of the classifier (1) will be
proved under weaker assumptions than that of [3] and [7]. Furthermore, the strong consistency
of the classifier (1) will also be established under some weak conditions. Denote Bx,ε the closed
ball of radius ε > 0 and center at x ∈ F . To establish the main results, we will need the following
Besicovitch condition, for every ε> 0,

lim
δ→0

µ

{
x ∈F :

∣∣∣∣ 1

µ(Bx,δ)

∫
Bx,δ

ηdµ−η(x)

∣∣∣∣> ε

}
= 0. (3)
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Note that (3) a classical assumption for this kind of results and it holds for example if η(x) is µ-
continuous (for more detail on this topic, see [3]). Besicovitch condition plays an important role
also in the consistency of kernel rules (see [1]). In finite dimension, (3) holds automatically for any
integrable function since it is just the differentiation theorem with respect to a finite measure.

2. Main results

Before we state the main results of this paper, we introduce the following lemma which is needed
in the proofs. Denote

supp(µ) = {x ∈F :µ(Bx,ε) > 0,∀ ε> 0}.

Lemma 1. If (2) is fulfilled then, for each x ∈ supp(µ), there exists a sequence an = an(x) → 0 as
n →∞ such that µ(Bx,an ) ≥p

k/n.

For the proof of Lemma 1, the reader is referred to [7].

2.1. Consistency of the classifier

The following theorem state the consistency of the classifier (1).

Theorem 2. If (2)–(3) are fulfilled then the k-N N classifier is consistent.

Note that classical condition (2) is the same as that used by [6] in the finite dimensional case
and by [3] in the infinite dimensional case. Condition (3) is used by [3].

Proof. By Theorem 2.2 in [6], whose extension to the infinite dimensional setting is straightfor-
ward, we can write

E(Ln)−L∗ ≤ 2E
∫
F
|η(x)−ηn(x)|µ(dx). (4)

Therefore, the theorem will be proved if we show that

E

∫
F
|η(x)−ηn(x)|µ(dx) −→ 0 as n →∞. (5)

Define

η̂n(x) = 1

nµ(Bx,an )

n∑
i=1

Yi1{Xi∈Bx,an } (6)

with an → 0 is the sequence given in Lemma 1. We have

E

∫
F
|η(x)−ηn(x)|µ(dx) ≤ E

∫
F
|η(x)−Eη̂n(x)|µ(dx)+E

∫
F
|Eη̂n(x)−ηn(x)|µ(dx). (7)

Therefore, it suffices to prove that each term in the right-hand side of (7) tends to zero as n → 0.
Besicovitch condition yields as n → 0,∫

F
|η(x)−Eη̂n(x)|µ(dx) → 0. (8)

It remains to prove that as n → 0,

E

∫
F
|Eη̂n(x)−ηn(x)|µ(dx) → 0. (9)

Clearly, we have

E

∫
F
|Eη̂n(x)−ηn(x)|µ(dx) ≤ E

∫
F
|Eη̂n(x)− η̂n(x)|µ(dx)+E

∫
F
|η̂n(x)−ηn(x)|µ(dx). (10)
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Therefore, we will prove that each term in the right-hand side of the above inequality tends to
zero. Cauchy–Schwartz inequality yields

E|η̂n(x)−Eη̂n(x)| ≤ E((η̂n(x)−Eη̂n(x))2)1/2 ≤ (var(η̂n(x)))1/2 ≤
(
E(Y 1{X∈Bx,an })2

n(µ(Bx,an ))2

)1/2

.

Since |Y | ≤ 1, we obtain

E|η̂n(x)−Eη̂n(x)| ≤
(

1

nµ(Bx,an )

)1/2

. (11)

Hence, Lemma 1 yields
1

nµ(Bx,an )
≤

p
n/k

n
= 1p

kn
. (12)

By (11)–(12) together with Fubini’s theorem and the dominated convergence theorem, we get as
n →∞,

E

∫
F
|Eη̂n(x)− η̂n(x)|µ(dx) → 0. (13)

Now, let X(k)(x) be the k-nearest neighbor of x in Dn and denote rn = rn(x) = ρ(X(k)(x), x). Clearly,

ηn(x) = 1

k

n∑
i=1

Yi1{Xi∈Bx,rn }.

Then, since |Yi | ≤ 1,

|η̂n(x)−ηn(x)| =
∣∣∣∣∣ 1

nµ(Bx,an )

n∑
i=1

Yi1{Xi∈Bx,an } − 1

k

n∑
i=1

Yi1{Xi∈Bx,rn }

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣ 1

nµ(Bx,an )
1{Xi∈Bx,an } − 1

k
1{Xi∈Bx,rn }

∣∣∣∣
≤

∣∣∣∣∣ 1

nµ(Bx,an )

n∑
i=1

1{Xi∈Bx,an } −1

∣∣∣∣∣ := |η̃n(x)−Eη̃n(x)|. (14)

Observe that η̃n(x) = η̂n(x) if we let Yi = 1 for all i = 1, . . . ,n. Consequently, the proof of the limit

E

∫
F
|η̃n(x)−Eη̃n(x)|→ 0 (15)

is the same as that of (13). Finally, by (7)–(10), (13) and (14)–(15) the theorem is proved. �

2.2. Strong consistency of the classifier

The following theorem state the strong consistency of the classifier (1).

Theorem 3. Suppose that (2)–(3) are fulfilled. If in addition k/(logn) → ∞, then the k-N N
classifier is strongly consistent.

Note that the classical condition k/(logn) → ∞, used by [4], is crucial to get the strong
consistency of the classifier (2).

Proof. By Theorem 2.2 in [6], the theorem will be proved if we show that∫
F
|η(x)−ηn(x)|µ(dx) −→ 0 as n →∞ with probability one. (16)

Using the term η̂n(x) defined above in (6), we can write∫
F
|η(x)−ηn(x)|µ(dx) ≤

∫
F
|η(x)−Eη̂n(x)|µ(dx)+

∫
F
|Eη̂n(x)−ηn(x)|µ(dx). (17)

As a consequence, by (8), it suffices to show that∫
F
|Eη̂n(x)−ηn(x)|µ(dx) → 0 with probability one as n →∞. (18)
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Clearly, we have∫
F
|Eη̂n(x)−ηn(x)|µ(dx) ≤

∫
F
|Eη̂n(x)− η̂n(x)|µ(dx)+

∫
F
|η̂n(x)−ηn(x)|µ(dx). (19)

Hence, we will prove each term in the right-hand side of the above inequality tends to zero as
n →∞ with probability one. Let us first deal with the first term in the right-hand side of (19). If
we replace (Xi ,Yi ) by (X ′

i ,Y ′
i ), suppose that the value of η̂n(x) is changed to η̂ni (x). Then,∣∣∣∫

F
|Eη̂n(x)− η̂n(x))|µ(dx)−

∫
F
|Eη̂n(x)− η̂ni (x)|µ(dx)

∣∣∣
≤

∫
F
|η̂n(x)− η̂ni (x)|µ(dx) ≤

∫
F

1

nµ(Bx,an )
µ(dx) ≤ 1p

nk
. (20)

The last inequality is due to Lemma 1. Now, for any ε> 0, and n large enough, we have for n large
enough

P

(∫
F
|Eη̂n(x)− η̂n(x)|µ(dx) > ε

)
≤P

(∣∣∣∣∫
F
|Eη̂n(x)− η̂n(x)|µ(dx −

∫
F
|Eη̂n(x)− η̂n(x)|µ(dx)

∣∣∣∣> ε/2

)
.

Hence, using McDiarmid’s inequality (see [8]) with taking into account (20), we get for n large
enough

P

(∫
F
|Eη̂n(x)− η̂n(x)|µ(dx) > ε

)
≤ 2exp

(
−ε2k

2

)
Since k/(logn) →∞ by assumption, Borel–Cantelli lemma yields∫

F
|Eη̂n(x)− η̂n(x)|µ(dx) → 0 with probability one as n →∞. (21)

Let us now deal with the second term in the right-hand side of (19). By (14),

|η̂n(x)−ηn(x)| ≤ |η̃n(x)−Eη̃n(x)|, (22)

with η̃n(x) = η̂n(x) if we let Yi = 1 for all i = 1, . . . ,n. Hence, if we follow the same arguments that
use to prove (21), we get∫

F
|η̃n(x)−Eη̃n(x)|µ(dx) → 0 with probability one as n →∞. (23)

Finally, by (8), (17), (19) and (21)–(23) we get (16) and the proof is completed. �

Conclusion. The consistency result of Theorem 2 is obtained under weaker assumptions than
that of [7]. If we let (F ,ρ) = (Rd ,‖·‖) with ‖·‖ denotes the Euclidean norm, then the Stone’s
theorem is considered as a particular case of Theorem 2. Furthermore, Theorem 3 is an extension
of Theorem 11.1 of [6] to a general metric space. In the latter result the authors suppose that µ is
absolutely continuous while µ in Theorem 2 is any probability measure.
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