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Abstract. We consider a one dimensional transport equation with varying vector field and a small viscosity
coefficient, controlled by one endpoint of the interval. We give upper and lower bounds on the minimal time
needed to control to zero, uniformly in the vanishing viscosity limit.

We assume that the vector field varies on the whole interval except at one point. The upper/lower
estimates we obtain depend on geometric quantities such as an Agmon distance and the spectral gap of an
associated semiclassical Schrödinger operator. They improve, in this particular situation, the results obtained
in the companion paper [38].

The proofs rely on a reformulation of the problem as a uniform observability question for the semiclas-
sical heat equation together with a fine analysis of localization of eigenfunctions both in the semiclassically
allowed and forbidden regions [40], together with estimates on the spectral gap [1, 33]. Along the proofs, we
provide with a construction of biorthogonal families with fine explicit bounds, which we believe is of inde-
pendent interest.
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1. Introduction and main results

We consider the one dimensional diffusive-transport equation, controlled from the left endpoint
of the interval: 

(∂t +a∂x +b−ε∂2
x )y = 0, (t , x) ∈ (0,T )× (0,L),

y(t ,0) = h(t ), y(t ,L) = 0, t ∈ (0,T ),
y(0, x) = y0(x), x ∈ (0,L).

(1)

Here L > 0 is the length of the spatial domain, T > 0 the time horizon, and ε > 0 a viscosity
parameter. The functions a,b : [0,L] → R are real-valued and sufficiently regular. We shall later
on rewrite this equation as

(∂t + f′∂x + f′′−q −ε∂2
x )y = 0,

that is to say write a = f′ and b = f′′− q for simplicity of the dual equation and consistency with
the companion article [38].

For an initial datum y0 ∈ L2(0,L) and a control function h ∈ L2(0,T ), it is known that (1) has
a unique solution in C 0(0,T ;L2(0,L)) in the sense of transposition (see [20] or [12]). The usual
question of null-controllability is whether, the parameters T,L,ε being fixed, one can drive any
initial datum y0 to rest (i.e. the null function) in time T by means of the action on the equation
through the function h(t ).

Definition 1 (Controllability and cost). Given (ε,T ), we say that (1) is null-controllable if for
any y0 ∈ L2(0,L), there is h = h(T,ε, y0) ∈ L2(0,T ) such that the associated solution to (1) satisfies
y(T ) = 0. We define for y0 ∈ L2(0,L) the (possibly empty, closed convex) set U (y0) of all such controls
h ∈ L2(0,T ), and the cost function

C0(T,ε) := sup
y0∈L2(0,L),‖y0‖L2(0,L)≤1

{
inf

h∈U (y0)
‖h‖L2(0,T )

}
∈ [0,+∞].
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We have C0(T,ε) <+∞ if (1) is null-controllable, and C0(T,ε) =+∞ if not.

It is known (see [20], or [22, 41, 43] in higher dimension) that for fixed ε > 0, the equation (1)
is null-controllable in any positive time T > 0. That is to say, T,ε > 0 =⇒ C0(T,ε) < +∞. This is
linked to the infinite speed of propagation for the heat dissipation. Here, we address the question
of uniform controllability in the vanishing viscosity limit ε → 0+, that is: how does C0(T,ε)
behave for fixed T > 0 in the limit ε→ 0+? This question has first been addressed by Coron and
Guerrero [12] in the case a(x) = M (that is to say f(x) = M x) and b = 0, for M ∈ R∗, and different
behaviors are observed, depending on the sign of M . In that paper, the authors make a conjecture
on the minimal time needed to achieve uniform controllability, i.e.

Tunif({0}) := min
{
T > 0, there is K > 0 such that C0(T,ε) ≤ K for all ε ∈ (0,1)

}
.

Then, the estimates on this minimal time have been improved in [2,3,15,23,44–46] with different
methods. The result of [12] was also generalized in several space dimensions and for non-
constant transport speed in [28]. In that paper however, no estimates on the minimal time are
given. The first estimates on the minimal time needed for having C0(T,ε) uniformly bounded
as ε → 0+ are proved in [38], in a setting close to that of the present article. In particular, we
exhibited in [38] higher dimensional situations in which Tunif

Tf′
can be as large as desired, where

Tf′ denotes the minimal time for the controllability of the limit transport equation obtained by
formally taking ε = 0 in (1) (see Proposition 20 below for a more precise definition in our 1D
context).

Such uniform control properties in singular limits are also addressed for vanishing dispersion
in [25] and for vanishing dispersion and viscosity in [26]. Controllability problems for nonlinear
conservation laws with vanishing viscosity have also been studied in [24] and [42]. Motivation for
studying the vanishing viscosity limit comes from different fields of mathematics:

• conservation laws, for which the vanishing viscosity criterium is a selection principle for
the physical (called entropy) solution, see [37] or [14, Chapter 6].

• control theory, where the study of singular limits sometimes allows to prove controlla-
bility properties for the perturbated system itself. See e.g. the papers [8, 9, 11, 13], where
the authors investigate the Navier–Stokes system with Navier slip boundary conditions,
relying on results for the Euler equation.

• theoretical physics and differential topology, through the Witten–Helffer–Sjöstrand the-
ory [34, 49].

• molecular dynamics and statistical physics, via the study of the so-called overdamped
Langevin process [7, 48].

We refer to [38, Section 1.2] for more details on motivation. Our main results in the present
article (namely Theorems 5, 6 and 7 below) formulate as explicit (in geometric terms, under some
assumptions on the parameters) lower and upper bounds on the cost function C0(T,ε) and the
minimal time Tunif of uniform controllability. We now give a list of geometric assumptions and
related definitions in order to state our main results.

1.1. Definitions and assumptions

All along the paper, we make intensive use of the effective potential

V (x) = a(x)2

4
= |f′(x)|2

4
.

In the results presented below, we make (at least part of) the following assumptions, essentially
saying that V forms a single non-degenerate well and does not vanish. This assumption is
illustrated in Figure 1.
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Assumption 2. With V (x) = a(x)2

4 = |f′(x)|2
4 for x ∈ [0,L],

(1) V > 0 on [0,L];
(2) the only x ∈ [0,L] such that V ′(x) = 0 is x = x0 ∈ (0,L) and V (x0) = min[0,L] V ;
(3) V (L) 6=V (0) ;
(4) V ′′(x0) > 0.

Assumption 2, formulated for simplicity on the potential V = a(x)2

4 = |f′(x)|2
4 can be formulated

equivalently as (the equivalence is not one to one; however (1)-(i ) above is equivalent to (1)-(i )
below, for all i ∈ {1, . . . ,4}):

(1) a(x) 6= 0 on [0,L] (resp. f′ 6= 0 on [0,L]);
(2) the only x ∈ [0,L] such that a′(x) = 0 is x = x0 ∈ (0,L) and |a(x0)| = min[0,L] |a|

(resp. the only x ∈ [0,L] such that f′′(x) = 0 is x = x0 ∈ (0,L) and |f′(x0)| = min[0,L] |f′|);
(3) a(0) 6= a(L) (resp. f′(L) 6= f′(0));
(4) a′′(x0) 6= 0.

x
0 L

V (x) = a(x)2

4 = |f′(x)|2
4

E0 =V (x0)

x0

Figure 1. Geometric setting of Assumption 2

Remark 3. Notice that Assumption 2 does not cover the classical constant speed case, which
is largely considered in the literature, see e.g. [2, 3, 12, 15, 23, 44–46]. The latter corresponds to
f(x) = ±M x and thus to the “flat potential” V = M 2

4 . However, a formal asymptotics will be
considered in Section 4.4, starting with a family of potentials satisfying Assumption 2 converging
to the flat potential. This allows to compare our situation to the “flat” one and shows that our
results formally recover (sometimes with slightly less accurate constants) the previously known
results for this example. Our purpose in the present paper (together with [38]) is not to revisit or
consider a perturbation of the usual “flat” setting, but rather to reveal effects that are not present
in the “flat” case.

Indeed, the class of vector fields (or functions f) presented here (see Section 4 for more
concrete examples and calculations) will allow to stress the fact that the convexity is responsible
for a concentration of some eigenfunctions close to the minimum, which is not the case for the
more studied case f(x) =±M x.

Note finally that the result of Guerrero–Lebeau applies in our context, as soon as f′ does not
vanish on [0,L], and implies that Tunif({0}) <+∞. The goal of the present article is to give a more
precise estimate on the quantity Tunif({0}) (under the additional Assumption 2 on f′).



Camille Laurent and Matthieu Léautaud 269

We also denote by E0 the ground state energy, that is to say

E0 = min
x∈[0,L]

(V (x)) =V (x0) = a(x0)2

4
= |f′(x0)|2

4
. (2)

Let us finally describe geometric and spectral quantities appearing in the statements below. The
classically allowed region at energy E for the potential V is defined by:

KE = {x ∈ [0,L],V (x) ≤ E }.

We may then define the Agmon distance (see e.g. [31, Chapter 3]) to the set KE at the energy
level E by

dA,E (x) = inf
y∈KE

∣∣∣∣∫ x

y

√
(V (s)−E)+ ds

∣∣∣∣ ,

that is, the distance to the set KE for the (pseudo-)metric (V − E)+ where (V (x)−E)+ =
max(V (x)−E ,0). Note that dA,E vanishes identically on KE (and only on this set). Under Assump-
tion 2(2), we have for E ≥ E0

dA,E (x) =
∣∣∣∣∫ x

y

√
(V (s)−E)+ ds

∣∣∣∣ , (3)

where y is any point in KE . Another important function in the estimates below is given by

WE (x) = dA,E (x)+ f(x)

2
. (4)

The following classical quantities of the Hamiltonian

p(x,ξ) = ξ2 +V (x) = ξ2 + |f′(x)|2
4

. (5)

enter into play in the spectral analysis of the operators involved (and are defined assuming
Item (2) in Assumption 2):

Φ(E) :=
∫ x+(E)

x−(E)

√
E −V (s)ds, for E ∈ [min

[0,L]
V ,+∞) (6)

T1 := sup
E≥V (x0)

T (E), with T (E) := 2
∫ x+(E)

x−(E)

p
Ep

E −V (s)
ds. (7)

In these expressions, for E ≥ E0, the points x±(E) are such that KE = [x−(E), x+(E)]. Namely, x−(E)
denotes the solution to V (x−(E)) = E which is ≤ x0 for E ≤ V (0), and x−(E) = 0 for E ≥ V (0).
Similarly, x+(E) is the solution to V (x+(E)) = E which is ≥ x0 for E ≤ V (L), and x+(E) = L for
E ≥V (L) (with x0 = x−(E0) = x+(E0) if E = E0). The geometric content of these quantities, as well
as links between them are discussed in Section 1.3.4 below (in particular, T1 is not homogeneous
to a time, but we keep this notation issued from [1]).

1.2. Results

In the statements below, we recall that a = f′ or that f(x) = ∫ x
0 a(s)ds (all results stated with the

function f are invariant by f 7→ f+ c for c ∈R). Also, we have b= f′′−q or equivalently q = a′−b. A
first lower bound is as follows. Recall that the control cost C0(T,ε) is introduced in Definition 1.

Proposition 4. Assuming a ∈ C 1([0,L]) (resp. f ∈ C 2([0,L])) and setting Ta := ∫ L
0

ds
|a(s)| =

∫ L
0

ds
|f′(s)| ∈

(0,+∞], we have

T < Ta =⇒ liminf
ε→0+

C0(T,ε) =+∞.
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This result is a direct consequence of the weak convergence of solutions to (1) to those of a
limit problem with ε = 0 (proof of this weak convergence follows [10, Proposition 2.94] and the
limit equation is studied in Section 2.3 below)1.

It simply translates the fact that if the “limit transport equation” with ε= 0 is non-controllable,
then there is no hope to obtain uniform controllability as ε→ 0+.

After this simple non-constructive result, we now provide with two explicit lower bounds on
C0(T,ε) and an upper bound under stronger assumptions on f (namely parts of Assumption 2).
These three results are commented and compared in Section 1.3 below.

Our first explicit lower bound on the control cost C0(T,ε) is as follows.

Theorem 5. Assume that a ∈ C 1([0,L]) (i.e. f ∈ C 2([0,L])), and that Item (2) in Assumption 2 is
satisfied. Then, for all E ∈V ([0,L]) and all δ> 0, there is ε0 > 0 such that we have for all ε< ε0

C0(T,ε) ≥ exp
1

ε

(
WE (0)−min

[0,L]
WE −ET −δ

)
, WE = f

2
+dA,E .

In particular, we have

Tunif({0}) ≥ sup
E∈V ([0,L])

1

E

[
WE (0)−min

[0,L]
WE

]
.

Theorem 5 states a result based on single energy levels (called E in the statement). Our
next result provides with a lower bound containing a nonlocal quantity defined on the “limit
spectrum”, namely TE ,B in (8) defined on [V (x0),+∞). As shown by the proof, this term may be
interpreted as an interaction term between the different energy levels. Recall that Φ is defined
in (6) and set

W̃E (s) = f(s)

2
−dA,E (s), for s ∈ [0,L]

(which is to be compared with WE defined in (4)).

Theorem 6. Assume that a ∈ C∞([0,L]) (i.e. f ∈ C∞([0,L])), that Items (1)–(4) in Assumption 2
are satisfied, and that b = a′

2 (i.e. q = f′′
2 ). For any δ > 0, E ∈ V ([0,L]), B ≥ 0, C > 0 and for

0 < ε< ε0(δ,B) and 0 < T <C , we have

C0(T,ε) ≥ exp
1

ε

(
WE (0)− sup

[0,L]
W̃E − (E +B)T +TE ,B −δ

)
with

TE ,B = 1

π

∫ +∞

V (x0)
log

∣∣∣∣ x +E +2B

x −E

∣∣∣∣Φ′(x)dx. (8)

In particular, we have

Tunif({0}) ≥ sup
E∈V ([0,L]),B≥0

1

E +B

(
WE (0)− sup

[0,L]
W̃E +TE ,B

)
.

A few remarks are in order

• We prove in Section 1.3.4 thatΦ is globally Lipschitz-continuous, and (8) makes sense;
• Note that TE ,B increases if B increases while −BT decrease, so there might be an optimal

choice of B (hard to determine in general; see Section 4 for explicit computations on
specific examples).

1Indeed, assuming C0(T,εn ) ≤ C0 with εn → 0, then, for any y0 ∈ L2(0,L), we can extract a sequence of controls un
converging in R and of solutions yn converging weakly in L2((0,T )× (0,L)). By [10, Proposition 2.94], the weak limit of yn
is a solution of the transport equation studied in Section 2.3 below, controlled to zero in time T . Since this holds for any
y0, we necessarily deduce T ≥ Ta (see Lemma 20).
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Finally, our last result provides with an upper bound on C0(T,ε). Recall that T1 is defined in (7)
and E0 in (2).

Theorem 7. Assume that a ∈C∞([0,L]) (i.e. f ∈C∞([0,L])), that Items (1)–(4) in Assumption 2 are
satisfied, and that b = a′

2 (i.e. q = f′′
2 ). For all T,δ > 0, m ∈ (0,1), there is ε0 = ε0(T,δ,m) > 0 such

that the control cost for the control problem (1) satisfies for 0 < ε< ε0

C0(T,ε) ≤ exp
1

ε
(G(T,m,δ)+δ) , (9)

with

G(T,m,δ) = 2T 2
1

(1−m)T
+ sup

E∈V ([0,L])

[
WE (0)−min

[0,L]
WE −m(1−δ)ET

]
.

Moreover, if

T > 2
p

2
T1p
E0

+ 1

E0
sup

E∈V ([0,L])

[
WE (0)−min

[0,L]
WE

]
, (10)

then we have minm∈[0,1) G(T,m,δ) < 0 for δ sufficiently small. In particular, we have

Tunif({0}) ≤ 1

E0

(
sup

E∈V ([0,L])

[
WE (0)−min

[0,L]
WE

]
+2

p
2
√

E0T1

)
. (11)

Notice that (11) is a consequence of (10), and that, in case (10) holds, the optimal control
converges exponentially to zero.

Note that it may seem surprising that the sign of the vector field a= f′ does not appear explicitly
in the statements of Theorems 5–6–7. It does play a role (as stressed by Lemma 12 below) and
some of the quantities involved in the statements above actually simplify in case a> 0 or a< 0.

Corollary 8. Under the assumptions of Theorems 5–6–7, we have

• either a> 0 (f is increasing) on [0,L], and

Tunif({0}) ≥ sup
E∈V ([0,L]),B≥0

1

E +B

(
dA,E (0)+dA,E (L)+ f(0)− f(L)

2︸ ︷︷ ︸
≤0

+TE ,B

)
,

Tunif({0}) ≤ 4
p

2

a(x0)
T1,

• or a< 0 (f is decreasing) on [0,L], and

Tunif({0}) ≥ sup
E∈V ([0,L])

1

E
[WE (0)−WE (L)] ,

Tunif({0}) ≥ sup
E∈V ([0,L]),B≥0

1

E +B

(
2dA,E (0)+TE ,B

)
,

Tunif({0}) ≤ 1

E0

(
sup

E∈V ([0,L])
[WE (0)−WE (L)]+2

p
2
√

E0T1

)
.

This result is a direct consequence of Theorems 5–6–7 combined with Lemma 12 below. We
remark on the one hand that in case a > 0 (in which the limit equation is a proper control
problem), then the lower bound of Theorem 5 is trivial and the upper bound in Theorem 7 only
involves the spectral gap quantity T1. On the other hand, we notice that if a < 0 (in which case
the limit equation is not a proper control problem), geometric quantities involving the Agmon
distance enter into play. As already remarked in [38] this allows, in this situation, to have Tunif

very large compared to the minimal flushing time of the limit problem ε = 0. See also Section 4
below for explicit computations on an example. This is consistent with the results in [12], in which
the sign of the vector field is of key importance.
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1.3. Remarks and comments

1.3.1. Remarks about the proofs

The first step of our proofs consists in conjugating in Section 2.2 the control/observation

equations by the weight e
f

2ε . Taking advantage of the fact that, in dimension one, every vector
field is a gradient, this reformulates the (seemingly non-selfadjoint) transport equation with
vanishing viscosity as a semiclassical heat equation ε∂t w − Pεw = 0, involving the following
semiclassical Schrödinger operator

Pε :=−ε2∂2
x +

|f′|2
4

+εqf =−ε2∂2
x +V +εqf. (12)

see (28). All results of the article then rely on fine spectral properties of the operator Pε, that is to
say

• a precise knowledge of the spatial localization of eigenfunctions of Pε; this is the object of
the companion paper [40] (see also Section 3.1 where the results are recalled). Roughly

speaking, we use that a solution to Pεψ = Eψ behaves like |ψ(x)| ∼ e−
dA,E (x)

ε (up to some

loss e
δ
ε ) in the sense of L2 density. Here dA,E is the Agmon distance for the potential V at

energy E defined in (3).
• a precise knowledge of the distribution of eigenvalues of Pε; and in particular the gap

between (square roots of) two successive eigenvalues in the limit ε→ 0+. We extract the
results we need from the article of Allibert [1] (itself relying on [33]) which provides with
a precise asymptotics (as ε→ 0+, as a function of the energy level E) of the distribution
and the gap, see Appendix A.

Note that properties of the classical Hamiltonian p defined in (5) (which is the principal symbol
of Pε) naturally arise in the description of spectral properties of the quantum Hamiltonian Pε the
semiclassical limit ε→ 0+. This is why the functions Φ and T defined in (6)–(7) enter into play
(see also Section 1.3.4).

The proof of Theorem 5 is rather direct once the results of localization of eigenfunctions
are obtained in Section 3.1. Indeed, we only test the observability estimate on solutions of the
semiclassical heat equation issued from eigenfunctions of Pε.

The proof of Theorem 6 follows the spirit of Coron–Guerrero [12] and thus uses interactions
between eigenfunctions. It seems more precise than the lower bound of Theorem 5 which
only considers a single eigenfunction. Indeed, the final estimate contains one part of harmonic
analysis related to the spectrum and one part more geometric related to the concentration of
eigenfunctions. Unfortunately, the geometric part related to the concentration of eigenfunctions
seems less precise than that in Theorem 5. This is why we have chosen to keep both results. Here,
we use the spectral gap estimates of Allibert [1], which require qf = constant.

The proof of Theorem 7 uses the moment method which is classical for 1D control problems.
Yet, in this context, we need precise information about the localization of both the spectrum and
the eigenfunctions. We thus rely on both items above. Moreover, in order to obtain estimates
uniform in ε, we need to have a “quantitative” moment method, that is with explicit constants,
at least uniform in ε. This is obtained in Proposition 39 that provides a result of moment for heat
type equation with an assumption on the spectral gap. The main advantage of this construction,
which is of independent interest, is that we can follow (almost) explicitly the constants with
respect to the parameters, which will be crucial to have estimates uniform in ε. The proof relies
on Ingham estimates and a transmutation method of [18].
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1.3.2. Reformulation of the problem with a constant vectorfield

We here notice that the control problem (1) can be reformulated as a problem with a constant
vectorfield ±∂x , but with a varying viscosity. This uses Item (1) of Assumption (2), stating that
the vectorfield is nondegenerate. To straighten the vectorfield f′(x)∂x , we introduce its flow Yx (s)
defined by

∂s Ys0 (s) = f′(Ys0 (s)), Ys0 (0) = s0.

We also introduce its inverse Jx (y) = ∫ y
x

ds
f′(s) , so that we have

Jx (Yx (s)) = s.

Denoting v(x) = u(Y0(x)), we have ∂x v(x) = f′(Y0(x))(∂y u)(Y0(x)). Equivalently, we have
v(J0(y)) = u(y) and thus

∂y u(y) = J ′0(y)(∂x v)(J0(y)) = J ′0(Y0(x))(∂x v)(x) = 1

f′(Y0(x))
(∂x v)(x), x = J0(y).

As a consequence, if u satisfies the equation

(∂t + f′(y)∂y + f′′(y)−q(y)−ε∂2
y )u(t , y) = 0,

then v(x) = u(Y0(x)) satisfies the equation(
∂t +∂x + f′′(Y0(x))−q(Y0(x))−ε 1

f′(Y0(x))
∂x

1

f′(Y0(x))
∂x

)
v(t , x) = 0.

The latter is a linear transport equation by the constant coefficient vector field ∂x with a variable
coefficient viscous perturbation operator ε 1

f′(Y0(x))∂x
1

f′(Y0(x))∂x . Theorems 5–6–7 can all be trans-
lated as estimates on the minimal time of uniform null-controllability in this context.

Note that the fact that, given a fixed vectorfield, the choice of the viscous perturbation changes
the minimal uniform control time Tunif was already observed in [38].

1.3.3. Remarks about the assumptions

The assumptions we make on the vector field a (resp. on f or on V ) are issued from the analysis
of the limit problem and from the two tools we use here as a black box in the analysis (namely
localization of eigenfunctions [40], and spectral gap estimates [1]).

Item (1) of Assumption 2 is necessary for the transport equation with ε = 0 to be controlable
(see Section 2.3) and is therefore quite natural.

Then, the essential assumption in both references [1, 40] is Assumption 2(2), namely that the
potential forms a single well. Removing this would be an interesting problem, but would require
a careful study of the interaction between the different wells and the tunneling effect, see [33].
This is however beyond the scope of the present article.

The remaining assumptions: f ∈ C∞([0,L]), Items (3) and (4) in Assumption 2 and b = a′
2 (i.e.

q = f′′
2 , which amounts to qf = 0 in (12)) come from the paper of Allibert [1]. The assumption

b= a′
2 (i.e. q = f′′

2 is technical and we believe that it can be removed (this would however require
to reprove most of the spectral gap estimates in [1] with an additional lower order term). Item (4)
of Assumption 2 concerns the non degeneracy of the minimum of the potential. It could probably
be weakened (as long as the potential is not too “flat” at the minimum), at the cost of several
complications in the proofs (because of the associated degeneracy of the spectral gap near the
potential minimum).
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1.3.4. Interpretation of the spectral quantities

Here, we provide with some comments on the classical/spectral quantitiesΦ(E) and T (E) (de-
fined in (6) and (7) respectively) entering into play in the above results, under Assumption 2(2).
They are linked with properties of the classical Hamiltonian p defined in (5). First notice that
Φ(E) is related to the following phase-space volume of the set {p ≤ E }, that is

Φ(E) = Vol
({

(x,ξ) ∈ [0,L]×R, V (x) ≤ E and 0 ≤ ξ≤
√

E −V (x)
})

= 1

2
Vol

({
(x,ξ) ∈ [0,L]×R, p(x,ξ) ≤ E

})
.

As such, it is linked via the Weyl law to the asymptotic number of eigenvalues of Pε = −ε2∂2
x +

V (x)+O (ε) in the semiclassical limit ε→ 0+ as

]{λεk ∈ Sp(Pε),λεk ≤ E } = 1

2πε

(
Vol({p ≤ E })+oE (1)

)= 1

πε
(Φ(E)+oE (1))

(see e.g. [16] in the boundaryless case or Theorem 35 in the present setting). Notice also that, for
E ≥ maxV = max{V (0),V (L)}, we have Φ(E) = ∫ L

0

p
E −V (s)ds and in particular Φ(E) ∼ L

p
E as

E →+∞. We use a more precise version of this formula (due to [1, 32]) stating that

λεk ≈Φ−1(επk), uniformly in both ε→ 0+,k ∈N, (13)

where the meaning of ≈ is made precise in Theorem 35.
Concerning the quantity T (E) in (7), we now explain how it is linked to the period of trajec-

tories of the Hamiltonian vector field Hp associated to the Hamiltonian p (defined in (5)), in the
energy level p(x,ξ) = E . More precisely, the Hamiltonian flow of p(x,ξ) = ξ2 +V (x) is defined by
ẋ(s) = 2ξ(s), ξ̇(s) = −V ′(x(s)), and the Hamiltonian p(x,ξ) is preserved by the flow. Hence, un-
der Assumption 2(1)–(2), if a curves has p = E , then in any time interval such that ξ(t ) > 0 and
x−(E) ≤ x(0) ≤ x(T ) ≤ x+(E), we have

T =
∫ T

0
dt =

∫ x(T )

x(0)

dx

2ξ(x)
=

∫ x(T )

x(0)

dx

2
p

E −V (x)
.

Hence, in the energy level {p = E }, the Hamiltonian flow of p (consists in two different trajectories
and) is periodic with period

T (E) = 2
∫ x+(E)

x−(E)

dx

2
p

E −V (x)
=

∫ x+(E)

x−(E)

dxp
E −V (x)

.

As a consequence, we deduce that the quantity T (E) (defined in (7)) verifies

T (E) = 2
p

ET (E). (14)

Note that for large energies, T (E) ∼E→+∞ Lp
E

and T (E) ∼E→+∞ 2L.

Lemma 9. The quantities Φ(E) and T (E) defined in (6) and (7) are linked by the following:
Φ ∈W 1,∞([E0,∞)) and

Φ′(E) = 1

4
p

E
T (E) = 1

2
T (E), i.e.

(
Φ(E 2)

)′ = 1

2
T (E 2).

This lemma is proved in Appendix C.
We now give a spectral interpretation of T (E) and T (E), explaining how these classical

quantities enter into the description of spectral properties of Pε. Precise statements and proofs
are provided in Appendix A, based on results obtained by Allibert in [1] (themselves relying
on [32, 33]).

Denoting N (β) :=Φ(β2), we have according to (13) thatΦ(λεk ) ≈ επk. Writing βεk =
√
λεk for the

square root of the eigenvalues, we thus have επk ≈Φ(λεk ) =Φ((βεk )2) = N (βεk ). Hence, denoting by

Gε
k :=βk+1 −βk =

√
λεk+1 −

√
λεk
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the local spectral gap for the square roots of eigenvalues (spacing of square roots of eigenvalues),
we obtain

επ(k +1)−επk ≈ N (βεk+1)−N (βεk ) ≈ Gε
k N ′(βεk ).

We finally obtain

Gε
k ≈ επ

N ′(βεk )
= 2επ

T (λεk )
.

As a consequence, the quantity T (E) measures the local spectral gap for the square roots of
eigenvalues at energy E , and hence T1 = supE≥E0

T (E) yields a uniform lower bound for the
spectral gap for the square roots of eigenvalues. This is actually stronger than a uniform lower
bound for the spectral gap of eigenvalues themselves, for

λεk+1 −λεk = (βεk+1 +βεk )(βεk+1 −βεk ) ≈ 2βεk Gε
k ≈ 2επ

2
√
λεk

T (λεk )
= 2επ

T (λεk )
,

where we have used (14) in the last equality.

1.3.5. Comparing the minimal times appearing in Theorems 5, 6, and 7

In the estimates we obtain on Tunif (we write Tunif = Tunif({0}) in this section for short) in
Theorems 5, 6 and 7, two parameters enter into play:

• first a “Spectral” parameter, related to the localization of the spectrum, or, more precisely,
to the size of the spectral gap at energy E ;

• and second a “Geometrical” parameter, related to the localization of the eigenfunctions
at energy E .

In order to compare these parameters, we are led to define the following spectral/geometric
constants (the index of the constant refers to the theorem where it appears)

S5 = 0, G5,E =WE (0)−min[0,L] WE ,
S6,E ,B = TE ,B , G6,E =WE (0)− sup[0,L] W̃E ,
S7 = 2

p
2
p

E0T1, G7,E =WE (0)−min[0,L] WE =G5,E ,
(15)

where, recall, E0 = V (x0) = |f′(x0)|2
4 = min[0,L] V > 0. With these definitions in hand, the critical

times appearing in Theorems 5, 6 and 7 respectively are

T5 = sup
E∈V ([0,L])

1

E

(
G5,E +S5

)= sup
E∈V ([0,L])

1

E
G5,E , (16)

T6 = sup
E∈V ([0,L]),B≥0

1

E +B

(
G6,E +S6,E ,B

)
, (17)

T7 = 1

E0

(
sup

E∈V ([0,L])
G7,E +S7

)
= sup

E∈V ([0,L])

1

E0

(
G7,E +S7

)
,

and the associated result formulates (sometimes assuming q = f′′
2 ) as

T5 ≤ Tunif, T6 ≤ Tunif, Tunif ≤ T7.

We now try to compare the different quantities involved in (15). We first need to compare TE ,B

and T1.

Lemma 10. The quantities TE ,B and T1 are linked by

TE ,B ≤ T1

p
E0

2π
Γ0

(√
E +2B

E0
,

√
E

E0

)
,
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where, for α≥ 1,β> 1,

Γ0(α,β) =
∫ +∞

1
log

∣∣∣∣ y2 +α2

y2 −β2

∣∣∣∣dy

=πα− log(1+α2)−2αarctan

(
1

α

)
+ log(β2 −1)+β log

(
β+1

β−1

)
,

extends as a continuous function on {(α,β) ∈R2,1 ≤β≤α}.

This lemma is proved in Appendix C

Lemma 11. The above quantities are linked by

for all E ≥ E0, G5,E =G7,E ≥G6,E ,

for all E ≥ E0,B ≥ 0,
1

E0
G7,E ≥ 1

E
G5,E ≥ 1

E +B
G6,E ,

(18)

and for all E ≥ E0, B ≥ 0,

0 = S5 ≤
S6,E ,B

E +B
≤ κ0

S7

E0
, with κ0 = 1

2π
p

2
max
α≥β≥1

Γ0(α,β)

α2 +β2 <+∞. (19)

This lemma is proved in Appendix C. From this lemma, we draw the following conclusions:

• The geometric quantity G7,E = G5,E = WE (0)−min[0,L] WE seems to be the appropriate
one to describe the localization of eigenfunctions. In this particular 1D situation, we
indeed know very precisely where eigenfunctions are localized, see Section 3.1 below
or [40]. Theorems 7 and 5 are thus accurate in this respect, whereas Theorem 6 is not.
Note that the quantity 1

E0
G7,E instead of 1

E G7,E makes however Theorem 7 less accurate
than Theorem 5. This can be summarized as

Theorem 5 À Theorem 7 À Theorem 6,

where À stands for “more accurate as far as the geometric quantity is involved”. Note
however that if one rather compares

sup
E∈V ([0,L]),B≥0

1

E +B
G6,E = sup

E∈V ([0,L])

1

E
G6,E , with

1

E0
sup

E∈V ([0,L])
G7,E ,

then Theorems 7 and Theorem 6 are no longer comparable.
• Now, as far as the spectral quantity is concerned, Theorem 5 does not say anything,

Theorem 6 yields a seemingly fine lower bound (comparable to that obtained in [12]),
whereas Theorem 7 seems to provide with a relatively rough upper bound. This can be
summarized as

Theorem 6 À Theorem 7 À Theorem 5,

where À stands for “more accurate as far as the spectral quantity is involved”.

In particular, the lower bound of Theorem 5 is better than the one of Theorem 6 from the
geometrical point of view, while the latter is better from the spectral point of view.

The following lemma allows to better understand the importance of the direction of the vector
field f′, i.e. to distinguish properties of f′ > 0 from f′ < 0 (recall that the asymmetry comes from
the fact that the control acts only on left boundary).

Lemma 12. Assume that Items (1) and (2) in Assumption 2 are satisfied. Then one of the following
two statements hold:

• either f is increasing: then for any E ≥ E0, the functions x 7→ WE (x) and W̃E (x) are
increasing, and the constants defined in (15) satisfy

G5,E = 0, and G6,E = dA,E (0)+dA,E (L)+ f(0)− f(L)

2
≤ 0;
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• or f is decreasing: then for any E ≥ E0, the functions x 7→WE (x) and W̃E (x) are decreasing,
and the constants defined in (15) satisfy

G5,E =WE (0)−WE (L) ≥ 0, G6,E = 2dA,E (0) ≥ 0.

In both cases, E 7→G6,E is a nonincreasing function.
If we assume additionally that f is an odd function with respect to x0 = L/2, that is to say,

f(L/2 + x) = −f(L/2 − x) for all x ∈ [0,L/2], then we have the following simplifications: if f is
increasing, then

G5,E = 0, and G6,E = 2dA,E (L)− f(L) = 2dA,E (0)+ f(0),

while if f is decreasing, we have

G5,E = f(0) =−f(L), and G6,E = 2dA,E (L) = 2dA,E (0).

In particular, G5,E is independent on E in both cases.

This lemma is proved in Appendix C. It is also very useful to compute the value of the different
constants on explicit examples.

Our results lead us to conjecture that, under Assumption 2(1), (2) and (4), there is a distribu-
tion kernel K(x,E) such that

Tunif = sup
E∈[E0,+∞)

1

E

(
G5,E +SE

)
, with SE =

∫ ∞

E0

K(x,E)Φ′(x)dx = 1

2

∫ ∞

E0

K(x,E)T (x)dx.

However, we do not have a precise idea of what the kernel K should be, but K(x,E) = log
∣∣ x+E+2B

x−E

∣∣
would look to be a good candidate for some B .

1.3.6. Explicit computations on an example

In Section 4 below, we compute explicitly and further compare all upper/lower bounds for the
functions

f±M ,a(x) =±
∫ x

0

√
a2s2 +M 2 ds, that is to say a±(x) = (f±M ,a)′(x) =±

√
a2x2 +M 2,

defined on the shifted interval (−L/2,L/2) (instead of (0,L)). The latter are associated to the

harmonic potential V (x) = |f±′M ,a (x)|2
4 = a2x2+M 2

4 , and our results apply for M > 0 and a > 0.
For a = 0 (to which our results do not apply), the vector fields correspond to the case studied
in [2, 3, 12, 15, 23, 44–46]. For large values of a, the potential is very convex and far from the
situation a = 0. We draw in particular the following consequences:

• in case − (that is, for f−M ,a), then T
f−′M ,a

({−L/2}) −→
a→+∞ 0+ (the flushing time associated

to the limit equation ε = 0, see Section 2.3) whereas Tunif({−L/2}) −→
a→+∞ +∞. In partic-

ular, we recover [38, Section 3.3], stating that Tunif({−L/2})
Tf′−M ,a

({−L/2}) −→
a→+∞ +∞. We obtain actu-

ally the stronger statement that if a → 0+, the limit problem is controllable in a time
T
f±′M ,a

({−L/2}) → 0 whereas uniform controllability holds for a time Tunif({−L/2}) →+∞.

This is a refinement of [38, Section 3.3]. See Section 4.3.
• In the formal limit a → 0+, we obtain the lower bounds

liminf
a→0+

Tunif,a ≥ liminf
a→0+

T6,a ≥ L

M
, (Case +), (20)

liminf
a→0+

Tunif,a ≥ liminf
a→0+

T6,a ≥2
p

2L

M
, (Case −). (21)

As a consequence, the formal limit a → 0+ coincides with the known lower bounds for the
Coron–Guerrero problem a = 0, appearing in the literature. The first one was obtained by
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Coron–Guerrero [12] while the second was obtained by Lissy [46, Theorem 1.3] (using a
variant of method of [12]). See Section 4.4.

• In the formal limit a → 0+, the upper bound of Theorem 7 degenerates since T1 →
a→0+

+∞.

This suggest that the quantity T1 is not the appropriate one (at least in this regime).
A variation of our approach however applies to the case a = 0, but yields slightly less
accurate constants than those available in the literature [12,15,23,44–46], see Section 4.4
for a discussion.

1.3.7. Comparison with the results in [38]

The result in Theorem 5 is a one-dimensional refinement of [38, Theorems 1.5 and 3.1],
which instead states (in a much more general setting of a compact manifold with boundary, with
essentially no assumptions on f or V )

C0(T,ε) ≥ exp
1

ε

(
WE (0)−max

KE
WE −ET −δ

)
, for all E ∈V ([0,L]),δ> 0.

and in particular

Tunif({0}) ≥ sup
E∈V ([0,L])

1

E

(
WE (0)−max

KE
WE

)
= 1

E0

(
WE0 (0)− f(x0)

2

)
, E0 = min

[0,L]
V =V (x0).

This last equality is explained in [38, remark following Theorem 3.1]. In Theorem 5, we are able to
replace −maxKE WE by −min[0,L] WE . This improvement comes from two additional knowledge
we have on the eigenfunctions of a conjugated operator Pε (see (28) below) in this very particular
1D single well problem (see Section 3.1 below or [40]): an eigenfunction ψε associated to an
eigenvalue Eε of Pε, converging to E as ε→ 0+:

• spreads over the whole classically allowed region KE (propagation estimates);
• vanishes at most like e−

1
ε dA,E in the classically forbidden region (Allibert estimates).

In higher dimension, the first result is false (and the issue of understanding the asymptotic
distribution of the distribution |ψε|2dx is extremely intricate, even for a given energy E) in
general; and to our knowledge, the second result does not seem to be well-understood.

Along the proof of the present paper, we could state an analogue of Theorem 5 for the internal
uniform controllability/observability question by an open setω⊂ [0,L]. The latter problem is not
considered in the main part of the paper but is the main focus in [38].

1.3.8. Uniform controllability of the semiclassical heat equation

As already mentioned, all results proved in Theorems 5, 6 and 7 may be reformulated in terms
of uniform (resp. non-) observability/controllability results for the semiclassical heat equation

(
ε∂t −ε2∂2

x +V (x)
)

v = 0, (t , x) ∈ (0,T )× (0,L),
v(t ,0) = h(t ), v(t ,L) = 0, t ∈ (0,T ),

v(0, x) = v0(x), x ∈ (0,L),
(22)

in the semiclassical limit ε→ 0+ and in weighted L2-spaces of type e
f

2ε L2(0,L) = L2((0,L),e−
f
ε dx).

Note that in that setting, we do not need that f and V be linked one to the other (and then have to
change the definitions of W,W̃ accordingly). We do not state these results for the sake of brevity.

Remark 13. The semiclassical heat equation (22) can be rewritten as(
ε−1∂t −∂2

x +ε−2V (x)
)

v = 0

on a fixed time interval [0,T ]. Rescaling in time, this amounts to study(
∂t −∂2

x +ε−2V (x)
)

v = 0, (23)
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on a time interval [0,εT ], that is, the heat equation with a large potential in small time. If we are
interested in the controllability of the same equation (23) in fixed time (independent of ε), the
techniques described in the present paper (see in particular Section 3.4) allow to obtain uniform
estimates as well, and recover for instance the results of [5, Proposition 1.5.] (proved by different
techniques, namely Carleman estimates). In that reference, it is used to control the Grushin
equation. More precisely, the techniques above imply the following Proposition (analogue of [5,
Proposition 1.5.]).

Proposition 14. Let V ∈ C∞([0,L]) satisfy Items (1)–(4) in Assumption 2. Let T > 0 and fix δ > 0.
Then, there exists ε0 and C > 0 so that for any 0 < ε < ε0 and v0 ∈ L2(0,L), there exists a control
h ∈ L2(0,T ) to zero of 

(
∂t −∂2

x + 1
ε2 V (x)

)
v = 0, (t , x) ∈ (0,τ)× (0,L),

v(t ,0) = h(t ), v(t ,L) = 0, t ∈ (0,τ),
v(0, x) = v0(x), x ∈ (0,L).

with the control cost

‖h‖2
L2(0,T ) ≤Ce

dA (0)+δ
ε ‖v0‖2

L2 . (24)

Note that the equation can also be rewritten as (ε2∂t+Pε)v = 0 (compare with the semiclassical
heat equation (22) where we have ε∂t ).

2. General facts about transport equation and vanishing viscosity limit

2.1. Duality between boundary control and observation problems

In the present one dimensional setting recall the control problem under consideration is (1) (and
is written in a “gradient field” way, which is always possible in dimension one). The associated
(forward in time) observation problem is

(∂t − f′∂x −q −ε∂2
x )u = 0, (t , x) ∈ (0,T )× (0,L),

u(t ,0) = u(t ,L) = 0, t ∈ (0,T ),
u(0, x) = u0(x), x ∈ (0,L),

(25)

with f= f(x) and q = q(x). The solution y of the controlled equation (1) and the solution u of free
equation (25) are linked by the following duality equation:(

u(T ), y0
)

L2(0,L) −
(
u0, y(T )

)
L2(0,L) +

∫ T

0
ε∂x u(t ,0)h(T − t )dt = 0. (26)

The boundary observability problem for (25) can be formulated as follows. Does there exist a
constant C > 0 such that

C 2
∫ T

0
|ε∂x u(t ,0)|2dt ≥ ‖u(T )‖2

L2(0,L), for all u0 ∈ L2(0,L) and u solution of (25). (27)

We define accordingly

C0(T,ε) := inf{C ∈R+ such that (27) holds}.

Classical duality arguments (see [17] or [10, Chapter 2.3]) yield the following statement.

Lemma 15 (Observability constant = control cost). Given (ε,T ), Equation (1) is null-controllable
if and only if the observability inequality (27) holds. Moreover, we then have C0(T,ε) =C0(T,ε).

As usual, this allows us to mainly focus on the observability inequality (27).
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2.2. Gradient flows, conjugation and reformulation

As in [38], we first proceed with the following conjugation:

e−
f

2ε ∂2
x e

f
2ε = ∂2

x +
1

ε
f′∂x + |f′|2

4ε2 + f′′

2ε
.

We denote by 1
ε2 Pε :=−∂2

x + |f′|2
4ε2 + f′′

2ε −
q
ε , that is to say

Pε :=−ε2∂2
x +

|f′|2
4

+εqf, with qf =
f′′

2
−q. (28)

The above computation implies that

e−
f

2ε

(
1

ε2 Pε

)
e

f
2ε =−∂2

x −
1

ε
f′∂x − q

ε
, (29)

the last operator being that appearing in the observation/free evolution problem (25) multiplied
by ε. The operator Pε is selfadjoint in L2(0,L) endowed with domain D(Pε) = H 2(0,L)∩H 1

0 (0,L).
Hence, the operator −∂2

x − 1
ε f

′∂x − q
ε is also formally selfadjoint, but in the weighted space

L2((0,L),e
f
ε dx). We reformulate the uniform observability problem (25) in terms of the heat

equation involving the operator Pε defined in (28) (see [38, Lemma 2.9]).

Lemma 16 (Observation problem: equivalent reformulation). Given T,C0,ε > 0, the following
statements are equivalent.

(1) The function u solves{
(∂t − f′∂x u −q −ε∂2

x )u = 0, (t , x) ∈ (0,T )× (0,L),
u(t ,0) = u(t ,L) = 0, t ∈ (0,T ),

(30)

resp. ‖u(T )‖2
L2(0,L) ≤C 2

0

∫ T

0
|ε∂x u(t ,0)|2dt . (31)

(2) The function ζ(t , x) = ef(x)/2εu(t , x) solves{
ε∂tζ+Pεζ= 0, (t , x) ∈ (0,T )× (0,L),

ζ(t ,0) = ζ(t ,L) = 0, t ∈ (0,T ),
(32)

resp.
∥∥∥e−

f
2ε ζ(T )

∥∥∥2

L2(0,L)
≤C 2

0

∫ T

0

∣∣∣e− f(0)
2ε ε∂xζ(t ,0)

∣∣∣2
dt . (33)

A similar conjugation result also holds in the controllability side, using conjugation with the
opposite sign. More precisely, still with Pε defined in (28), we now have (instead of (29))

e
f

2ε

(
1

ε2 Pε

)
e−

f
2ε =−∂2

x +
1

ε
f′∂x − q

ε
+ f′′

ε
.

This time, the conjugation of Pε, which is selfadjoint on L2((0,L),dx) with domain H 1
0 ∩

H 2(0,L), yields the operator −∂2
x + 1

ε f
′∂x − q

ε + f′′
ε (which thus becomes formally selfadjoint in

L2((0,L),e−
f
ε dx) with Dirichlet boundary conditions). We can then obtain a similar version of

Lemma 16 from the control point of view to relate the control problem (1) to a control problem
with Pε.

Lemma 17 (Control problem: equivalent reformulation). Given T,ε > 0, the following state-
ments are equivalent.

(1) The function y(t , x) solves the control problem (1) (with initial datum y0(x) and control
h(t ))
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(2) The function v(t , x) = e−f(x)/2εy(t , x) solves
ε∂t v +Pεv = 0, (t , x) ∈ (0,T )× (0,L),

v(t ,0) = e−f(0)/2εh(t ), v(t ,L) = 0, t ∈ (0,T ),
v(0, x) = e−f(x)/2εy0(x), x ∈ (0,L).

(34)

Note that in this lemma, “solving” the equation is meant in the classical sense for regular
solutions but has to be taken in the transposition sense for “rough solutions”. The conjugation
works the same way in this weak sense according to the duality (26). The latter now rewrites

(ζ(T ), v(0))L2(0,L) − (ζ(0), v(T ))L2(0,L) +
∫ T

0
ε∂xζ(t ,0)v(T − t ,0)dt = 0

that is to say,(
ζ(T ),e−f/2εy0

)
L2(0,L)

−
(
ef/2εu0, v(T )

)
L2(0,L)

+
∫ T

0
ε∂xζ(t ,0)e−f(0)/2εh(T − t )dt = 0. (35)

with v solving (34) and ζ solving (32).

2.3. Controllability of the limit equation ε= 0

In this section, we consider the observability question for the formal control problem obtained
from (1) in the limit ε= 0. It is a transport equation of hyperbolic type and the number of bound-
ary conditions to be imposed for well-posedness is different from its parabolic counterpart. The
limit equation that we expect on the control side is the following{

(∂t + f′∂x + f′′−q)y = 0, (t , x) ∈ (0,T )× (0,L),
y(0, x) = y0(x), x ∈ (0,L),

(36)

where, again, the transport equation can be written equivalently as (∂t +a∂x +b)y = 0. We assume
f′(0) 6= 0 and f′(L) 6= 0 for simplicity. The expected boundary conditions actually depend on the
sign of f′(0) and f′(L). Namely, the expected relevant boundary conditions in view of the parabolic
control problem (1) for ε> 0 are, for t ∈ (0,T ),

(1) y(t ,0) = h(t ) and y(t ,L) = 0, if f′(0) > 0 and f′(L) < 0,
(2) y(t ,0) = h(t ), if f′(0) > 0 and f′(L) > 0,
(3) y(t ,L) = 0, if f′(0) < 0 and f′(L) < 0,
(4) no boundary conditions to be imposed, if f′(0) < 0 and f′(L) > 0.

Note that in most of the article, we actually assume that the vector field f′ = a is C 1 and does not
vanish on the interval [0,L]; the only two relevant boundary conditions are then (2) in case f′ > 0
and (3) in case f′ < 0. If we denote Ω= (0,L), ∂Ω= {0,L} and ∂ν the outgoing normal unit field to
the boundary (i.e. ∂ν|x=L = ∂x and ∂ν|x=0 =−∂x ), we can write the previous boundary conditions
in a more concise (but maybe more complicated) way by y |∂Ω∩{∂νf<0} = H(t , x)|∂Ω∩{∂νf<0} where
H(t , x) is defined on (0,T )×∂Ω by H(t ,0) = h(t ) and H(t ,L) = 0.

Note that only Cases (1) and (2) define a control problem. In Cases (3) and (4), the only relevant
question is whether or not the solutions do vanish at time T .

Solutions to (36) are meant in the weak sense i.e. in the sense of transposition, see e.g. [10,
Section 2.1.1]. We say that y is a solution (36) (with appropriate boundary conditions) in the sense
of transposition if for all τ ∈ [0,T ],

0 =−
∫ τ

0

∫ L

0
y(∂tφ+ f′(x)∂xφ+qφ)dtdx − f′(0)

∫ τ

0
h(t )φ(t ,0)dt

+
∫ L

0
y(τ, x)φ(τ, x)dx −

∫ L

0
y0(x)φ(0, x)dx
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for every φ ∈ C 1([0,τ] × [0,L]) satisfying φ(x, t ) = 0 for all t ∈ [0,τ] and every x ∈ {0,L} so that
∂νf(x) > 0, that is

(1) no assumption if f′(0) > 0 and f′(L) < 0,
(2) φ(t ,L) = 0, ∀ t ∈ [0,τ], if f′(0) > 0 and f′(L) > 0,
(3) φ(t ,0) = 0, ∀ t ∈ [0,τ], if f′(0) < 0 and f′(L) < 0,
(4) φ(t ,0) = 0 and φ(t ,L) = 0, ∀ t ∈ [0,τ], if f′(0) < 0 and f′(L) > 0.

The arguments of [12, Proposition 1] can be adapted here to prove that the weak limit of solutions
of system (1) are solutions to (36) with the boundary conditions given in Items (1)–(4). In
particular, this allows to prove Proposition 4.

For the observation problem, we expect the following limit system{
(∂t − f′(x)∂x −q)u = 0, (t , x) ∈ (0,T )× (0,L),

u(0, x) = u0(x), x ∈ (0,L).
(37)

The boundary conditions are then the same as for φ, namely:

(1) no boundary conditions to be imposed, if f′(0) > 0, f′(L) < 0,
(2) u(t ,L) = 0, t ∈ (0,T ), if f′(0) > 0, f′(L) > 0,
(3) u(t ,0) = 0, t ∈ (0,T ), if f′(0) < 0, f′(L) < 0,
(4) u(t ,0) = 0, u(t ,L) = 0, t ∈ (0,T ), if f′(0) < 0, f′(L) > 0.

Following closely [10, Section 2.1], it is possible to prove the following two lemmata.

Lemma 18. For any u0 ∈ L2(0,L), the Cauchy problem (37) with above boundary conditions has a
unique solution u ∈C ((0,T ),L2(0,L)).

Moreover, for any y0 ∈ L2(0,L), h ∈ L2(0,T ), the Cauchy problem (36) with above boundary
conditions has a unique solution y ∈C ((0,T ),L2(0,L)) in the sense of transposition.

Lemma 19. We have the duality relation

〈y(T ),u0〉L2(0,L) −〈y0,u(T )〉L2(0,L) = D,

with

(1) D = f′(0)
∫ T

0 u(t ,0)h(t −T )dt , if f′(0) > 0 and f′(L) < 0,
(2) D = f′(0)

∫ T
0 u(t ,0)h(t −T )dt , if f′(0) > 0 and f′(L) > 0,

(3) D = 0 if f′(0) < 0 and f′(L) < 0,
(4) D = 0, if f′(0) < 0 and f′(L) > 0.

Moreover, null-controllability (or the problem of having y(T ) = 0) holds true if and only if, for all u
solution of (37) with above boundary conditions, we have

(1)
∫ T

0 |u(t ,0)|2dt ≥C ‖u(T )‖2
L2(0,L)

, if f′(0) > 0 and f′(L) < 0,

(2)
∫ T

0 |u(t ,0)|2dt ≥C ‖u(T )‖2
L2(0,L)

, if f′(0) > 0 and f′(L) > 0,
(3) u(T ) = 0 if f′(0) < 0 and f′(L) < 0,
(4) u(T ) = 0, if f′(0) < 0, f′(L) > 0.

The next Proposition simply says that null-controllability (or the problem of having y(T ) = 0)
holds if and only if all the trajectories exit the interval.

Proposition 20. The conditions in the previous Lemma hold if and only if f′ 6= 0 in [0,L] and
T ≥ Tf′ =

∫ L
0

ds
|f′(s)| .

Note that the system considered is not the same depending on the sign of f′.

Proof. First, we can check that if there is one point x0 ∈ (0,L) (it cannot be on the boundary
with the assumptions) such that f′(x0) = 0, then the conditions are not fulfilled. Indeed, we
can construct some non zero solutions localized arbitrary close to x0 that remain zero close
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to the boundary. Note also that since f is sufficiently regular and f′(x0) = 0, then
∫ L

0
ds
f′(s) is not

convergent.
In the other case, we can write explicitly the solution. We first consider the second case

f′(0) > 0, f′(L) > 0.
For any x ∈ [0,L], denote Jx (x0) = ∫ x0

x
ds
f′(s) . It is an increasing function from [x,L] to [0,Tr,f′ (x)]

with 0 ≤ Tr,f′ (x) := ∫ L
x

ds
f′(s) ≤ Tf′ the exit time on the right starting from x. Denote t 7→ Yx (t ) its

inverse from [0,Tr,f′ (x)] to [x,L]. Deriving with respect to t the equation Jx (Yx (t )) = t , we see that

∂t Yx (t ) = f′(Yx (t )) while deriving with respect to x gives ∂x Yx (t ) = f′(Yx (t ))
f′(x) . Moreover, we have

Yx (0) = x and Yx (Tr,f′ (x)) = L.
We define for x ∈ [0,L] and t ≥ 0,

u(t , x) = e
∫ t

0 q(Yx (τ))dτu0(Yx (t )), (t , x) ∈R+× [0,L] and 0 ≤ t ≤ Tr,f′ (x),
u(t , x) = 0, (t , x) ∈R+× [0,L] and t > Tr,f′ (x).

Note first that it is well defined since 0 ≤ τ ≤ t ≤ Tr,f′ (x) implies that Yx (τ) and Yx (t ) are well
defined. We also notice that if u0 is C 1 with u0(L) = 0, then u is solution of (37) in the classical
sense with the appropriate boundary conditions u(t ,L) = 0.

We first check that u is continuous and it is therefore sufficient to verify the equation in each
zone. We compute for 0 ≤ t ≤ Tr,f′ (x),

∂t u(t , x) = q(Yx (t ))e
∫ t

0 q(Yx (τ))dτu0(Yx (t ))+e
∫ t

0 q(Yx (τ))dτf′(Yx (t ))u′
0(Yx (t ))

∂x u(t , x) =
(∫ t

0

f′(Yx (τ))

f′(x)
q ′(Yx (τ))dτ

)
e

∫ t
0 q(Yx (τ))dτu0(Yx (t ))+e

∫ t
0 q(Yx (τ))dτ f

′(Yx (t ))

f′(x)
u′

0(Yx (t ))

We conclude by remarking that
∫ t

0 f
′(Yx (τ))q ′(Yx (τ))dτ = ∫ t

0
∂
∂t

(
q(Yx (τ))

)
dτ = q(Yx (t )) − q(x).

Note that the computations only make sense if u and q are regular enough, but we obtain the
same result in general by approximation. For the boundary conditions, Tr,f′ (L) = 0 so that we
always have t > Tr,f′ (L) = 0 and u(t ,L) = 0. Also, the assumption u0(L) = 0 ensures that at time
t = Tr,f′ (x), Yx (Tr,f′ (x)) = L, so that u(Tr,f′ (x), x) = 0 and the function u is continuous. The formula
extends to L2 functions and therefore defines the flow map described in Lemma 18.

Now, we have to check if the defined formula fulfills or not the observability estimate. For x = 0,
we have Tr,f′ (0) = Tf′ and we have seen that Y0(t ) is an increasing bijection from [0,Tf′ ] to [0,L].
We can then compute for 0 ≤ T ≤ Tf′ .∫ T

0
|u(t ,0)|2dt ≈

∫ T

0
|u0(Y0(t ))|2dt =

∫ Y0(T )

0
|u0(y)|2 dy

f′(y)
≈

∫ Y0(T )

0
|u0(y)|2dy,

where we have made the substitution y = Y0(t ), that is t = J0(y). The symbol a ≈ b means that
there exists one constant C depending on T , f, L and q so that C−1a ≤ b ≤C a. For T ∈ [0,Tr,f′ (x)]

∂x Yx (T ) = f′(Yx (T ))
f′(x) > 0, so that x 7→ φT (x) := Yx (T ) is a diffeomorphism from [0, xT ] to [Y0(T ),L]

where xT ∈ [0,L] is so that YxT (T ) = L (which implies Tr,f′ (xT ) = T since Yx (Tr,f′ (x)) = L by
definition).

In particular, for 0 ≤ T ≤ Tf′ , we have 0 ≤ T ≤ Tr,f′ (x) ⇔ xT ≤ x ≤ L and therefore

‖u(T )‖2
L2(0,L) =

∫ L

0
|u(T, x)|2dx ≈

∫ L

xT

|u0(Yx (T ))|2dx ≈
∫ L

Y0(T )
|u0(y)|2dy.

In particular, the observability inequality holds if and only if Y0(T ) = L, that is T = Tf′ . For T ≥ Tf′ ,
we have u(T ) = 0 so that the observability is trivial. This ends the result in the case f′(0) > 0 and
f′(L) > 0. For the other case f′(0) < 0 and f′(L) < 0, the change of variable x ↔ L − x reduces to the
same case as before. The only difference now is that we want the solution to be zero instead of
the observability. The condition is actually the same. �
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3. Proofs of the main results

3.1. Localization of Schrödinger eigenfunctions in a one dimensional well

In this section, we recall results proved in the companion paper [40] in which we study localiza-
tion properties for eigenfunctions of the Schrödinger operator Pε defined in (28). We now state
these two results, which take the form of uniform (in terms of both ε and E) upper and lower
bounds on eigenfunctions.

Theorem 21 (Upper bounds for eigenfunctions: [40, Theorem 1.3]). Assume that V ∈C 1([0,L])
(f ∈ C 2([0,L])), and that Item (2) in Assumption 2 is satisfied. Then, for all δ > 0 there exists
ε0 = ε0(δ) ∈ (0,1] such that for all E ,ψ solution to

Pεψ= Eψ, ψ ∈ H 2(0,L)∩H 1
0 (0,L),

∥∥ψ∥∥
L2([0,L]) = 1, (38)

we have for all ε< ε0 ∥∥∥∥e
dA,E
ε

εp|E |+1
ψ′

∥∥∥∥
L2

+
∥∥∥∥e

dA,E
ε ψ

∥∥∥∥
L2

≤ e
δ
ε . (39)

εp|E |+1
|ψ′(0)| ≤ e−

dA,E (0)−δ
ε ,

εp|E |+1
|ψ′(L)| ≤ e−

dA,E (L)−δ
ε . (40)

Only continuity of the potential V (i.e. f ∈C 1([0,L])) is assumed in [40], but this refinement is
not relevant here since V ∈C 1([0,L]) (i.e. f ∈C 2([0,L])) is needed to use Theorem 22.

Theorem 22 (Lower bounds for eigenfunctions: [40, Theorem 1.4]). Assume that V ∈C 1([0,L])
(f ∈C 2([0,L])), and that Item (2) in Assumption 2 is satisfied. Then, for any y0 ∈ [0,L],ν> 0 and any
δ> 0, there is ε0 > 0 such that for all E ,ψ satisfying (38), we have for all ε< ε0,∥∥ψ∥∥

L2(U ) ≥ e−
1
ε (dA,E (U )+δ), dA,E (U ) = inf

x∈U
dA,E (x), U = (y0 −ν,y0 +ν)∩ [0,L],

εp|E |+1
|ψ′(0)| ≥ e−

1
ε (dA,E (0)+δ),

εp|E |+1
|ψ′(L)| ≥ e−

1
ε (dA,E (L)+δ).

(41)

Note that this improved lower bound is as precise as the upper bound (39) (except for the δ
loss) and thus essentially optimal. Uniformity with respect to the energy level E is necessary for
the proof of the cost of controllability in Theorem 7. The latter indeed involves all the spectrum
of Pε since we are studying all solutions.

Remark that Theorems 22 and 21 are counterparts one to the other. They state essentially that,
in this very particular one dimensional setting, an eigenfunction ψ associated to the energy E

satisfies |ψ(x)| ∼ e−
dA,E (x)

ε (and that this is uniform in E , x,ε). The symbol ∼ is slightly abusive in

our setting since we only have equivalence up to multiplicative terms of the form e
δ
ε , which can

be very large. Yet, in the present context where only exponentially small quantities are compared,
this kind of estimates is sufficient for our purposes and provides with the correct asymptotics.
See e.g. [40, end of Section 1] for a discussion on possible refinements.

3.2. Proof of Theorem 5 from Theorems 22 and 21

In this section, we give a proof of Theorem 5. The latter relies on consequences of Theorems 22
and 21 that are not using the uniformity in E and could be deduced from softer versions of these
two results.

Proposition 23. Under the assumptions of Theorem 22, we have∥∥∥e−
f

2εψε

∥∥∥
L2([0,L])

≥ e−
1
ε (min[0,L] WE+δ).
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Proof of Proposition 23 from Theorem 22. We take xm ∈ [0,L] such that WE (xm) = min[0,L] WE .
Then, by continuity, there is ρ > 0 such that for all x ∈ (xm −ρ, xm +ρ), we have f(x) < f(xm)+δ
and dA,E (x) < dA,E (xm)+δ. We then estimate∥∥∥e−

f
2εψε

∥∥∥
L2([0,L])

≥
∥∥∥e−

f
2εψε

∥∥∥
L2(xm−ρ,xm+ρ)

≥ e−
1

2ε (f(xm )+δ) ∥∥ψε

∥∥
L2(xm−ρ,xm+ρ)

≥ e−
1

2ε (f(xm )+δ)e−
1
ε (dA,E ((xm−ρ,xm+ρ))+δ),

after having used Theorem 22 in the last inequality for ε< ε0(δ), and with dA,E ((xm −ρ, xm +ρ)) =
infx∈(xm−ρ,xm+ρ) dA,E (x) < dA,E (xm)+δ. As a consequence, we obtain∥∥∥e−

f
2εψε

∥∥∥
L2([0,L])

≥ e−
1
ε ( f2 (xm )+ δ

2 )e−
1
ε (dA,E (xm )+2δ)

≥ e−
1
ε (WE (xm )+3δ) = e−

1
ε (min[0,L] WE+3δ),

where we have used the definition of xm in the last inequality. �

We conclude this section with a proof of Theorem 5, which relies on both Theorems 22 (under
the statement of Proposition 23) and 21.

Proof of Theorem 5 from Theorem 21 and Proposition 23. We follow the proof of [38, Theo-
rem 3.1]. We first use Lemma 16 and Lemma 15 to see that we have (33) for all solutions to (32),
with C0 = C0(T,ε) = C0(T,ε). Second, given E ∈ V ([0,L]) and ε ∈ (0,1], there is Eε = E +O

(
ε2/3

)
and ψε ∈ H 2([0,L])∩ H 1

0 ([0,L]) such that Pεψε = Eεψε (see Lemma 24 below). We then test (33)
with ζ(t ) = e−tEε/εψε, solution to (32) with ζ(0, x) =ψε(x). This reads

e−
2T Eε
ε

∥∥∥e−
f

2εψε

∥∥∥2

L2(0,L)
=

∥∥∥e−
f

2ε ζ(T )
∥∥∥2

L2(0,L)

≤C 2
0

∫ T

0

∣∣∣e− f(0)
2ε ε∂xζ(t ,0)

∣∣∣2
dt ≤C 2

0 Te−
f(0)
ε

∣∣εψ′
ε(0)

∣∣2 .
(42)

Using Proposition 23, we have e−
2T Eε
ε

∥∥e−
f

2εψε

∥∥2
L2([0,L]) ≥ e−

2T (E+δ)
ε e−

2
ε (min[0,L] WE+δ) for all 0 < ε <

ε0(δ) and using (40) in Theorem 21 we have ε|ψ′
ε(0)| ≤ e−

dA,E (0)−δ
ε (recall that E is fixed). Combining

together with (42), these two inequalities yield, for 0 < ε< ε0(δ,T ),

e−
2T (E+δ)

ε e−
2
ε (min[0,L] WE+δ) ≤C 2

0 e−
f(0)
ε e−2

dA,E (0)−δ
ε =C 2

0 e−2
WE (0)−δ

ε ,

which is the first statement of the theorem when recalling C0 = C0(T,ε) and changing the
notation for δ. �

In the course of the proof, we have used the following Lemma, taken from [38], proving the
existence of eigenvalues at any allowed energy level. It can also be deduced from the much more
precise Theorem 35 adapted from [1].

Lemma 24 ([38, Lemma 3.2]). Assume V ∈ W 1,∞([0,L]) and qf ∈ L∞([0,L]) are both real valued.
For all E ∈ V ([0,L]) = [min[0,L] V ,max[0,L] V ] and all ε ∈ (0,1], there is Eε = E + O

(
ε2/3

)
and

ψε ∈ H 2([0,L])∩H 1
0 ([0,L]) such that Pεψε = Eεψε.

3.3. Coron–Guerrero type lower bound: proof of Theorem 6

Proof of Theorem 6. Recall the simpler way of writting the control problem (1), the observation
problem (25) and the duality statement (26). Let (ϕεk )k∈N denote the sequence of eigenfunctions
of the selfadjoint operator Pε, associated with eigenvalues λεk sorted in increasing order.

Now, we fix E ∈ V ([0,L]). As a consequence of [38, Lemma 3.2], there exists a sequence of
eigenvalues Eε of Pε with Eε→ E as ε→ 0. That is to say, there isψε ∈ H 2(0,L)∩H 1

0 (0,L) such that
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Pεψε = Eεψε. Denote n = n(E ,ε) ∈N the index (in the non-decreasing sequence of eigenvalues of
Pε) such that λεn = Eε and ψε =ϕεn . We choose for initial datum for (1) the function

y0 = yn = e
f

2εψε = e
f

2εϕεn .

We denote by hn any control driving the initial datum yn to zero and produce lower bounds for
its norm. According to the Agmon estimate (39), we have∥∥yn

∥∥
L2(0,L) =

∥∥∥e
f

2εψε

∥∥∥
L2(0,L)

=
∥∥∥∥e

1
ε ( f2 −dA,E )e

dA,E
ε ψε

∥∥∥∥
L2(0,L)

≤ e
DE +δ
ε , (43)

with

DE = sup
[0,L]

W̃E , W̃E (x) := f

2
(x)−dA,E (x). (44)

We remark that the function (t , x) 7→ e−
λε

k
t

ε ϕεk (x) is a solution of (32). As a consequence

of Lemma 16, the function uk (t , x) = e−
f(x)
2ε ϕεk (x)e−

λε
k
ε t is solution to (30), that is of (25) with

u0(x) = e−
f(x)
2ε ϕεk (x). Since we assume hn is a null-control, we have yn(T ) = 0 and the duality

formula (26) taken for u = uk implies

(uk (T ), yn)L2(0,L) +
∫ T

0
ε∂x uk (t ,0)hn(T − t )dt = 0. (45)

Since uk (t ,0) = 0 (Dirichlet boundary conditions), we have ∂x uk (t ,0) = e−
f(0)
2ε e−

λε
k

t

ε (ϕεk )′(0). More-
over, we have

(uk (T ), yn)L2(0,L) = (e−
f(x)
2ε ϕεk (x)e−

λε
k
ε T ,e

f
2εϕεn)L2(0,L) = e−

λε
k
ε Tδk,n .

These two identities together with (45) (and the change T − t ← t in the integral) imply∫ T

0
hn(t )e

λε
k
ε t dt =− e

f(0)
2ε

ε(ϕεk )′(0)
δk,n , for all k ∈N, (46)

We next set for n ∈N
vn(s) :=F (hn1[0,T ])(s) =

∫ T

0
hn(t )e−i st dt , s ∈C,

which defines an entire function vn :C→C. Identity (46) reformulates as

vn

(
i
λεk
ε

)
=− e

f(0)
2ε

ε(ϕεn)′(0)
δk,n .

Moreover, writing f (s)+ = max{ f (s),0}, we have for all T ≥ 0

|vn(s)| ≤ eT Im(s)+
∫ T

0
|hn(t )|dt ≤ T 1/2eT Im(s)+‖hn‖L2(0,T ), for all s ∈C.

We now introduce the parameter B ≥ 0. We define the entire function

gn :C→C, gn(s) := vn

(
s − i B

ε

)
.

From the above properties of vn we obtain

gn(ibk ) =− e
f(0)
2ε

ε(ϕεn)′(0)
δk,n , bk =λεk +B , (47)

together with the general bound

|gn(s)| ≤ T 1/2e
T
ε (Im(s)−B)+‖hn‖L2(0,T ), for all s ∈C. (48)

Now, we want to apply the complex analysis Lemma 25 below with the following parameters:
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• x := E +B > 0, and xε :=λεn +B → x as ε→ 0+,
• g := gn ,
• σ= limsupy→+∞

log |gn (i y)|
y ≤ T

ε according to (48),

• log |g (τ)| ≤CR := log(T 1/2‖hn‖L2(0,T )) for all τ ∈R, according to (48) (using that B ≥ 0),
• bk = λεk +B and bk := bk for k < n and bk := bk+1 for k ≥ n (that is to say {bk ,k ∈ N} =

{bk ,k ∈ N,k 6= n}). According to (47) applied with k 6= n, the sequence (bk )k∈N satisfies
g (i bk ) = 0. Moreover, the assumption (52) is satisfied with Z (s) :=Φ−1(πs)+B according
to estimate (81) in Theorem 35. Note that this uses q = f′′

2 , that is to say qf = 0. We also
recall that the functionΦ is defined in (6).

Application of Lemma 25 implies

log
∣∣gn(i (λεn +B))

∣∣≤ 1

ε
(−TE ,B +δ)+ T

ε
(E +B)+ log

(
T 1/2‖hn‖L2(0,T )

)
,

where we have set

TE ,B := I (E +B) = 1

π

∫ +∞

0
log

∣∣∣∣Φ−1(y)+E +2B

Φ−1(y)−E

∣∣∣∣dy = 1

π

∫ +∞

V (x0)
log

∣∣∣∣ x +E +2B

x −E

∣∣∣∣Φ′(x)dx,

and, in the last expression used the definition of Φ and the properties of V to write Φ−1(0) =
V (x0) = minV . According to (47) applied with k = n, we also have

log

∣∣∣∣∣ e
f(0)
2ε

ε(ϕεn)′(0)

∣∣∣∣∣= log
∣∣gn(ibn)

∣∣= log
∣∣gn(i (λεn +B))

∣∣.
Combining these two lines, we obtain,

log

∣∣∣∣∣ e
f(0)
2ε

ε(ϕεn)′(0)

∣∣∣∣∣≤ 1

ε

(−TE ,B +T (E +B)+δ)+ log
(
T 1/2‖hn‖L2(0,T )

)
. (49)

Moreover, thanks to the Agmon estimate (40), we have, for ε ∈ (0,ε0), |ε(ϕεn)′(0)| ≤ e
−dA,E (0)+δ

ε . As a
consequence, we have

log

∣∣∣∣∣ e
f(0)
2ε

ε(ϕεn)′(0)

∣∣∣∣∣≥
f(0)

2 +dA,E (0)−δ
ε

= WE (0)−δ
ε

. (50)

Combining (50) together with (49), we finally obtain

log(T 1/2‖hn‖L2(0,T )) ≥
1

ε

(
WE (0)+TE ,B −T (E +B)−2δ

)
. (51)

Finally, assuming observability/controllability, Lemma 15 implies that the control cost (observ-
ability constant) necessarily satisfies

C0(T,ε) ≥ ‖hn‖L2(0,T )∥∥yn
∥∥

L2(0,L)

, that is, logC0(T,ε) ≥ log‖hn‖L2(0,T ) − log
∥∥yn

∥∥
L2(0,L) .

Recalling (43)–(44) together with (51), we have now obtained, for ε ∈ (0,ε0) small enough

logC0(T,ε) ≥ 1

ε

(
WE (0)+TE ,B −T (E +B)−3δ−DE −δ)

,

which concludes the proof of the theorem. �

The proof of the above result relied on the following complex analysis lemma.

Lemma 25. Let Z : R+ 7→ R+ be a continuous strictly increasing function such that Z−1 is locally
Lipschitz continuous on [Z (0),+∞) and 1

Z ∈ L1([1,+∞[), and set

I :R→R, I (x) :=
∫ +∞

0
log

∣∣∣∣ Z (y)+x

Z (y)−x

∣∣∣∣dy,
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(which, under the above assumptions, is well-defined and continuous on R+). Let R : R+ → R+ be
an increasing function tending to zero at zero. Then, for any x > 0, δ > 0 D > 0, and any family
(xε)ε∈(0,ε0) such that xε→ x as ε→ 0+, there exists ε0 so that for any holomorphic function g on C+

satisfying

(1) g is of exponential type on C+; we write σ := limsupy→+∞
log |g (i y)|

y <+∞,
(2) τ 7→ log |g (τ)| is bounded above on R+; we write CR := supτ∈R log |g (τ)| < +∞,
(3) g (i bk ) = 0 for any k ∈N∗ where bk = bk (ε) > 0 is a sequence such that

Z (εk −Dε)−R(ε) ≤ bk ≤ Z (εk +Dε)+R(ε), for all k ≥ D,ε ∈ (0,ε0), (52)

we have

log |g (i xε)| ≤ −I (x)+δ
ε

+σxε+CR, for all ε ∈ (0,ε0). (53)

We first prove the following lemma, proving in particular that I (x) is well-defined and contin-
uous.

Lemma 26. Given Z : R+ 7→ R+ a continuous strictly increasing function such that Z−1 is locally
Lipschitz continuous on R+ and 1

Z ∈ L1([1,+∞[), the functions

F (a,b,c,d) =
∫ d

c
log

∣∣∣∣ Z (y)+b

Z (y)−a

∣∣∣∣dy, F∞(a,b,c) =
∫ +∞

c
log

∣∣∣∣ Z (y)+b

Z (y)−a

∣∣∣∣dy,

are well-defined and continuous in (a,b,c,d) ∈R4, resp. (a,b,c) ∈R3.

Proof. Concerning first the function F , it suffices by linearity to check that
∫ d

c log
∣∣Z (y)−a

∣∣dy is
well-defined and continuous in (a,c,d). The change of variable formula for Lipschitz map (Z−1

is locally Lipschitz continuous) yields

I (a,c,d) :=
∫ d

c
log

∣∣Z (y)−a
∣∣dy =

∫ Z (d)

Z (c)
log |x −a| (Z−1)′(x)dx,

and that the left hand-side is well-defined/continuous if and only if so is the right hand-side.
But the right hand-side is well defined since (Z−1)′ is bounded (a.e.) on every compact interval
and log |x| is integrable on compact sets. Let us now prove by hand that the right hand-side is
continuous. Fix (a,c,d) ∈R3 and let ε= (ε1,ε2,ε3) → 0. We write

|I (a +ε1,c +ε2,d +ε3)−I (a,c,d)|

=
∣∣∣∣∫ Z (d+ε3)

Z (c+ε2)
log |x −a −ε1| (Z−1)′(x)dx −

∫ Z (d)

Z (c)
log |x −a| (Z−1)′(x)dx

∣∣∣∣
≤ I1(ε)+ I2(ε)+ I3(ε) (54)

with

I1(ε) =
∣∣∣∣∫ Z (c+ε2)

Z (c)
log |x −a| (Z−1)′(x)dx

∣∣∣∣ ,

I2(ε) =
∣∣∣∣∫ Z (d+ε3)

Z (d)
log |x −a| (Z−1)′(x)dx

∣∣∣∣
I3(ε) =

∣∣∣∣∫ Z (c+ε2)

Z (d+ε3)
log

∣∣∣ x −a −ε1

x −a

∣∣∣ (Z−1)′(x)dx

∣∣∣∣ .

We have I1(ε)+ I2(ε) → 0 as ε→ 0 by dominated convergence, and it only remains to study I3(ε).
Using that (Z−1)′ ∈ L∞

loc(R) and choosing D1,D2 ∈ R such that a, Z (d +ε3), Z (c +ε2) ∈ (D1,D2) for
all ε sufficiently small, we have

I3(ε) ≤C
∫ D2

D1

∣∣∣log
∣∣∣ x −a −ε1

x −a

∣∣∣∣∣∣dx =C
∫ a

D1

∣∣∣log
∣∣∣1− ε1

x −a

∣∣∣∣∣∣dx +C
∫ D2

a

∣∣∣log
∣∣∣1− ε1

x −a

∣∣∣∣∣∣dx.
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Assuming that ε1 ≥ 0 (the case ε1 ≤ 0 is treated similarly) and changing variables in these two
integrals implies

I3(ε) ≤Cε1

∫ ε1
D1−a

−∞

∣∣log |1− s|∣∣ ds

s2 +Cε1

∫ +∞
ε1

D2−a

∣∣log |1− s|∣∣ ds

s2 . (55)

Then, we write, for ε1 small

ε1

∫ +∞
ε1

D2−a

∣∣log |1− s|∣∣ ds

s2 = ε1

∫ 1/2

ε1
D2−a

∣∣log |1− s|∣∣ ds

s2 +ε1

∫ +∞

1/2

∣∣log |1− s|∣∣ ds

s2 .

The function 1
s2

∣∣log |1− s|∣∣ is integrable on [1/2,+∞) and hence the second term converges to 0.
For the second term, we write | log |1− s|| ≤ K |s| (with K = 2log2) on [0,1/2] and thus

ε1

∫ 1/2

ε1
D2−a

∣∣log |1− s|∣∣ ds

s2 ≤ ε1

∫ 1/2

ε1
D2−a

K s
ds

s2 = K ε1 log

(
D2 −a

2ε1

)
→ 0, as ε→ 0.

This implies that the second term in the right hand-side of (55) converges to zero. The first term is
treated similarly, and we deduce that I3(ε) → 0 as ε→ 0. In view of (54), this implies that I (a,c,d)
is continuous on R3 and thus F is continuous on R4.

We now turn to the study of F∞, and remark that it suffices now to prove that F∞(a,b,0) is
well-defined and continuous on R2. We have from the assumptions that Z (y) →+∞ as y →+∞
and thus∣∣∣∣log

∣∣∣∣ Z (y)+b

Z (y)−a

∣∣∣∣∣∣∣∣= ∣∣∣∣log

∣∣∣∣1+ a +b

Z (y)−a

∣∣∣∣∣∣∣∣= ∣∣∣∣log

(
1+ a +b

Z (y)−a

)∣∣∣∣≤ 2|a +b|
Z (y)−|a| , as y →+∞.

Since 1
Z is decreasing and in L1([1,+∞)), we deduce that y 7→ log

∣∣∣ Z (y)+b
Z (y)−a

∣∣∣ is integrable near +∞
(integrability on compacts sets has already been proved for F ). Moreover, its integral near infinity
is continuous in (a,b) by dominated convergence. This concludes the proof of the lemma. �

We now recall a classical representation theorem for the modulus of entire functions of
exponential type, which will be crucial in the proof of Lemma 25 below.

Theorem 27 ([36, Theorem p. 56]). Let f (z) be entire and of exponential type and suppose that∫ +∞

−∞
log+ | f (x)|

1+x2 dx <+∞,

where log+(t ) = max{0, log(t )}. Denote by {λn}, the set of zeros of f (z) in Im(z) > 0 (repetitions
according to multiplicities), and put

A = limsup
y→+∞

log | f (i y)|
y

Then, for Im(z) > 0,

log | f (z)| = A Im z +
+∞∑
n=1

log

∣∣∣∣1− z/λn

1− z/λn

∣∣∣∣+ 1

π

∫ +∞

−∞
Im z

|z −τ|2 log | f (τ)|dτ.

Proof of Lemma 25. We now prove the main statement of the lemma. We apply Theorem 27 at
the point i xε. Given that xε→ x, we may assume that xε > 0, and have

log |g (i xε)| =
+∞∑
`=1

log

∣∣∣∣ i xε−a`
i xε−a`

∣∣∣∣+σxε+ xε
π

∫ +∞

−∞
log |g (τ)|
|τ− i xε|2

dτ, (56)

where (a`)`∈N is the sequence of zeros of g in C+ := {z ∈ C, Im(z) > 0} (repeated according to
multiplicities).

We first estimate the third term in the right handside of (56) using Assumption 2, as

xε
π

∫ +∞

−∞
log |g (τ)|
|τ− i xε|2

dτ≤CR
xε
π

∫ +∞

−∞
1

τ2 +x2
ε

dτ= CR
π

∫ +∞

−∞
1

t 2 +1
dτ=CR. (57)
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The estimate of the first term in the right handside of (56) is more complicated. First, we notice

that since i xε and a` are inC+, we have |i xε−a`| ≤ |i xε−a`| and thus log
∣∣∣ i xε−a`

i xε−a`

∣∣∣≤ 0 for all ` ∈N.
Therefore, since {i bk ,k ∈N} ⊂ {a`,` ∈N}, we deduce∑

`∈N
log

∣∣∣∣ i xε−a`
i xε−a`

∣∣∣∣≤ ∑
k∈N

log

∣∣∣∣ xε−bk

xε+bk

∣∣∣∣ . (58)

We can also assume without loss of generality that xε 6= bk for all k ∈ N (otherwise, the left
handside in (53) is −∞ and (53) holds true), and that the sequence (bk )k∈N ∈ (0,∞)N is an
increasing sequence. Denote then N = N (ε) the integer such that

· · · ≤ bN−1 ≤ bN < xε < bN+1 ≤ bN+2 ≤ ·· · . (59)

Notice that since x > 0, we have N (ε) →+∞ as ε→ 0 (see (66) below for a more precise estimate).
We are thus left to study∑

k∈N
log

∣∣∣∣ xε−bk

xε+bk

∣∣∣∣= S≤+S>, with S≤ := ∑
k≤N

log

(
xε−bk

xε+bk

)
, S> := ∑

k>N
log

(
bk −xε
xε+bk

)
. (60)

Using again that all terms in the sum are nonpositive, together with (52) and the fact that the
functions s 7→ xε−s

xε+s (resp. s 7→ s−xε
s+xε

= 1−2 xε
s+xε

) are decreasing (resp. increasing if xε > 0), we obtain
respectively

S≤ ≤ ∑
D+1≤k≤N

log

(
xε−bk

xε+bk

)
≤ ∑

D+1≤k≤N
log

(
xε−Z (εk −Dε)+R(ε)

xε+Z (εk −Dε)−R(ε)

)
, (61)

S> ≤ ∑
k>N

log

(
bk −xε
xε+bk

)
≤ ∑

k>N
log

(
Z (εk +Dε)+R(ε)−xε
xε+Z (εk +Dε)+R(ε)

)
. (62)

Note also that bk < xε implies Z (εk −Dε)−R(ε) ≤ xε and xε−R(ε) > 0 (for ε small enough), so
the first expression makes sense (the same applies for the other term). We may rewrite these two
inequalities as

S≤ ≤ ∑
D+1≤k≤N

f≤(k), S> ≤ ∑
k>N

f>(k),

with

f≤(s) = log

(
xε−Z (εs −Dε)+R(ε)

xε+Z (εs −Dε)−R(ε)

)
, f>(s) = log

(
Z (εs +Dε)+R(ε)−xε
xε+Z (εs +Dε)+R(ε)

)
.

Note then that the function f≤ is negative decreasing, whereas f> is negative increasing to zero.
As a consequence, we have

S≤ ≤
N∑

k=D+1
f≤(k) ≤

∫ N

D
f≤(s)ds =

∫ N−D

0
log

(
xε−Z (εs)+R(ε)

xε+Z (εs)−R(ε)

)
ds

= 1

ε

∫ ε(N−D)

0
log

∣∣∣∣ xε−Z (y)+R(ε)

xε+Z (y)−R(ε)

∣∣∣∣dy

=−1

ε
I≤N ,ε, with I≤N ,ε :=

∫ ε(N−D)

0
log

∣∣∣∣ xε+Z (y)−R(ε)

xε−Z (y)+R(ε)

∣∣∣∣dy. (63)

Similarly, we have

S> ≤
∞∑

k=N+1
f>(k) ≤

∫ +∞

N+1
f>(s)ds =

∫ +∞

N+1+D
log

(
Z (εs)+R(ε)−xε
xε+Z (εs)+R(ε)

)
ds

= 1

ε

∫ +∞

ε(N+1+D)
log

∣∣∣∣ Z (y)+R(ε)−xε
xε+Z (y)+R(ε)

∣∣∣∣dy

=−1

ε
I>N ,ε, with I>N ,ε :=

∫ +∞

ε(N+1+D)
log

∣∣∣∣ xε+Z (y)+R(ε)

Z (y)+R(ε)−xε

∣∣∣∣dy. (64)
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Combining (56)-(57)-(58)-(60)-(61)-(62)-(63)-(64), we have obtained so far that

log |g (i xε)| ≤σxε+CR− 1

ε
(I≤N ,ε+ I>N ,ε), (65)

and it only remains to study I≤N ,ε, I>N ,ε.
Note that (52) applied to N and N +1, and the definition of N in (59) yield

Z (ε(N −D))−R(ε) ≤ bN < xε < bN+1 ≤ Z (ε(N +1+D))+R(ε).

In particular, by continuity of Z , this implies that Z (εN ) = Z (εN (ε)) converges to x as ε→ 0+, and
hence

εN = εN (ε) → Z−1(x), as ε→ 0+. (66)

Next, we define the function hε :R+ →R by

hε(y) :=


log

∣∣∣ xε+Z (y)−R(ε)
xε−Z (y)+R(ε)

∣∣∣= log
(

xε+Z (y)−R(ε)
xε−Z (y)+R(ε)

)
for Z (y) ≤ xε−R(ε),

log
∣∣∣ xε+Z (y)+R(ε)

xε−Z (y)−R(ε)

∣∣∣= log
(

xε+Z (y)+R(ε)
−xε+Z (y)+R(ε)

)
for Z (y) ≥ xε+R(ε),

0 otherwise.

Recalling the definition of I≤N ,ε, I>N ,ε in (63)-(64), we now have∣∣∣∣I≤N ,ε+ I>N ,ε−
∫ +∞

0
hε(y)dy

∣∣∣∣
≤

∣∣∣∣∣
∫ Z−1(xε−R(ε))

ε(N−D)
log

∣∣∣∣ xε+Z (y)−R(ε)

xε−Z (y)+R(ε)

∣∣∣∣dy

∣∣∣∣∣+
∣∣∣∣∫ ε(N+1+D)

Z−1(xε+R(ε))
log

∣∣∣∣ xε+Z (y)+R(ε)

xε−Z (y)−R(ε)

∣∣∣∣∣∣∣∣ , (67)

and now examine the convergence of the different terms involved. We shall prove that∫ +∞

0
hε(y)dy → I (x), as ε→ 0+, (68)

and that the right handside of (67) converges to zero. This, together with (65) will then yield (53),
concluding the proof of the lemma.

Let us now prove (68) by splitting the integral into the two intervals:∫ +∞

0
hε(y)dy =

∫ Z−1(x−R(ε))

0
log

∣∣∣∣ xε+Z (y)−R(ε)

xε−Z (y)+R(ε)

∣∣∣∣dy +
∫ +∞

Z−1(x+R(ε))
log

∣∣∣∣ xε+Z (y)−R(ε)

xε−Z (y)+R(ε)

∣∣∣∣dy.

Lemma 26 implies the following convergence of the two integrals as ε→ 0+:∫ +∞

0
hε(y)dy →

∫ Z−1(x)

0
log

∣∣∣∣ x +Z (y)

x −Z (y)

∣∣∣∣dy +
∫ +∞

Z−1(x)
log

∣∣∣∣ x +Z (y)

x −Z (y)

∣∣∣∣dy = I (x),

which is (68).
We finally consider the right handside of (67). According to (66), both endpoints of these two

intervals converge to Z−1(x). Using again Lemma 26, this implies that the right handside of (67)
converges to zero, which concludes the proof of the lemma. �

3.4. Upper bound: Proof of Theorem 7

In this section, we give a proof of Theorem 7. In particular, we assume that f ∈ C∞([0,L]), that
Items (1)–(4) in Assumption 2 are satisfied, and that q = f′′

2 . These assumptions are made so that
to apply the spectral results of Theorem (35), deduced from [1].

According to Definition 1 and Lemma 17, null controllability of (1) in time T is equivalent
to having for any y0 ∈ L2(0,L), the existence of h ∈ L2(0,T ) such the solution v to (34) satisfies
v(T, ·) = 0.
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With the duality (35) this can equivalently be formulated as: having for any y0 ∈ L2(0,L), the
existence of h ∈ L2(0,T ) such that for all ζ∗ ∈ L2(0,L) we have

0 = (ζ(T ), v(0))L2(0,L) +
∫ T

0
ε∂xζ(t ,0)v(T − t ,0)dt = 0, or equivalently,

0 =
∫ L

0
e−

f(x)
2ε y0(x)

(
e−

T
ε Pεζ∗

)
(x)dx +ε

∫ T

0
e−

f(0)
2ε h(T − t )∂x (e−

t
εPεζ∗)|x=0dt ,

(69)

where ζ solves (32) with ζ(0, x) = ζ∗(x) = e
f(x)
2ε u0(x) and v solves (34).

With domain H 2∩H 1
0 (i.e. Dirichlet boundary conditions), the operator Pε is selfadjoint on L2,

with compact resolvent. We introduce a Hilbert basis (ϕε
`

)`∈N of L2(0,L) such that

Pεϕ
ε
` =λε`ϕε`, with ϕε`(0) =ϕε`(L) = 0, λε` ≤λε`+1,

as in Theorem 35.
We will need the following intermediate result, which we state on a time interval (0,τ) instead

of (0,T ) for in the proof of Theorem 7, this control will be only used in part of the whole time
interval (0,T ).

Proposition 28. Under the assumptions of Theorem 7, fix δ> 0. Then, there exists ε0 and C > 0 so
that for any 0 < ε< ε0, 0 < τ< δ−1 and v0 ∈ L2(0,L), there exists a control h ∈ L2(0,τ) to zero of

(ε∂t +Pε)v = 0, (t , x) ∈ (0,τ)× (0,L),

v(t ,0) = e−
f(0)
2ε h(t ), v(t ,L) = 0, t ∈ (0,τ),

v(0, x) = v0(x), x ∈ (0,L).

with the control cost

‖h‖2
L2(0,τ) ≤

C

ε6τ3 e
4T 2

1 +δ
ετ + f(0)

ε
∑

n∈N

λεn
|(ϕεn)′(0)|2

∣∣∣∣∫ L

0
v0(x)ϕεn(x)dx

∣∣∣∣2

. (70)

The proof consists in solving the moment problem obtained by testing (69) with ζ∗ ranging in
a basis of eigenfunctions of Pε. It also relies on properties on Pε described in Theorem 35 (recall
that our assumptions imply qf = 0).

Proof of Proposition 28. According to (69) controlling v0 to zero in time τ is equivalent to having
existence of z̃ = h(τ−·) ∈ L2(0,τ) such that for all ` ∈N,

0 = e−
τ
ελ

ε
`

∫ L

0
v0(x)ϕε`(x)dx +εe−

f(0)
2ε (ϕε`)′(0)

∫ τ

0
z̃(t )e−

t
ελ

ε
`dt .

The idea of the moment method for finding such z̃(t ) solving∫ τ

0
z̃(t )e−

t
ελ

ε
`dt =αε`, with αε` =− e−

τ
ελ

ε
`

εe−
f(0)
2ε (ϕε

`
)′(0)

∫ L

0
v0(x)ϕε`(x)dx, (71)

is to construct it as a sum of biorthogonal functions (Ψε
j ) j∈N ∈ L2(0,τ)N, namely

z̃(t ) = ∑
j∈N

αεjΨ
ε
j (t ), with

∫ τ

0
Ψε

j (t )e−
λε
`
ε t dt = δ j`. (72)

Denoting z(t ) := ε−1 z̃(t/ε), ψε
j (t ) = ε−1Ψε

j (t/ε) and βε
`

:= ε−1
√
λε
`

, Equation (72) is equivalent to

z(t ) = ∑
j∈N

αεjψ
ε
j (t ), with

∫ ετ

0
ψε

j (s)e−(βε
`

)2s ds = δ j`. (73)
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For δ> 0, Theorem 35 yields existence of ε0,γ> 0 and N ∈N (all depending on δ) such that for all
0 < ε≤ ε0, the sequence (βε

`
)`∈N satisfies

βε`+1 −βε` ≥
2π

T1 +δ/2
, for all `≥ N ,

βε`+1 −βε` ≥ γ> 0, for all ` ∈N,
(74)

where T1 is defined in (7). Proposition 39 with γ∞ = 2π
T1+δ/2 yields existence of C ,ε0 > 0 such that

for all ε< ε0, setting Sδ := 1
2 (T1 +δ), we can find a sequence (ψε

j ) j∈N satisfying (73) with

‖z‖2
L2(0,ετ) ≤

C

(ετ)3 e
(16+δ)S2

δ
ετ

∑
`∈N

(βε`)2e2(βε
`

)2ετ|αε`|2 =
C

(ετ)3 e
(16+δ)S2

δ
ετ

∑
`∈N

λε
`

ε2 e2τ
λε
`
ε |αε`|2 (75)

Choosing now the numbers αεj as in the second part of (71), the function z satisfies the first part
of (71), and hence is a null-control for v0. Moreover, we can now estimate the last term in (75) as∑

`∈N
λε`e2τ

λε
`
ε |αε`|2 ≤

1

ε2e−
f(0)
ε

∑
`∈N

λε
`

|(ϕε
`

)′(0)|2
∣∣∣∣∫ L

0
v0(x)ϕε`(x)dx

∣∣∣∣2

Combined with (75), this yields

‖z‖2
L2(0,ετ) ≤

C

ε7τ3 e
(16+δ)S2

δ
ετ

1

e−
f(0)
ε

∑
n∈N

λεn
|(ϕεn)′(0)|2

∣∣∣∣∫ L

0
v0(x)ϕεn(x)dx

∣∣∣∣2

.

This gives the result recalling that Sδ = 1
2 (T1 +δ) and ‖h‖2

L2(0,τ)
= ‖z̃‖2

L2(0,τ)
= ε‖z‖2

L2(0,ετ)
(up to

changing the notation for δ). �

We are now in position to prove Theorem 7. We first take advantage of the natural parabolic
dissipation [39, 43, 44], and then use the control function constructed in Proposition 28.

Proof of Theorem 7. We construct a control function h(t ) for Equation (34) under the following
form

• h = 0 on [0,mT ] and use dissipation;
• h as constructed in Proposition 28 on the interval [mT,T ] (instead of [0,τ]; this is possible

since the equation is invariant by translations in time).

At time mT the solution of (34) is thus given by

v(mT, x) = ∑
n∈N

e−
λεn
ε mT vnϕ

ε
n(x),

where vn = ∫ L
0 e−

f(x)
2ε y0(x)ϕεndx. Moreover, using the Cauchy–Schwarz estimate, we have

|vn | ≤
∥∥y0

∥∥
L2(0,L)

∥∥∥e−
f(x)
2ε ϕεn

∥∥∥
L2(0,L)

.

We then take this function v(mT, ·) as an initial condition for the control problem on [mT,T ]. On
this interval, we use the control function h furnished by Proposition 28. It satisfies Estimate (70)
which reads

‖h‖2
L2(mT,T ) ≤

C

ε6(1−m)3T 3 e
4T 2

1 +δ
ε(1−m)T + f(0)

ε
∑

n∈N

λεn
|(ϕεn)′(0)|2

∣∣∣∣∫ L

0
v(mT, x)ϕεn(x)dx

∣∣∣∣2

≤ Cm

ε6T 3 e
4T 2

1 +δ
ε(1−m)T + f(0)

ε
∑

n∈N

λεn
|(ϕεn)′(0)|2 e−2

λεn
ε mT |vn |2

≤ ∥∥y0
∥∥2

L2(0,L)

Cm

ε4T 3 e
4T 2

1 +δ
ε(1−m)T + f(0)

ε
∑

n∈N

λεn
|ε(ϕεn)′(0)|2 e−2

λεn
ε mT

∥∥∥e−
f(x)
2ε ϕεn

∥∥∥2

L2(0,L)

≤ ∥∥y0
∥∥2

L2(0,L)

Cm

ε4T 3 e
4T 2

1 +δ
ε(1−m)T + f(0)

ε AεBε,
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where we have denoted for 0 < θ < 1 small

Aε =
∑

n∈N
e−2

λεn
ε θmT , Bε = sup

n∈N
λεn

|ε(ϕεn)′(0)|2 e−2
λεn
ε (1−θ)mT

∥∥∥e−
f(x)
2ε ϕεn

∥∥∥2

L2(0,L)
.

We estimate Aε and Bε in Lemma 29 and 30 that we state below. Combined with the previous
estimate, it gives (for any δ,Tmax,m > 0, existence of Cm ,ε0 > 0 such that for all T ∈ (0,Tmax),
m ∈ (0,1), θ ∈ (0,1) and all ε ∈ (0,ε0))

‖h‖2
L2(0,T ) = ‖h‖2

L2(mT,T ) ≤
Cm

θε4T 3 e
2D(m)
ε

∥∥y0
∥∥2

L2(0,L) , (76)

with (recalling that WE = dA,E + f
2 )

D(m) = 2T 2
1

(1−m)T
+ sup

E≥E0

[
WE (0)−E(1−θ)mT −min

[0,L]
WE

]
+Cδ,

for a constant C depending on m, T , T1. This proves Estimate (9) in Theorem 7 after taking
ε0 small enough to absorb the polynomial loss, up to changing δ. Estimate (11) in follow from
optimizating in m, see Section C.5. We take θ = δ and first downgrade the exponential part by

using E ≥ E0 = |f′(x0)|2
4 to

D(m) ≤ 2T 2
1

(1−m)T
− (1−θ)

|f′(x0)|2
4

mT + sup
E≥E0

[
WE (0)−min

[0,L]
WE

]
+Cδ

≤ 2T 2
1

(1−m)T
− |f′(x0)|2

4
mT + sup

E∈V ([0,L])

[
WE (0)−min

[0,L]
WE

]
+ C̃δ.

where we have noticed that WE = f/2 for E ≥ max[0,L] V . As a consequence of this together
with (76), we deduce that we can infer T > Tunif if

G(T ) := min
m∈[0,1)

(
2T 2

1

(1−m)T
− |f′(x0)|2

4
mT + sup

E∈V ([0,L])

[
WE (0)−min

[0,L]
WE

])
< 0.

Lemma 44 then concludes the proof of (11), and that of Theorem 7. �

It remains to prove the two Lemmata estimating Aε and Bε.

Lemma 29. Under the assumptions of Theorem 7, given Tmax > 0, there are C ,ε0 > 0 such that for
all T ∈ (0,Tmax), m ∈ (0,1), θ ∈ (0,1) and all ε ∈ (0,ε0),

|Aε| ≤ C

θmT
.

Proof. Item (1), Item (3) and estimate (84), each one to the version adapted to Theorem 35 give
respectively for ε small enough and for some γ2 > 0

λε0 ≥
|f′(x0)|2

4
−δ=:Λδ > 0, together with λεn+1 −λεn ≥ εγ2 > 0.

In particular, this implies λεn ≥Λδ+nεγ2 and we can estimate

|Aε| ≤
∑

n∈N
e−2nγ2θmT = 1

1−e−2γ2θmT
,

whence the result by the mean value theorem. �

Lemma 30. For any δ> 0, there exists ε0 so that for any 0 < ε< ε0, we have

|Bε| ≤Ce2 F+δ
ε , with F = sup

E≥E0

(
dA,E (0)−E(1−θ)mT −min

[0,L]
WE

)
.
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Proof. For any n ∈N and ε> 0, we call E =λεn . Estimate (41) in Theorem 22 yields εp
E
|(ϕεn)′(0)| ≥

e−
1
ε (dA,E (0)+δ), uniformly in E and ε (for ε small enough). For the second term, we simply write

e−2
λεn
ε (1−θ)mT = e−2 E

ε (1−θ)mT . The last term is estimated thanks to the Agmon type estimate (39) of
Theorem 21 as∥∥∥e−

f(x)
2ε ϕεn

∥∥∥
L2(0,L)

=
∥∥∥∥e−

WE
ε e

dA,E
ε ϕεn

∥∥∥∥
L2(0,L)

≤ e−
min[0,L] WE

ε

∥∥∥∥e
dA,E
ε ϕεn

∥∥∥∥
L2(0,L)

≤ e−
min[0,L] WE

ε e
δ
ε .

The combination of these three estimates gives

λεn
|ε(ϕεn)′(0)|2 e−2

λεn
ε (1−θ)mT

∥∥∥e−
f(x)
2ε ϕεn

∥∥∥2

L2(0,L)
≤ e

2
ε (dA,E (0)+δ)e−2 E

ε (1−θ)mT e−2
min[0,L] WE

ε e2 δ
ε .

Recalling (see Theorem 35(1)) that E ≥ E0 −Cε2 and taking the supremum over all E = λεn yields
the sought result (up to a loss in δ, we can take the supremum in E ≥ E0). �

4. Explicit computations of the various bounds on an example

In this section, we provide with some explicit computation of the different bounds we computed
in the main part of the paper for concrete examples of functions f. For symmetry reasons, we shift
the problem and consider the interval (−L/2,L/2) controlled at the point −L/2.

For a > 0, M > 0, we choose

f±M ,a(x) =±
∫ x

0

√
a2s2 +M 2 ds =±M 2

a

∫ ax
M

0

√
y2 +1dy

=±x

2

√
a2x2 +M 2 ± M 2

2a
arcsinh

( ax

M

)
, (77)

where we have used the identity∫ y

0

√
1+ t 2 dt = 1

2

(
y
√

y2 +1+arcsinh(y)

)
, y ∈R.

With this choice, we have f±
′

M ,a(x) =±
p

a2x2 +M 2 on (−L/2,L/2). The potential

V (x) =
|f±′

M ,a(x)|2
4

= a2x2 +M 2

4
(78)

reaches its minimum at the point x0 = 0 ∈ (−L/2,L/2). We have chosen this example for the
relative simplicity of the computations and because the formal limit when a → 0+ is the model
with constant transport term, well studied in the literature [2, 3, 12, 15, 23, 44–46], and the limit
a → +∞ proves that Tunif can be much larger than the control/flushing time for the transport
equation with T

f±′M ,a
({−L/2}) (see [38]). Indeed, V is a constant plus a harmonic potential. The

parameter a will allow to stress the fact that the convexity is responsible for a concentration of
some eigenfunctions close to the minimum, which is not the case for the “flat potential” V = M 2

4
corresponding to the more studied case f(x) = ±M x [2, 3, 12, 15, 23, 44–46]. We now compute
explicitly of the quantities involved in the statements of Proposition 4 and Theorems 5–7.

4.1. Computation of Tf±′M ,a
,T1,TE ,B ,dA,E0

Lemma 31. For the function f = f±M ,a(x) defined in (77), the minimal control time (or flushing
time, depending on the sign) for the limit equation (ε= 0) is given by

T
f±′M ,a

({−L/2}) = 2

a
arcsinh

(
aL

2M

)
.
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Lemma 32. Recalling the definitions (6)–(8), for the function f= f±M ,a(x) defined in (77), we have

T1 = 2π

a

√
a2L2/4+M 2 =π

√
L2 +4M 2/a2,

TE ,B = 1

a

∫ a2L2/16+M 2/4

M 2/4
log

∣∣∣∣ x +E +2B

x −E

∣∣∣∣dx

+ 2

aπ

∫ +∞

a2L2/16+M 2/4
log

∣∣∣∣ x +E +2B

x −E

∣∣∣∣arcsin

(
aL

2
p

4x −M 2

)
dx.

(79)

Moreover, we have

T1 −→
a→0+

+∞, T1 −→
a→+∞πL,

TE ,B −→
a→0+

L

2π

∫ +∞

0
log

∣∣∣∣ y2 +M 2 +4E +8B

y2 +M 2 −4E

∣∣∣∣dy <+∞, TE ,B −→
a→+∞ 0,

with in particular lima→0+ TE0,B = L
2

p
2M 2 +8B (case E = E0 = M 2

4 ).

Note that the function in second integral in the expression of TE ,B behaves like (x−(a2L2/16+
M 2/4)−1/2 near a2L2/16+M 2/4, like log(|x −E |) near E (if E is in the interval) and like x−3/2 at
+∞. Therefore, the integral is well defined.

Lemma 33. For the function f = f±M ,a(x) defined in (77), the Agmon distance to the potential

minimum is given by dA,E0 (x) = ax2

4 .

Proof of Lemma 33. This follows from the expression (78) of the associated potential and the
direct computation

dA,E0 (x) =
∣∣∣∣∣∣
∫ x

0

√
f′(y)2

4
− f′(0)2

4
dy

∣∣∣∣∣∣= 1

2

∣∣∣∣∫ x

0
a|y |dy

∣∣∣∣= ax2

4
. �

Proof of Lemma 31. According to Proposition 20, we have the exact formula

Tf′±M ,a
=

∫ L/2

−L/2

ds

|f′±M ,a(s)| =
∫ L/2

−L/2

dy√
ay2 +M 2

= 1

a

∫ aL
2M

− aL
2M

dy√
y2 +1

= 2

a
arcsinh

(
aL

2M

)
,

where we have used ∫ x

−x

dy√
y2 +1

= 2arcsinh(x), x ∈R. �

Proof of Lemma 32. According to (77), we have 4V (x) = |f±′
M ,a(x)|2 = a2x2 +M 2, and V (x) = λ⇔

a2x2 + M 2 = 4λ⇔ x = ±
p

4λ−M 2

a and it belongs to [−L/2,L/2] if 4λ− M 2 ≤ a2L2/4. We rename
Λ=Λ(λ) = 4λ−M 2 so that (7) and∫ t

−t

dy√
1− y2

= 2arcsin(t ), t ∈ [−1,1]

give

• if 0 ≤Λ≤ a2L2/4, we have x±(λ) =±
p

4λ−M 2

a =±
p
Λ

a and (as for the harmonic oscillator)

T (λ) = 2
∫ p

Λ
a

−
p
Λ

a

√
Λ+M 2

Λ−a2x2 dx = 2

a

∫ 1

−1

√
Λ+M 2

1− y2 dy = 2π

p
Λ+M 2

a
= 4π

p
λ

a
;
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• if a2L2/4 ≤Λ, we have x±(λ) =±L/2 so that

T (λ) = 2
∫ L/2

−L/2

√
Λ+M 2

Λ−a2x2 dx = 2

a

∫ aL
2
p
Λ

− aL
2
p
Λ

√
Λ+M 2

1− y2 dy

= 4
p
Λ+M 2

a
arcsin

(
aL

2
p
Λ

)
= 4arcsin

(
aL

2
p

4λ−M 2

)
2
p
λ

a
.

Coming back to (7), we finally obtain

T1 = sup
λ≥E0

T (λ) = max

(
sup

0≤Λ≤a2L2/4
2π

p
Λ+M 2

a
; sup

a2L2/4≤Λ
4arcsin

(
aL

2
p
Λ

) p
Λ+M 2

a

)
.

The first function is increasing in Λ. The second function is decreasing in Λ (this is also seen di-
rectly from the definition since if a2L2/4 ≤Λ and x ∈ [−L/2,L/2], Λ+M 2

Λ−a2x2 = 1+ M 2+a2x2

Λ−a2x2 is decreas-
ing as a function of Λ, so that T (λ) is actually decreasing). As a consequence, the maximum is
reached at a2L2/4. As a consequence, we obtain (79).

We now turn to the computation ofΦ(λ) and recall (6)

Φ(λ) =
∫ x+(λ)

x−(λ)

√
λ−V (x)dx =

∫ x+(λ)

x−(λ)

√
λ− a2x2 +M 2

4
dx,

and use ∫ t

−t

√
1− y2 dy = t

√
1− t 2 +arcsin(t ), t ∈ [−1,1]. (80)

Hence, ifΛ= 4λ−M 2 ≤ a2L2/4, we obtain (as for the harmonic oscillator)

Φ(λ) = 1

2

∫ p
Λ

a

−
p
Λ

a

√
Λ−a2x2 dx = Λ

2a

∫ 1

−1

√
1− y2 dy = π

4a
Λ= π

a

(
λ− M 2

4

)
,

while ifΛ= 4λ−M 2 ≥ a2L2/4, we get

Φ(λ) = 1

2

∫ L/2

−L/2

√
Λ−a2x2 dx = Λ

2a

∫ aL
2
p
Λ

− aL
2
p
Λ

√
1− y2 dy = Λ

2a

(
aL

4Λ

√
4Λ−a2L2 +arcsin

(
aL

2
p
Λ

))
= L

8

√
4Λ−a2L2 + Λ

2a
arcsin

(
aL

2
p
Λ

)
,

where we have used (80). The important quantity is mainly the derivative ofΦ:

Φ′(λ) =


π

a
if 0 ≤ 4λ−M 2 ≤ a2L2/4;

4
∂

∂Λ
Φ(Λ) = 2

a
arcsin

(
aL

2
p
Λ

)
= 2

a
arcsin

(
aL

2
p

4λ−M 2

)
if 4λ−M 2 ≥ a2L2/4.

Note that this is consistent with Lemma 9 stating that Φ′(λ) = 1
4
p
λ

T (λ). From here, we may now
compute, with E0 =V (x0),

TE ,B = 1

π

∫ +∞

0
log

∣∣∣∣Φ−1(y)+E +2B

Φ−1(y)−E

∣∣∣∣dy

= 1

π

∫ +∞

E0

log

∣∣∣∣ x +E +2B

x −E

∣∣∣∣Φ′(x)dx

= 1

a

∫ a2L2/16+M 2/4

M 2/4
log

∣∣∣∣ x +E +2B

x −E

∣∣∣∣dx

+ 2

aπ

∫ +∞

a2L2/16+M 2/4
log

∣∣∣∣ x +E +2B

x −E

∣∣∣∣arcsin

(
aL

2
p

4x −M 2

)
dx.

This concludes the proof of the first part of Lemma 32.
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To conclude the proof of the lemma, we now analyse the different asymptotic regimes. The
limits for T1 follow from (79). For TE ,B , the dominated convergence theorem (see the arguments
in the proof of Lemma 26 for an effective domination) implies that the first term in the previous
expression converges to zero as a → 0+, together with

lim
a→0+

TE ,B (a) = L

π

∫ +∞

M 2/4
log

∣∣∣∣ x +E +2B

x −E

∣∣∣∣ 1p
4x −M 2

dx = L

2π

∫ +∞

0
log

∣∣∣∣ y2 +M 2 +4E +8B

y2 +M 2 −4E

∣∣∣∣dy.

In the case E = E0 = M 2/4, the integral simplifies to

lim
a→0+

TE0,B (a) = L

2π

∫ +∞

0
log

∣∣∣∣ y2 +2M 2 +8B

y2

∣∣∣∣dy

= L

2π

√
2M 2 +8B

∫ +∞

0
log

∣∣∣∣ t 2 +1

t 2

∣∣∣∣dt = L

2

√
2M 2 +8B ,

where we have used
∫ +∞

0 log
∣∣∣ t 2+1

t 2

∣∣∣dt = 2
∫ +∞

0
1

1+t 2 dt =π by integration by part.
We finally notice that in the limit a →+∞, both terms in the expression of TE ,B vanish, using

|arcsin(s)| ≤ |s|π/2. �

4.2. Computation of G5,E =G7,E and G6,E0 ,

Recall that the constants G5,E = G7,E and G6,E0 are defined in (15). According to Theorem 6 and
Lemma 12, we only need to compute the constant G6,E forE = E0 (which corresponds to the best
estimate). Lemma 12 also implies that in the present setting, G5,E = G7,E is independent of E by
parity arguments. We are thus left to compute only G5,E0 and G6,E0 . Recall also from (77) that f+M ,a
is increasing and f−M ,a = −f+M ,a is decreasing, which, according to Lemma 12, plays a key role in
the computations.

Lemma 34. For E = E0 and B = 0, we have:

• In case +:

G5,E0 = 0,

G6,E0 =
aL2

8
−

(
L

8

√
a2L2 +4M 2 + M 2

2a
arcsinh

(
aL

2M

))
.

In particular,

G6,E0 −→
a→0+

− ML

2
, G6,E0 ∼−M 2

2a
log(a) −→

a→+∞−∞.

• In case −:

G5,E0 =
L

8

√
a2L2 +4M 2 + M 2

2a
arcsinh

(
aL

2M

)
,

G6,E0 =
aL2

8
.

In particular,

G5,E0 −→
a→0+

ML

2
, G5,E0 ∼

aL2

8
−→

a→+∞+∞,

G6,E0 −→
a→0+

0, G6,E0 −→
a→+∞+∞

Recall that in this situation T5,E0 = G5,E0 /E0 and E0 = M 2/4. Moreover, Theorem 5 formulates
Tunif({−1/2}) ≥ T5,E0 =G5,E0 /E0.
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Proof of Lemma 34. Let us begin with the computation of G5,E0 , following the simplifications of
Lemma 12 using that f±M ,a is odd. In case +, this lemma yields G5,E = 0, and in case −, we have
(recalling (77) and that we are working on the translated interval [−L/2,L/2])

G5,E =−f−M ,a(L/2) = f+M ,a(L/2) = L

8

√
a2L2 +4M 2 + M 2

2a
arcsinh

(
aL

2M

)
.

We now compute G6,E0 . In case + using that f+M ,a is odd together with Lemmata 12 and 33 gives

G6,E0 = 2dA,E0 (L/2)− f+M ,a(L/2) = aL2

8
−

(
L

8

√
a2L2 +4M 2 + M 2

2a
arcsinh

(
aL

2M

))
.

Now, in the case −, using again that f−M ,a is odd together with Lemma 12, we obtain

G6,E = 2dA,E (L/2) = aL2

8
.

The asymptotic behaviors follow from the fact that arcsinh(s) = s + O
(
s3

)
near zero and

arcsinh(s) ∼ log(s) near +∞. �

4.3. Asymptotics a →+∞

Recalling that arcsinh(t ) = log
(
t +

p
1+ t 2

)
, we have in this case the following asymptotic behav-

iors as a →+∞:

• T
f±′M ,a

({−L/2}) ∼a→+∞ 2 log(a)
a −→

a→+∞ 0+ according to Lemma 31, i.e. the limit transport

equation is controllable in small time for large a.
• if we choose the sign − (note that in this case, the control disappears in the limit transport

equation and it is only zero on the right), then according to (16) and Lemma 34, we have

Tunif ≥ T5 ≥ 1

E0
G5,E0 ∼a→+∞

a

2

L2

M 2 →+∞,

i.e. the minimal uniform control time tends to +∞ for large a.
• if we choose the sign +, this is not useful since in this case T5,E0 = 0 according to

Lemmata 34 and 12.

4.4. Formal limit a → 0+: comparison with the Coron–Guerrero case

The computations performed and the explicit constants obtained in Sections 4.1–4.2 do not apply
to the situation studied in Coron–Guerrero [12]. The latter would correspond to the function f±M ,a
in (77) with a = 0, and thus can be seen as a formal limit a → 0 in Sections 4.1–4.2. Even if our
results do not apply to the case a = 0 and our study does not allow to make this limit rigorous,
we believe it is worth computing the limit of the different bounds we obtain in this asymptotic
regime.

First, we notice that the (formal) limit a → 0+ in Lemma 31 yields the appropriate con-
trol/flushing time for the limit equation:

T
f±′M ,a

({−L/2}) → L

M

Second, we comment on the lower bound Tunif ≥ T6 given by Theorem 6. According to (15)–
(17), this rewrites

T6 = sup
E∈V ([0,L]),B≥0

1

E +B

(
G6,E +TE ,B

)≥ sup
B≥0

1

E0 +B

(
G6,E0 +TE0,B

)
.
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According to Lemma 32 lima→0+ TE0,B = L
2

p
2M 2 +8B (here E0 = M 2

4 ) and according to Lemma 34,
we deduce that in the limit a → 0+,

1

E0 +B

(
G6,E0 +TE0,B

)→ 1

M 2/4+B

(
−ML

2
+ L

2

√
2M 2 +8B

)
= 2L

M 2 +4B

(
−M +p

2
√

M 2 +4B
)

, (Case +),

1

E0 +B

(
G6,E0 +TE0,B

)→ 1

M 2/4+B

(
0+ L

2

√
2M 2 +8B

)
= 2

p
2Lp

M 2 +4B
, (Case −).

Theorem 6 gives us that

liminf
a→0+

Tunif,a ≥ liminf
a→0+

T6,a ≥ 2L

M 2 +4B

(
−M +p

2
√

M 2 +4B
)

, (Case +),

liminf
a→0+

Tunif,a ≥ liminf
a→0+

T6,a ≥ 2
p

2Lp
M 2 +4B

, (Case −).

The maximum of x 7→ −M
x +

p
2p
x

(for x > 0) is reached for x = 2M 2, so the maximum of the first

expression is reached when B = M 2/4. The second case is better when B = 0, so we get (20)–(21).
Let us now comment on the upper bound of Theorem 7 when a → 0+. The fact that T1 →

a→0+
+∞

as stated in Lemma 32 suggests that the quantity T1 (which appears as the spectral gap of the
β` in (74)) is not the appropriate one (at least in this regime). Indeed, in the case a = 0, the
operator is Pε :=−ε2∂2

x+ M 2

4 and the associated eigenfunctions areψε
k = sin

( kπx
L

)
, k ∈N∗, with the

eigenvalues λεk = (
εkπ

L

)2 + M 2

4 . In particular (compare with Theorem 35), one can check that the

family ε−1
√
λε
`

does not have a uniform (in ε) gap. However, in this particular setting, this issue

is solved by making a translation of the spectrum, replacing λεk by λεk − M 2

4 . From the control

point of view, this only consists in making the change of unknown u = e
M2 t

4ε v and new control

hu(t ) = e
M2 t

4ε h(t ) inside Proposition 28.

The new family ε−1
√
λεk − M 2

4 then enjoys a uniform gap as in (82) with T1 = 2L. Hence, (82)
(or equivalently (74)) is fulfilled and our proof of Theorem 7 then adapts to this problem. The
constants involved are however slightly less accurate than those available in the literature [12,15,
23, 44–46], and we therefore do not pursue in this direction.

Appendix A. Some results from [1]

In this section, we extract and translate in our context some of the results of Allibert [1]. All along
the section, to match the setting of [1], we assume that V ∈ C∞([0,L]), and that Items (1)–(4)
in Assumption 2 are satisfied. We apply as a blackbox the results of [1] and hence also have to
assume that qf = 0. We recall that the functionΦ(λ) and T1 are defined respectively in (6) and (7).

The goal of this appendix is to deduce a proof of the following result from the results of [1].

Theorem 35. Consider the operator Pε := −ε2∂2
x + V (x) + εqf + ε2W , with V ∈ C∞([0,L];R),

W ∈ L∞((0,L);R), acting on the space L2((0,L),dx), with domain H 2 ∩ H 1
0 (0,L). Assume further

that V satisfies Items (1)–(4) in Assumption 2 and that qf = 0. Denote by (λεk )k∈N, the sequence of
eigenvalues of the operator Pε, sorted so that λεk ≤λεk+1. The following properties hold true:

(1) There is C > 0 such that we have V (x0)−Cε2 ≤λε0 and λεk <λεk+1 for all k ∈N and ε ∈ (0,1).
(2) There exist D,C0,ε0 > 0 such that for all ε ∈ (0,ε0) and k ∈N, we have

Φ−1(ε(πk −D)
)−C0ε

3/2 ≤λεk ≤Φ−1(ε(πk +D)
)+C0ε

3/2. (81)
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(3) For all δ> 0, there are ε0, N > 0 such that for all ε≤ ε0,√
λε
`+1 −

√
λε
`
≥ ε 2π

T1 +δ
, for all `≥ N . (82)

Moreover, there are ε0,γ,γ2 > 0 such that for all ε≤ ε0,√
λε
`+1 −

√
λε
`
≥ εγ> 0, for all ` ∈N (83)

λε`+1 −λε` ≥ εγ2 > 0, for all ` ∈N. (84)

To prove this result, let us now recall the setting of [1]. Allibert [1] considers on (0,b) for b > 0,
the operator

P All
h u =− h2

R(z)
√

1+R ′(z)2
∂z

(
R(z)√

1+R ′(z)2
∂z u

)
+ 1

R2(z)
u.

This operator is selfadjoint on the space L2
(
(0,b),R(z)

√
1+R ′(z)2dz

)
with domain H 2 ∩H 1

0 (0,b),
with the assumption that z 7→ 1

R2(z)
admits at c ∈ (0,b) a strict nondegenerate minimum, and that

1
R2(c)

< 1
R2(b)

< 1
R2(0)

.
The geometric quantities entering into the discussion are

ΦAll(λ) =
∫ z+(λ)

z−(λ)

√
1+R ′(z)2

√
λ− 1

R2(z)
dz,

T All
1 = sup

λ≥ 1
R2(c)

T All(λ), T All(λ) = 2
∫ z+(λ)

z−(λ)

√
1+R ′(z)2

p
λ√

λ− 1
R2(z)

dz.

In this expression, z−(λ) is the solution to 1
R2(z−(λ))

= λ with z−(λ) ≤ c for λ≤ 1
R2(0)

, and z−(λ) = 0

for λ ≥ 1
R2(0)

. Similarly, z+(λ) is the solution to 1
R2(z+(λ))

= λ with z+(λ) ≥ c for λ ≤ 1
R2(b)

, and

z+(λ) = b for λ≥ 1
R2(b)

.
We want to compare this setting to the one considered here. Namely, we study the operator

Pε :=−ε2∂2
x +V (x)+εqf, with V (x) = |f′(x)|2

4 and qf = f′′
2 −q , acting on the space L2((0,L),dx), with

domain H 2 ×H 1
0 (0,L).

We define the increasing diffeomorphism

x : [0,b] → [0,L]

z 7→ x(z) =
∫ z

0

√
1+R ′(t )2dt

where we set L := ∫ b
0

√
1+R ′(t )2dt . Given a potential V ∈ C k ([0,L]) satisfying Items (1)–(4) in

Assumption 2, the function 1
R2(z)

:= V (x(z)) satisfies the assumptions of Allibert [1] with c given
by x(c) = x0.

We obtain, with this change of variables, that ΦAll(λ) = Φ(λ),T All(λ) = T (λ) and T All
1 = T1,

whereΦ(λ),T (λ) and T1 are defined in (6)-(7). Note that x−(λ) = x(z−(λ)) and x+(λ) = x(z+(λ)) in
these definitions.

Moreover, under this change of variable, we have ∂
∂s = 1p

1+R ′(z)2

∂
∂z so that the operator P All

h

becomes

− h2

R(s)
∂s (R(s)∂s ·)+V (s),

where we have written R(x(z)) = R(z) (and hence V (s) = 1
R(s)2 ). This operator acts on the space

L2
(
(0,L),R(s)ds

)
with domain H 2 ∩H 1

0 (0,L).
Now, observe that the map

T : L2((0,L),R(s)ds) → L2((0,L),ds)

u 7→ Tu, with (Tu)(s) =R(s)
1
2 u(s)
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is an isometry and the conjugated operator of 1
R(s)∂s (R(s)∂s · ) is

T

(
1

R(s)
∂s (R(s)∂s · )

)
T −1u =R1/2

(
1

R(s)
∂s

(
R(s)∂s (R−1/2u)

))= ∂2
s u −V1u,

where V1(s) =− 1
4

R′(s)2

R(s)2 + 1
2

R′′(s)
R(s)2 .

We thus obtain
Ph := T P All

h T −1 =−h2∂2
s +V (s)+h2V1(s). (85)

This is almost the operator we consider, except for lower order terms.
Then, Allibert [1] describes the spectrum of the operator P All

h :

(1) he constructs in [1, Lemmata 6-7 and Section 3.1.2] approximate eigenvalues and eigen-
functions. The approximate eigenvalues are O(h3/2) close to real eigenvalues;

(2) he proves in [1, Section 3.1.3] that the sequence of real eigenvalues constructed in the first
point actually contains all eigenvalues (using a Sturm–Liouville argument); in particular,
the spectrum is simple;

(3) he computes in [1, Section 3.1.4] the spectral gap (using the explicit expression of the
approximate eigenvalues).

We first collect the following properties of Pε from [1].

Theorem 36. Consider the operator Pε acting on the space L2((0,L),dx), with domain H 2 ∩
H 1

0 (0,L). Denote by (λεk )k∈N, the sequence of eigenvalues of the operator Pε, sorted so that λεk ≤
λεk+1. Assuming that V ∈ C∞([0,L]) satisfies Items (1)–(4) in Assumption 2, then Items (1), (2), (3)
of Theorem 35 hold for the eigenvalues (λεk )k∈N of Pε.

Note that a much finer property than (81) is actually proved in [1], but this weaker form is
sufficient for our needs.

Proof of Theorem 36 from [1]. The first lower bound in Item (1) comes from

(Pεu,u)L2 ≥ (
V (x0)−‖V1‖L∞ε2)‖u‖2

L2 ,

and the simplicity of the spectrum from the fact that we consider Dirichlet boundary conditions
(hence, the space of solutions to the ODE eigenvalue equation has dimension one).

Let us now explain how Item (2) is deduced from [1, Lemme 6 and Lemme 7]. Firstly, note
that these properties concern the eigenvalues of the operator P All

ε , which, according to (85), are
exactly those of Pε. Secondly [1, Lemme 6 and Lemme 7] prove the existence of a sequence µk,ε

such that
Φ(µk,ε) = εkπ+εΘ(ε,µk,ε), (86)

whereΘ : [0,1]×R+ →R is a uniformly bounded function, and an eigenvalue of Pε, λ̃εk ∈ {λε
`

,` ∈N},
such that |λ̃εk − µk,ε| ≤ C0ε

3/2. Then, in [1, Section 3.1.3], he proves that the set {λ̃ε
`

,` ∈ N}
constructed that way coincides with the spectrum, that is λ̃εk =λεk for all k ∈N. This implies

µk,ε−C0ε
3/2 ≤λεk ≤µk,ε+C0ε

3/2 (87)

We set D := sup(ε,µ)∈[0,1]×R+ |Θ(ε,µ)|. As a consequence of (86), (87), together with the fact that Φ
is increasing, we obtain

Φ(λεk −C0ε
3/2) ≤Φ(µk,ε) = εkπ+εΘ(ε,µk,ε) ≤ ε(kπ+D)

Φ(λεk +C0ε
3/2) ≥Φ(µk,ε) = εkπ+εΘ(ε,µk,ε) ≥ ε(kπ−D),

which proves (81).
Finally, concerning Item (3), (82) and (83) are proved in [1, Proposition 2 p. 1511 and Sec-

tion 3.1.4]. The last estimate (84) comes from

λε`+1 −λε` =
(√

λε
`+1 −

√
λε
`

)(√
λε
`+1 +

√
λε
`

)
≥ εγ2

√
λε0 ≥ 2εγ

(
V (x0)−Cε2) ,
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where we have used (83) together with Item (1). �

We now deduce from this result for Pε a proof of Theorem 35, that is, prove that the same
properties hold for Pε.

The proof of Theorem 35 from Theorem 36 consists in a classical perturbative (deformation)
argument, and relies of the following lemma.

Lemma 37. Let H be a Banach space, and (P (t ))t∈[0,1] ∈L (H)[0,1] be a family of projectors (in the
sense that P (t )2 = P (t )) having finite rank r (t ) ∈N, and such that the map t 7→ P (t ) is continuous
[0,1] →L (H). Then, all projectors have the same rank, i.e. r (t ) = r (0) for all t ∈ [0,1].

Proof of Theorem 35 from Theorem 36. We write W̃ =W −V1 and set

Aε(t ) := (1− t )Pε+ tPε =Pε+ tε2W̃ .

We denote by (λεk )k∈N the spectrum of Pε, which satisfies Items (1), (2), (3) of Theorem 35. We
have, for z ∉ Sp(Pε)

z − Aε(t ) = (z −Pε)
(

Id−(z −Pε)−1tε2W̃
)
. (88)

Next, we remark that for all t ,ε, z such that |t |ε2
∥∥(z −Pε)−1

∥∥
L

∥∥W̃
∥∥∞ < 1, the operator

(
Id−(z −

Pε)−1tε2W̃
)

is invertible with(
Id−(z −Pε)−1tε2W̃

)−1 =
∞∑

n=0

(
tε2(z −Pε)−1W̃

)n

∥∥∥(
Id−(z −Pε)−1tε2W̃

)−1
∥∥∥

L
≤

∞∑
n=0

(|t |ε2 ∥∥(z −Pε)−1∥∥
L

∥∥W̃
∥∥∞)n

≤ 1

1−|t |ε2
∥∥(z −Pε)−1

∥∥
L

∥∥W̃
∥∥∞ .

Recalling that ‖(z − Aε(t ))−1‖L = 1
dist(z,Sp(Aε(t ))) for z ∉ Sp(Aε(t )) (since Aε(t ) is selfadjoint) to-

gether with (88), we deduce

|t |ε2 ∥∥(z −Pε)−1∥∥
L

∥∥W̃
∥∥∞ < 1 =⇒


z ∉ Sp(Aε(t )),

(z − Aε(t ))−1 = (
Id−(z −Pε)−1tε2W̃

)−1(z −Pε)−1∥∥(z − Aε(t ))−1
∥∥

L ≤ ‖(z−Pε)−1‖L

1−|t |ε2‖(z−Pε)−1‖L ‖W̃‖∞ ,
(89)

and hence

|t |ε2 ∥∥W̃
∥∥∞ < dist(z,Sp(Pε)) =⇒ dist(z,Sp(Pε)) ≤ dist(z,Sp(Aε(t )))+|t |ε2 ∥∥W̃

∥∥∞ .

Now taking z = νε(t ) ∈ Sp(Aε(t )) implies that

dist(νε(t ),Sp(Pε)) ≤ |t |ε2 ∥∥W̃
∥∥∞ . (90)

We now recall the gap property (84) of the spectrum (λεk )k∈N of the operator Pε, and define the
contour (oriented counterclockwise)

Γεk = ∂B
(
λεk ,

γ2ε

3

)
.

According to (84), these sets are disjoint and each contains exactly one eigenvalue of Pε. We
define the associated orthogonal projector onto ker(Pε−λεk ) by

Πεk =
∫
Γεk

(z −Pε)−1dz

As a consequence of (90), we obtain that for all t ∈ [0,1] and all ε ∈ (0,ε0) with ε0 such that
ε2

0

∥∥W̃
∥∥∞ < γ2ε0

3 , we have

Γεk ∩Sp(Aε(t )) =;, Sp(Aε(t )) ⊂ ⋃
k∈N

B
(
λεk ,

γ2ε

3

)
.
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In particular, we can define the orthogonal projector onto the spectral subspace of Aε(t ) associ-
ated to its eigenvalues inside Γεk , namely,

Πεk (t ) :=
∫
Γεk

(z − Aε(t ))−1dz

(henceΠεk (0) =Πεk ). According to (89), we have the uniform bound for z ∈dk∈NΓεk ,∥∥(z − Aε(t ))−1∥∥
L ≤

∥∥(z −Pε)−1
∥∥

L

1−ε2
∥∥(z −Pε)−1

∥∥
L

∥∥W̃
∥∥∞

for t ∈ [0,1] so that t 7→ Πεk (t ) is continuous [0,1] → L (L2). According to Lemma 37, we obtain
Rk(Πεk (t )) = Rk(Πεk ) = 1 for all t ∈ [0,1]. As a consequence, for all t ∈ [0,1], Aε(t ) has a single
eigenvalue λεk (t ) inside Γεk , having multiplicity one. Moreover, from (90) we have |λεk (t )−λεk | ≤
|t |ε2

∥∥W̃
∥∥∞.

Items (1), (2), (3) of Theorem 36 being satisfied by λεk , they are thus satisfied as well by λεk (t )
for all t ∈ [0,1] and ε ∈ (0,ε0) for ε0 sufficiently small. Note that we use that s 7→ p

s is uniformly
Lipschitz on [V (x0)−Cε2

0,+∞) thanks to Item (1) in Assumption 2 and an appropriate choice of
ε0. This yields the sought result in case t = 1. �

We finally prove Lemma 37, which is a consequence of the following remark.

Lemma 38. Let P1 and P2 two continuous projections with finite respective rank r1 > r2 in a
Banach H. Then, ‖P1 −P2‖H→H ≥ 1.

Proof of Lemma 38. We define H1 (resp. H2) the range of P1 (resp. P2) which are spaces of finite
dimension. We define the application F : H1 → H2, defined by F (x1) = P2(x1). By the rank-
nullity theorem and the assumption r1 > r2, we have dimker(F ) > 0 and there exists x1 ∈ H1 with
‖x1‖H = 1 so that P2(x1) = 0. But since x1 ∈ H1, ‖P1(x1)‖H = ‖x1‖H = 1. This gives the result. �

Proof of Lemma 37. Given t ∈ [0,1], there exist δ > 0 such that for all t ′ ∈ [0,1], |t ′ − t | ≤
δ =⇒ ∥∥P (t ′)−P (t )

∥∥
H→H ≤ 1/2. This implies that r (t ′) = r (t ) for all t ′ ∈ [t −δ, t +δ]∩ [0,1] (this

would otherwise contradict Lemma 38 since we assume that all projectors have finite rank). A
connectedness argument concludes that r is globally constant on [0,1]. �

Appendix B. A moment result

The purpose of this Section is the proof of Proposition 39 below which may not be new, but for
which we did not find any reference, especially for the uniform dependence of the constants. The
study of of biorthogonal sequences and their application to controllability of parabolic equations
is classical and dates back to Fattorini–Russell [20, 21]. We also refer to Hansen [29], and Ammar
Khodja–Benabdallah–González Burgos–de Teresa [4]. At the time of writing this article, Cannarsa,
Martinez and Vancostenoble [6] obtained results close to the one we obtain in this section. We
have chosen to keep this section since our method seems simpler, with a slightly more explicit
constant. Our proof relies on an Ingham inequality, see e.g. [30,35], together with a transmutation
argument due to Ervedoza–Zuazua [19].

The main result of this section is the following proposition.

Proposition 39. For any γ∞ > 0, γ > 0, N ∈N and any S > π
γ∞ and ε > 0, we can find a constant

C =C (γ∞,γ, N ,S,ε) > 0 so that for any sequence (βn)n∈N∗ satisfying

(1) βn+1 −βn ≥ γ for all n ∈N∗ and β1 ≥ γ,
(2) βn+1 −βn ≥ γ∞ for any n ∈N∗ with n ≥ N ,

and for any 0 < T ≤ 1, there exists a sequence of functions (un)n∈N∗ ∈ L2(0,T )N
∗

so that
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(1) for any l ,n ∈N∗, we have
∫ T

0 un(t )e−β
2
l t dt = δn,l ,

(2) For any (an)n∈N∗ so that β2
neβ

2
n T an ∈ `2(N∗), we have

‖z‖2
L2(0,T ) ≤

C

T 3 e
(16+ε)S2

T
∑

n∈N∗
β2

ne2β2
n T |an |2, with z(t ) = ∑

n∈N∗
anun(t ).

Our proof relies on the following classical inequality due to Ingham–Haraux [30, 35].

Theorem 40 (Ingham–Haraux). For any γ∞ > 0, γ> 0, and N ∈N and any S > 2π
γ∞ , we can find a

constant C0 =C0(γ∞,γ, N ,S) > 0 so that for any sequence (µk )k∈Z satisfying:

(1) µk+1 −µk ≥ γ for all k ∈Z,
(2) µk+1 −µk ≥ γ∞ for any k ∈Zwith |k| ≥ N ,

then, we have

C−1
0

∫ S

0

∣∣∣∣∣ ∑
k∈Z

ak e iµk s

∣∣∣∣∣
2

ds ≤ ∑
k∈Z

|ak |2 ≤C0

∫ S

0

∣∣∣∣∣ ∑
k∈Z

ak e iµk s

∣∣∣∣∣
2

ds

for all (ak )k∈Z ∈ `2(Z) with finite support.

Note that in these estimates, only the length of the time interval (0,S) is relevant; under the
assumption that S > π

γ∞ the conclusion holds with the integrals over (0,S) replaced by integrals
over (−S,S).

Corollary 41. For any γ∞ > 0, γ > 0, N ∈ N and any S > π
γ∞ , we can find a constant C0 =

C0(γ∞,γ, N ,S) > 0 so that for any sequence (βn)n∈N∗ satisfying Item (1)–(2) of Proposition 39, there
exists a sequence of functions (vn)n∈N ∈ L2((−S,S))N

∗
so that∫ S

−S
vn(s)sin(βl s)ds = δn,l , for all l ,n ∈N∗, and

C−1
0

∫ S

−S

∣∣∣∣∣ ∑
n∈N∗

bn vn(s)ds

∣∣∣∣∣
2

≤ ∑
n∈N∗

|bn |2 ≤C0

∫ S

−S

∣∣∣∣∣ ∑
n∈N∗

bn vn(s)ds

∣∣∣∣∣
2

for all (bn)n∈N∗ ∈ `2(N∗).

(91)

Proof. For k ∈ Z, we set µk := βk if k > 0, µk := −β−k if k < 0 and µ0 = 0. That the sequence
(µk )k∈Z satisfies the assumptions of Theorem 40 readily follows from the assumptions.

Given (bn)n∈N∗ ∈ `2(N∗), we define for k ∈ Z, ak := bk
2i if k > 0, ak := − b−k

2i if k < 0 and a0 := 0.
We have ∑

k∈Z
ak e iµk s = ∑

k∈N∗

bk

2i
e iβk s − b−k

2i
e−iβk s = ∑

n∈N∗
bn sin(βn s).

Theorem 40 (applied on the time interval (−S,S), of length > 2π
γ∞ ) gives

C−1
0

∫ S

−S

∣∣∣∣∣ ∑
n∈N∗

bn sin(βn s)

∣∣∣∣∣
2

ds ≤ ∑
n∈N∗

|bn |2 ≤C0

∫ S

−S

∣∣∣∣∣ ∑
n∈N∗

bn sin(βn s)

∣∣∣∣∣
2

ds.

In particular, the family
(
sin(βn s)

)
n∈N forms a Riesz basis of the space it spans in L2(−S,S).

Lemma 42 below in H = L2(−S,S) yields the existence of a biorthogonal family (vn)n∈N∗ to
(sin(βn s))n∈N∗ satisfying (91) for the same constant C0. �

To deduce a proof of Proposition 39, we now construct from the sequence biorthogonal to
(sin(βn s))n∈N∗ in L2(−S,S), a sequence biorthogonal to (e−β

2
n t )n∈N∗ in L2(0,T ) satisfying precise

bounds. To this aim, we use ideas coming from transposition from heat to waves, see [18, 19, 47],
and more precisely a kernel constructed in [19].
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Proof of Proposition 39. According to [19, Section 3.1], given α > 2S2, there exists a kernel
function kT (t , s) ∈C∞(R2) solution to

∂t kT (t , s)+∂2
s kT (t , s) = 0, for s ∈ (−S,S), t ∈ (0,T ),

(kT (t , s),∂s kT (t , s)) |s=0 =
(
0,e−α

( 1
t + 1

T−t

))
,

kT (t , s)|t=0 = kT (t , s)|t=T = 0, supp(kT ) ⊂ [0,T ]×R.

(92)

and such that [19, Proposition 3.1] for all δ ∈ (0,1) and all (t , s) ∈ (0,T )× (−S,S), kT satisfies

|kT (t , s)| ≤ |s|exp

(
1

min{t ,T − t }

(
s2

δ
− α

(1+δ)

))
. (93)

Let (vn)n∈N∗ the sequence given by Corollary 41. We define wn ∈C∞(R) by

wn(t ) :=
∫ S

−S
kT (t , s)vn(s)ds, supp wn ⊂ [0,T ].

We compute ∫ T

0
wn(t )e−β

2
l t dt =

∫ T

0

∫ S

−S
kT (t , s)vn(s)e−β

2
l t dtds =

∫ S

−S
vn(s) fl (s)ds (94)

where we have set fl (s) = ∫ T
0 kT (t , s)e−β

2
l t dt . Using (92), we have for s ∈ (−S,S)

d2

ds2 fl (s) =
∫ T

0

∂2

∂s2 kT (t , s)e−β
2
l t dt =−

∫ T

0

∂

∂t
[kT (t , s)]e−β

2
l t dt

=−β2
l

∫ T

0
kT (t , s)e−β

2
l t dt =−β2

l fl (s),

where we have performed an integration by parts using the zero boundary conditions of kT at
t = 0 and t = T . Noticing that fn(0) = 0 and f ′

n(0) = ∫ T
0 e−α

( 1
t + 1

T−t

)
e−β

2
l t dt , using (92), we obtain

fl (s) = cl sin(βl s), with cl =
1

βl

∫ T

0
e−α

( 1
t + 1

T−t

)
e−β

2
l t dt . (95)

In particular, using the definition of vn in Corollary 41 together with (94), we have∫ T

0
wn(t )e−β

2
l t dt = cl

∫ S

−S
vn(s)sin(βl s)ds = clδn,l , n, l ∈N∗.

Therefore, defining un(t ) := c−1
n wn(t ) for any n ∈ N∗, the sequence (un)n∈N∗ forms a family

biorthogonal to (e−β
2
l t )l∈N∗ in L2(0,T ), which proves Item (1) of the proposition. It only remains

to estimate un to conclude the proof, that is, estimate c−1
l . We have, performing the change of

variable σ= 2t
T −1, for all ν ∈ (0,1),∫ T

0
e−α

( 1
t + 1

T−t

)
dt = T

2

∫ 1

−1
e
− 4α

T

(
1

1−σ2

)
dσ≥ T

2

∫ ν

−ν
e
− 4α

T

(
1

1−σ2

)
dσ≥ Tνe

− 4α
T

(
1

1−ν2

)

and thus, with ν= (
1+ α

T

)−1/2, we have 1
1−ν2 = 1+ T

α and this lower bound reads∫ T

0
e−α

( 1
t + 1

T−t

)
dt ≥ T

(
1+ α

T

)−1/2
e−

4α
T −4 ≥C T 3/2e−

4α
T ,

for T ∈ [0,1]. As a consequence, with cl defined in (95), we have the rough esimate

cl ≥
1

βl
e−β

2
l T

∫ T

0
e−α

( 1
t + 1

T−t

)
dt ≥C

T 3/2

βl
e−β

2
l T e−

4α
T . (96)

Finally, for a finite sequence (an)n∈N∗ (see below for a definition) and bn = c−1
n an , we write

z(t ) = ∑
n∈N∗

anun(t ) = ∑
n∈N∗

bn wn(t ) =
∫ S

−S

∑
n∈N∗

kT (t , s)bn vn(s)ds.
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By Cauchy–Schwarz inequality in L2(−S,S), we deduce

‖z‖2
L2(0,T ) =

∫ T

0

(∫ S

−S

∑
n∈N∗

kT (t , s)bn vn(s)ds

)2

dt ≤
∫ T

0
‖kT (t , · )‖2

L2(−S,S)

∫ S

−S

∣∣∣∣∣ ∑
n∈N∗

bn vn(s)

∣∣∣∣∣
2

dsdt

≤C0

∫ T

0
‖kT (t , · )‖2

L2(−S,S) dt
∑

n∈N∗
|bn |2,

after having used (91). Then, we fix α := 2S2(1+ε) for ε> 0, and next fix δ ∈ (0,1) close to 1 so that

δ/(1+δ) < 2 and S2/δ<α/(1+δ), and by (93), |kT (t , s)| ≤ Se
2
T

(
S2

δ
− α

1+δ
)
≤ S uniformly in T ∈ [0,1].

Therefore, we obtain

‖z‖2
L2(0,T ) ≤C

∑
n∈N∗

c−2
n |an |2 ≤ C

T 3 e
8α
T

∑
n∈N∗

β2
ne2β2

n T |an |2 = C

T 3 e
16S2(1+ε)

T
∑

n∈N∗
β2

ne2β2
n T |an |2

after having used (96). �

We have used the following classical lemma that we state and prove only because we did not
find any reference precising the constants involved. The proof we present is taken from Gohberg–
Krein [27, Theorem 2.1 p. 310].

In the following, we shall say that a sequence (ak )k∈N is finite if ak 6= 0 for only a finite number
of indices k ∈N.

Lemma 42 (Biorthogonal family with explicit constants). Let H be a Hilbert space with norm
‖·‖H , C1,C2 > 0 two constants, and (ϕk )k∈N ∈ HN a sequence so that

C1

∥∥∥∥∥ ∑
k∈N

akϕk

∥∥∥∥∥
2

H

≤ ∑
k∈N

|ak |2 ≤C2

∥∥∥∥∥ ∑
k∈N

akϕk

∥∥∥∥∥
2

H

(97)

for any finite sequence (ak )k∈N. Then, there exists a sequence (ψk )k∈N in spank∈Nϕk so that(
ϕk ,ψn

)
H = δk,n , for all k,n ∈N,

and

C−1
2

∥∥∥∥∥ ∑
k∈N

akψk

∥∥∥∥∥
2

H

≤ ∑
k∈N

|ak |2 ≤C−1
1

∥∥∥∥∥ ∑
k∈N

akψk

∥∥∥∥∥
2

H
for any finite sequence (ak )k∈N.

Proof. Let (ek )k∈N be an arbitrary orthonormal basis of the Hilbert space H̃ = spank∈Nϕk

endowed with the norm ‖·‖H̃ = ‖·‖H . We define two linear operators, A on spank∈N ek and A1

on spank∈Nϕk , by

A

( ∑
k∈N

ak ek

)
=

( ∑
k∈N

akϕk

)
; A1

( ∑
k∈N

akϕk

)
=

( ∑
k∈N

ak ek

)
for finite sequences (ak )k∈N. Note that it is uniquely defined thanks to the orthogonality of the
family (ek )k∈N and Assumption (97). Assumption (97) actually gives more precisely∥∥∥∥∥A

( ∑
k∈N

ak ek

)∥∥∥∥∥
2

H

≤C−1
1

∑
k∈N

|ak |2 =C−1
1

∥∥∥∥∥ ∑
k∈N

ak ek

∥∥∥∥∥
2

H

,∥∥∥∥∥A1

( ∑
k∈N

akϕk

)∥∥∥∥∥
2

H

=
∥∥∥∥∥ ∑

k∈N
ak ek

∥∥∥∥∥
2

H

= ∑
k∈N

|ak |2 ≤C2

∥∥∥∥∥ ∑
k∈N

akϕk

∥∥∥∥∥
2

H

.

In particular, A and A1 can be extended uniquely by uniform continuity to H̃ (recall that
spank∈N ek = H̃ = spank∈Nϕk by definition) with ‖A‖H̃→H̃ ≤ C−1/2

1 and ‖A1‖H̃→H̃ ≤ C 1/2
2 . More-

over, they satisfy A A1 = A1 A = IdH̃ . Then, we define ψn := A∗
1 en . With this definition, we have(

ϕk ,ψn
)

H = (
ϕk , A∗

1 en
)

H = (
A1ϕk ,en

)
H = (ek ,en)H = δk,n .
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Moreover, ∥∥∥∥∥ ∑
k∈N

akψk

∥∥∥∥∥
2

H

=
∥∥∥∥∥A∗

1

( ∑
k∈N

ak ek

)∥∥∥∥∥
2

H

≤ ∥∥A∗
1

∥∥2
H̃→H̃

∥∥∥∥∥ ∑
k∈N

ak ek

∥∥∥∥∥
2

H

≤C2
∑

k∈N
|ak |2,

∑
k∈N

|ak |2 =
∥∥∥∥∥A∗A∗

1

( ∑
k∈N

ak ek

)∥∥∥∥∥
2

H

≤ ∥∥A∗∥∥2
H̃→H̃

∥∥∥∥∥ ∑
k∈N

akψk

∥∥∥∥∥
2

H

≤C−1
1

∥∥∥∥∥ ∑
k∈N

akψk

∥∥∥∥∥
2

H

,

which concludes the proof of the lemma. �

Appendix C. Proofs of technical results

In this section, we provide with proofs of some technical results stated in the introduction.

C.1. Proof of Lemma 9

Proof of Lemma 9. Note that for E > minV =V (x0),Φ is differentiable at all points where x− and
x+ are, that is for E ∈R\ {V (L),V (0)}, with

Φ′(E) = x ′
+(E)

√
E −V (x+(E))−x ′

−(E)
√

E −V (x−(E))+
∫ x+(E)

x−(E)

1

2
p

E −V (s)
ds

=
∫ x+(E)

x−(E)

1

2
p

E −V (s)
ds = 1

4
p

E
T (E).

As a consequence, we have
(
Φ(E 2)

)′ = 2EΦ′(E 2) = 1
2 T (E 2). �

C.2. Proof of Lemma 10

Proof of Lemma 10. Hence, T1 (defined in (7)) and TE ,B (defined in (8)) are linked by: (recall

E0 =V (x0) = |f′(x0)|2
4 )

TE ,B = 1

π

∫ +∞

V (x0)
log

∣∣∣∣ x +E +2B

x −E

∣∣∣∣Φ′(x)dx = 1

π

∫ +∞

V (x0)
log

∣∣∣∣ x +E +2B

x −E

∣∣∣∣ T (x)

4
p

x
dx ≤ T1Γ(E ,B ,V (x0)),

with

Γ(E ,B ,E0) = 1

π

∫ +∞

E0

log

∣∣∣∣ x +E +2B

x −E

∣∣∣∣ 1

4
p

x
dx = 1

2π

∫ +∞
p

E0

log

∣∣∣∣ y2 +E +2B

y2 −E

∣∣∣∣dy.

Changing variables in this last integral, we obtain

Γ(E ,B ,E0) =
p

E0

2π
Γ0

(√
E +2B

E0
,

√
E

E0

)
, with Γ0(α,β) =

∫ +∞

1
log

∣∣∣∣ y2 +α2

y2 −β2

∣∣∣∣dy

We have obtained

TE ,B ≤ T1
p

E0

2π
Γ0

(√
E +2B

E0
,

√
E

E0

)
,

and we now compute Γ0(α,β) for α,β≥ 1 (since E ≥ E0). We set, for α,β≥ 1

Fα(y) := y
(
log(y2 +α2)−2

)+2αarctan
( y

α

)
, y ∈R,

G+
β (y) := y

(
log(y2 −β2)−2

)+β log

(
y +β
y −β

)
, y >β,

G−
β (y) := y

(
log(β2 − y2)−2

)+β log

(
β+ y

β− y

)
, 1 ≤ y <β,
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and notice that F ′
α(y) = log(y2 + α2) for all y ∈ R, (G+

β
)′(y) = log(y2 − β2) for all y > β and

(G−
β

)′(y) = log(β2−y2) for all 1 ≤ y <β. Moreover, we notice that limy→β+ G+
β

(y) = 2β(log(2β)−1) =
limy→β− G−

β
(y), and thus Gβ := 1(−∞,β)G

−
β
+1[β,+∞)G

+
β

is continuous. As a consequence, we can
compute explicitly for α,β≥ 1

Γ0(α,β) = [
Fα(y)−Gβ(y)

]∞
1 = lim

y→+∞(Fα(y)−G+
β (y))− (Fα(1)−G−

β (1)) =πα−Fα(1)+G−
β (1)

=πα− log(1+α2)−2αarctan

(
1

α

)
+ log(β2 −1)+β log

(
β+1

β−1

)
,

which is the sought result. �

C.3. Proof of Lemma 11

Proof of Lemma 11. Note first that, recalling that WE = f
2 + dA,E and W̃E = f

2 − dA,E , and that
dA,E = 0 on KE , we obtain

min
[0,L]

WE ≤ min
KE

WE = min
KE

W̃E ≤ sup
[0,L]

W̃E ,

and thus (18) holds true. Next, according to Lemma 10, the quantities S6,E ,B and S7 are linked by

0 = S5 ≤ S6,E ,B = TE ,B ≤ S7

4π
p

2
Γ0

(√
E +2B

E0
,

√
E

E0

)
,

As a consequence, using that 2 E+B
E0

=
(√

E+2B
E0

)2
+

(√
E
E0

)2

S6,E ,B

E +B
≤ E0

E +B

S7

E0

1

4π
p

2
Γ0

(√
E +2B

E0
,

√
E

E0

)
≤ S7

E0

1

2π
p

2
sup
α≥β≥1

1

α2 +β2 Γ0(α,β).

Note that the supremum is actually a maximum according to Lemma 10, whence (19). �

C.4. Proof of Lemma 12

Proof of Lemma 12. We write f = ±g with g strictly increasing [0,L]; the case f increasing (resp.
decreasing) will be denoted the case + (resp. −) and in both cases we have g ′ ≥ 0.

Note that we only need to prove the result in the case E ∈ V ([0,L]), for if E > maxV , we have
dA,E = 0 identically on [0,L] and thus WE = W̃E = f

2 and the result follows.
For E ≥ E0, we recall that x±(E) are defined just after (7). Outside of KE = [x−(E), x+(E)],

we have d ′
A,E (x) =

√
|g ′(x)|2

4 −E for x ≥ x+(E), and d ′
A,E (x) = −

√
|g ′(x)|2

4 −E for x ≤ x−(E). As a
consequence, recalling the definition of WE in (4), we have

W ′
E (x) =



−
√

|g ′(x)|2
4

−E ± g ′(x)

2
= g ′(x)

2

(
−

√
1− 4E

|g ′(x)|2 ±1

)
for x ≤ x−(E),

± g ′(x)

2
for x ∈ [x−(E), x+(E)],√

|g ′(x)|2
4

−E ± g ′(x)

2
= g ′(x)

2

(√
1− 4E

|g ′(x)|2 ±1

)
for x ≥ x+(E).

Outside of KE = [x−(E), x+(E)], we always have 0 ≤
√

1− 4E
|g ′(x)|2 ≤ 1, so that for x ∈ [0,L], WE is

increasing in the case + and decreasing in the case −.
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Concerning W̃E (s) = f
2 (s)−dA,E (s), we compute similarly

W̃E
′
(x) =



± g ′(x)

2
+

√
|g ′(x)|2

4
−E = g ′(x)

2

(
±1+

√
1− 4E

|g ′(x)|2
)

for x ≤ x−(E),

± g ′(x)

2
for x ∈ [x−(E), x+(E)],

± g ′(x)

2
−

√
|g ′(x)|2

4
−E = g ′(x)

2

(
±1−

√
1− 4E

|g ′(x)|2
)

for x ≥ x+(E).

So, as for WE , the function W̃E (s) is increasing on [0,L] in the case + and decreasing in the case −.
To summarize, in the case +, we have

min
[0,L]

WE =WE (0); sup
[0,L]

W̃E = W̃E (L);

while in the case −, we have

min
[0,L]

WE =WE (L); sup
[0,L]

W̃E = W̃E (0);

The statements concerning G5,E = G7,E = WE (0)−min[0,L] WE = 0 and G6,E = WE (0)− sup[0,L] W̃E

are then direct consequences of the above results.
Concerning the last properties of these functions, we notice that dA,E (0) and dA,E (L) are non-

increasing functions of E . This proves that G6,E is non increasing in both cases.
Finally, if g is odd, then g ′ = |g ′| is even and dA,E is even. All sought simplifications follow. �

C.5. Elementary computations

We collect here two elementary lemmata, that are used in the proof of Theorem 7.

Lemma 43. Let a,b > 0, and set F (m) := a
(1−m) −bm for m ∈ [0,1). Then,

• if a ≤ b then, minm∈[0,1) F (m) = F
(
1−

√
a
b

)
= 2

p
ab −b;

• if a ≥ b then, minm∈[0,1) F (m) = F (0) = a.

Proof. We simply write F ′(m) = a
(1−m)2 −b ≥ 0 ⇔ (1−m)2 ≤ a

b ⇔ 1−m ≤
√

a
b ⇔ m ≥ 1−

√
a
b . �

Lemma 44. Let a,b,c > 0. Let G(T ) = minm∈[0,1)
a

(1−m)T −bmT + c. Then,

G(T ) < 0 if and only if T > 2

√
a

b
+ c

b
.

Proof. In the case a ≥ bT 2, it follows from Lemma 43 that G(T ) ≥ 0. In case a ≤ bT 2, we have from
Lemma 43 that G(T ) = minm∈[0,1)

a
(1−m)T −bmT + c = 2

p
ab −bT + c which gives the result. �
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