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Abstract. We construct a two discrete parameter family of compact minimal surfaces embedded in the Berger
sphere which may be considered as the analogue of the helicoidal Karcher-Scherk surfaces.

Résumé. Nous construisons une famille à deux paramètres discrets de surfaces minimales compactes plon-
gées dans la sphère de Berger qui peut être considérée comme l’analogue de l’hélicoïde de Karcher-Scherk.
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1. Introduction

Not too many examples of embedded minimal surfaces are known in the Berger sphere, which is
a very interesting homogeneous three manifold with an isometry group of dimension 4. In this
article, we apply again the method of constructing compact or complete embedded minimal sur-
faces by repeatedly reflecting the Plateau solution bounded by an appropriate geodesic polygon.
The surfaces we construct are analogues of the helicoidal-Karcher-Scherk surface [1], which may
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be obtained by applying a screw motion, at least in the boundary level, to the compact embedded
minimal surfaces the authors constructed previously in [4]. See Figure 1.

The construction in this article is basically the same as in [4]. A noticeable difference is that we
use geodesic polygons consisting of both horizontal and vertical geodesics, while in [4] we used
only horizontal geodesics. Note that in the standard three sphere S3, the vertical geodesics and
the horizontal geodesics are congruent each other, while they are not in the Berger sphere.

Figure 1. On the left is a half of the minimal surface we construct in this article and on the
right is half of that in [3] with k = l = 2. Each solid cylinder represents a half of the Berger
sphere.

Note that a Karcher-Scherk tower in E3 admits a continuous deformation, but the surface in
the Berger sphere we construct in this article does not. It is an isolated one because the values
of lengths and angles of the polygonal boundary can lie in a discrete set. This discrepancy is
caused by the geometry of the Berger sphere. At any tangent plane of the Clifford torus which
is represented as the cylinder in this article, there are only one horizontal direction and also only
one vertical direction up to sign. See Figure 2. It is said in [1] “it is still an open question whether
these screw motion invariant Karcher-Scherk surfaces together with the helicoid are the only
screw motion invariant embedded minimal surfaces with genus 0 in the quotient.” We wonder
if the embedded minimal surfaces in [3] and in this article may have similar characterizations
but we have no clue on this at this moment.

The Figure 1 would look different if we have used the parametrization of S3 used in [4]. In
particular, the surfaces in [4] in the coordinates of [4] would look like the one on the left of
Figure 1.

2. The Berger Sphere

We recall some facts on the Berger spheres.

2.1. S3 as a special unitary group

Let us identify the unit sphere S3 = {(z, w) ∈ C2 : |z|2 + |w |2 = 1} and the special unitary group
SU(2) by the map

(z, w) 7→
[

z w
−w z

]
.
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The Lie algebra su(2) is spanned by

X1 =
[

0 1
−1 0

]
, X2 =

[
0 i
i 0

]
, X3 =

[
i 0
0 −i

]
which generate the left-invariant vector fields:

X1(z, w) =
[−w z

−z −w

]
, X2(z, w) =

[
i w i z
i z −i w

]
, X3(z, w) =

[
i z −i w

−i w −i z

]
.

Viewed as tangent vector fields on S3,

X1(z, w) = (−w, z), X2(z, w) = (i w, i z), X3(z, w) = (i z,−i w).

2.2. A circle action

The orbits of the right circle action on S3[
z w

−w z

]
7→

[
z w

−w z

][
e iθ 0

0 e−iθ

]
or (z, w) 7→ (e iθz,e−iθw) (1)

are the fibers of the Hopf fibration H :S3 →S2(1/2) given by

H(z, w) =
(

zw,
1

2
(|z|2 −|w |2)

)
.

The fiber over the general point (z, w) is the circle {(e iθz,e−iθw)} to which the vector field
X3(z, w) = (i z,−i w) is tangent.

2.3. The Berger metric

Now consider the left invariant Riemannian metrics gδ on S3 = SU(2) given in terms of the left
invariant vector fields X1, X2, X3 by

Xi ·X j = 0, i 6= j ,

X1 ·X1 = X2 ·X2 = δ2, X3 ·X3 = 1.

The Berger sphere is the Riemannian manifold (S3, gδ). When δ = 1, the Berger sphere is the
standard round sphere S3.

2.4. Isometries

Since it is a left-invariant metric, one can see that the left multiplication of SU(2)[
z w

−w z

]
7→

[
a b

−b a

][
z w

−w z

]
, aa +bb = 1,

that is,

(z, w) 7→ (az −bw ,bz +aw)

is an isometry. Note that the circle action (1) is also an isometry. Then the maps

(z, w) 7→ (e iθz, w), (z, w) 7→ (z,e iθw) (2)

are isometries as well.
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2.5. Geodesics and ruled minimal surfaces

A geodesic in the Berger sphere is called horizontal if it is orthogonal to the Hopf fibers every-
where and is called vertical if it is tangent to the Hopf fibers everywhere. One can see that the
curve

t 7→ (e i t z,e−i t w)

is a vertical geodesic passing through the point (z, w) whose whole image is the Hopf fiber
through (z, w) and that the curve

t 7→ (z cos t −e−iθw sin t ,e iθz sin t +w cos t )

which is the integral curve of the vector field cosθX1 +sinθX2 passing through the point (z, w) is
a horizontal geodesic.

The following was shown in [3]:

Proposition 1. A surface in the Berger sphere is a ruled minimal surface if and only if it is
congruent to the parametric surface

X (s, t ) = (e iαs cos t ,e i s sin t ), α ∈R.

3. A parametrization

Let P = {(s, t ,θ) : 0 ≤ s ≤ 2π,0 ≤ t ≤π/2,0 < θ ≤ 2π} and consider the mapΦ : P →S3

Φ(s, t ,θ) = (e i s cos t ,e i (θ−s) sin t ),

which is one-to-one on P ′, the interior of P , and yields coordinates onΦ(P ′).
In [4], we used the parametrization

Ψ : P →S3, Ψ(s, t ,θ) = (e i s cos t ,e i (s−θ) sin t ).

Switching the parametrization fromΨ toΦ enables us to adopt most of the formulae and figures
in [4] without modification and the same construction procedure. However, we change the
construction procedure following that of [5], which we think is a little simpler.

Since
Φ(s,0,θ) = (e i s ,0), Φ(s,π/2,θ) = (0,e i (θ−s)),

we have the following:

Proposition 2. For any θ, the image of the curve s 7→Φ(s,0,θ) is the Hopf fiber over (1,0) and the
image of the curve s 7→Φ(s,π/2,θ) is the Hopf fiber over (0,1).

Note also that, when t = π/2, since Φ(s,π/2,θ) = Φ(s′,π/2,θ′) if and only if s + θ = s′ + θ′
mod 2π, those points s + θ = s′ + θ′ mod 2π correspond to a single point on the fiber {(0,e i s )}
over (0,1).

3.1. The Berger metric in terms of the parametrizationΦ

Now let

∂s := ∂Φ

∂s
(s, t ,θ), ∂t := ∂Φ

∂t
(s, t ,θ), ∂θ := ∂Φ

∂θ
(s, t ,θ).

Computations give

∂s = X3,

∂t = cos(θ−2s)X1 + sin(θ−2s)X2,

tan t ∂s + (1+ tan t )∂θ =−sin(θ−2s)X1 +cos(θ−2s)X2.

Then we have the following:
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Proposition 3. For any s0,θ0,

(i) the t-curve Hs0,θ0 (t ) :=Φ(s0, t ,θ0) is a horizontal geodesic.
(ii) the s-curve Vθ0 (s) :=Φ(s,π/4,θ0) is a vertical geodesic.

It was shown in [6] that the reflection across a horizontal or a vertical geodesic is an isometry
of the Berger sphere. In particular, we have the following:

Proposition 4. The following two maps

Φ(s, t ,θ) 7→Φ(2s0 − s, t ,2θ0 −θ),

Φ(s, t ,θ) 7→Φ(s −θ+θ0,π/2− t ,2θ0 −θ)

which represent reflections along the geodesics Hs0,θ0 (t ) and Vθ0 (s), respectively, are isometries.

One can also see that the rotation

Rotθ0 :Φ(s, t ,θ) 7→Φ(s, t ,θ+θ0)

with respect to the Hopf fiber over the point (1,0) and the translation

Ts0 :Φ(s, t ,θ) 7→Φ(s + s0, t ,θ)

along the Hopf fiber are also isometries. Note that Ts0 is the circle action in Section 2.2.
Then Proposition 1 and (1), (2) give the following:

Proposition 5. The following surfaces are ruled minimal surfaces.

(t ,θ) 7→ Φ(s0, t ,θ) = (e i s0 cos t ,e i (θ−s0) sin t ),

(s, t ) 7→ Φ(s, t ,θ0) = (e i s cos t ,e i (θ0−s) sin t ),

(s,θ) 7→Φ(s,π/4,θ) = 1p
2

(e i s ,e i (θ−s)).

4. Construction

Note that the surface

T :=Φ(s,π/4,θ) = 1p
2

(e i s ,e i (θ−s))

divides the Berger sphere into two regions {Φ(s, t ,θ) : 0 ≤ t ≤ π/4)} and {Φ(s, t ,θ) : π/4 ≤ t ≤ π/2}
and that the two regions are congruent; in fact, the reflection along any vertical geodesic Vθ0 gives
the congruence.

We first construct a minimal surface D− embedded in {Φ(s, t ,θ) : 0 ≤ t ≤π/4} whose boundary
components consist of vertical geodesics, and then reflect the surface D− with respect to a vertical
geodesic in the boundary to get the minimal surface D+ embedded in {Φ(s, t ,θ) : π/4 ≤ t ≤ π/2}.
Then we show that the embedded minimal surface D :=D−∪D+ is smooth without boundary.

Let m and l be positive integers and
k = 2ml .

As the basic block of our construction, we consider the pentahedral region

P0 := {Φ(s, t ,θ) : 0 ≤ s ≤π/k, 0 ≤ t ≤π/4, 0 ≤ θ ≤π/m}

bounded by five ruled minimal surfaces

H0 :=Φ(0, t ,θ), H1 :=Φ(π/k, t ,θ), V0 :=Φ(s, t ,0), V1 :=Φ(s, t ,π/m)

and T , see Figure 2.
For notational convenience, let

Hp,q := Hπp/k,πq/m , Vq :=Vπq/m
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ℋ1

V0
V1

ℋ0

T

Figure 2. P0

and let Rp,q denote the reflection across the horizontal geodesic Hp,q and let Rq denote the
reflection across the vertical geodesic Vq .

Let Γ ⊂ ∂P0 be the piecewise geodesic polygon of six segments of horizontal geodesics
H0,0, H1,0, H1,1, H0,1 and vertical geodesics V0,V1, which is a subset of the 1-skeleton of P0, see
Fig.3.

𝐻0,0

𝑉1𝑉0

𝐻1,0

𝐻1,1

𝐻0,1

Figure 3. Γ

Then, since the region P0 is mean-convex by [2], Γ spans an embedded minimal disk D0 which
lies inside of P0. Now D0 can be analytically extended across the boundary segments H1,1 by
reflection to get a minimal surface

D0,0 := D0 ∪R1,1(D0)

which is embedded in the region

P0,0 := {Φ(s, t ,θ) : 0 ≤ s ≤ 2π/k, 0 ≤ t ≤π/4, 0 ≤ θ ≤ 2π/m}.

The boundary of D0,0 consists of the geodesic segments

H0,0(t ), H1,0(t ), H0,1(t ), H1,2(t ), H2,1(t ), H2,2(t ) ; 0 ≤ t ≤π/4
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and
V0(s); 0 ≤ s ≤π/k, V1(s); 0 ≤ s ≤ 2π/k, V2(s); π/k ≤ s ≤ 2π/k.

It is clear that
R1,1(D0.0) = D0,0.

For each p = 0,1, . . . ,k −1 and q = 0,1, . . . ,m −1, we define

Dp,q := (T2πp/k ◦Rot2πq/m)(D0,0).

The surface Dp,q is embedded minimal surface in the region

Pp,q := {Φ(s, t ,θ) : 2πp/k ≤ s ≤ 2π(p +1)/k, 0 ≤ t ≤π/4, 2πq/m ≤ θ ≤ 2π(q +1)/m}

with the boundary consisting of the geodesic segments

H2p,2q (t ), H2p+1,2q (t ), H2p,2q+1(t ), H2p+1,2q+2(t ), H2p+2,2q+1(t ), H2p+2,2q+2(t ) ; 0 ≤ t ≤π/4

and

V2q (s), 2pπ/k ≤ s ≤ (2p +1)π/k,

V2q+1(s), 2pπ/k ≤ s ≤ (2p +2)π/k,

V2q+2(s), (2p +1)π/k ≤ s ≤ (2p +2)π/k.

One can see that the surfaces Dp,q are disjoint with each other except along the common bound-
ary segments. More specifically, Dp,q has common boundary H2p,2q with Dp−1,q−1, H2p+1,2q with
Dp,q−1, H2p,2q+1 with Dp−1,q , H2p+2,2q+1 with Dp+1,q , H2p+1,2q+2 with Dp,q+1 and H2p+2,2q+2 with
Dp+1,q+1.

Now, let us consider the surface
Dp,q ∪Dp−1,q−1

joined along H2p,2q . Since R1,1(D0,0) = D0,0 and since direct computation shows that

Rp,2q ◦T2πp/k ◦Rot2πq/m ◦R1,1 = T2π(p−1)/k ◦Rot2π(q−1)/m

one can see that

R2p,2q (Dp,q ) = (R2p,2q ◦T2πp/k ◦Rot2πq/m)(D0,0)

= (R2p,2q ◦T2πp/k ◦Rot2πq/m ◦R1,1)(D0,0)

= (T2π(p−1)/k ◦Rot2π(q−1)/m)(D0,0)

= Dp−1,q−1.

Therefore, Dp,q and Dp−1,q−1 are joined smoothly across the common boundary H2p,2q .
This argument shows that the surface

D− :=∪p,q Dp,q

is a smooth embedded minimal surface in the region {Φ(s, t ,θ) : 0 ≤ t ≤ π/4}. By construction,
one can see that the surface D− is invariant under the transformation T2π/k and Rot2π/m and that
∂D−, the boundary of D−, is

∂D− =
2m−1⋃
q=0

Vq .

Now let
D+ := R0(D−)

then D+ is a smooth minimal surface embedded in {Φ(s, t ,θ) : π/4 ≤ t ≤ π/2}. Since R0(Vq ) =
V2m−q , the boundary of D+ also consists of vertical geodesics V0,V1, . . . ,V2m−1. Since direct
computation gives that

R i ◦R0 = Tπi /m ◦Rot2πi /m
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and since k = 2ml , we have

R i (D+) = (R i ◦R0)(D−) = (Tπi /m ◦Rot2πi /m)(D−) = (T2πi l/k ◦Rot2πi /m)(D−) =D−.

This implies that the surface D+ is the reflection of D− along each common boundary Vi .
Hence the surface

D :=D+−∪D−
is a smooth minimal surface without boundary embedded in the Berger sphere. This completes
the construction.
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