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1. Introduction

Let k be an algebraically closed field. The classification of algebraic subgroups of groups of bira-
tional transformations was initiated in [8], where Enriques shows that each connected algebraic
subgroup of Bir(P2) is conjugate to an algebraic subgroup of Aut◦(S), with S isomorphic to P2 or
to the n-th Hirzebruch surface Fn for n 6= 1; and these are all maximal, with respect to the inclu-
sion, among the connected algebraic subgroups of Bir(P2). The connected algebraic subgroups
of Bir(P3) have been classified over k =C by Umemura in a series of four papers [21–24] and it fol-
lows again from his classification that each connected algebraic subgroup of Bir(P3) is contained
in a maximal one (see also [2,3] for a modern approach). However, it is an open problem whether
every connected algebraic subgroup of Bir(Pn) is contained in a maximal one when n ≥ 4.

On the other hand, it is proven in [11, Theorem C] that there exist connected algebraic
subgroups of Bir(C ×P1) not contained in a maximal one when C is a smooth curve of positive
genus. The proof of this result is based on the existence of infinite increasing sequences of
connected algebraic subgroups of Bir(C ×P1) (see [11, Theorem A]), and on the fact that the
dimension of a maximal connected algebraic subgroup of Bir(C ×P1) is bounded by 4 (see [11,
Theorem B] and [20, Theorem 3]). Our main result in this note is a higher dimensional analogue
of [11, Theorem C]:
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Theorem A. Let k be an algebraically closed field of characteristic 0. Let n ≥ 1 and C be a smooth
curve of positive genus. Then there exists a connected algebraic subgroup of Bir(C ×Pn) which is
not contained in a maximal one.

The idea of the proof is to consider the connected algebraic subgroup Aut◦(S ×Pn), where S
is a ruled surface such that Aut◦(S) is not contained in a maximal connected algebraic subgroup
of Bir(S), and to show that it cannot be contained in a maximal connected algebraic subgroup
of Bir(S ×Pn). Since Aut◦(S ×Pn) ' Aut◦(S)×PGLn+1(k) by [6, Corollary 4.2.7], the existence of
infinite increasing sequences of connected algebraic subgroups of Bir(C ×Pn+1) is an immediate
consequence of [11, Theorem A]. From this alone, it is nonetheless insufficient to deduce that
one of the connected algebraic subgroups of Bir(C ×Pn+1) appearing in the infinite increasing
sequences is not contained in a maximal one (see Remark 8), and classifying all connected
algebraic subgroups of Bir(C ×Pn+1) seems out of reach at the moment.

This article is organized as follows. Section 2 contains two results, namely Lemmas 6 and 7,
which are important for the proof of the higher dimensional case. As a consequence of these
two lemmas, we also get a new and short proof of the dimension two case (see Proposition 9),
without using the classification of the maximal connected algebraic subgroups of Bir(C×P1) ([11,
Theorem B]). In Section 3, we prove the higher dimensional case under the extra assumption that
char(k) = 0, in view of using the machinery of the MMP and the G-Sarkisov program. The latter
has been developped by Floris in [9], building upon results of Hacon and McKernan in [13]. More
precisely, if G is a connected algebraic group, then every G-equivariant birational map between
Mori fibre spaces decomposes into G-Sarkisov links (see [9, Theorem 1.2]). We study the possible
links in Lemmas 13 and 14. Combining Proposition 9 and Theorem 15, we get Theorem A.

It is very natural to also ask whether for all n ≥ 2, there exists a variety X of dimension n
such that Bir(X ) contains algebraic subgroups which are not lying in a maximal one, without
the connectedness assumption. If n = 2, the answer is also affirmative (see [10, Lemma 3.1,
Corollary B]), and the proof is analogous to that of the connected case. Since the G-Sarkisov
program is known only for connected algebraic groups, it is not clear if the proof presented in
this article could be adapted for the non-connected case in higher dimension.
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2. Some preliminaries and the case of dimension two

From now on, C will always denote a smooth curve of genus g over a field k. In this section,
k is an algebraically closed field of arbitrary characteristic. The following invariant was used by
Maruyama in [19, 20] for his classification of ruled surfaces and their automorphisms.

Definition 1. Let V be a rank-2 vector bundle over C and τ : S = P(V ) →C be a ruled surface. We
say that τ is decomposable if V is the direct sum of two line bundles over C . Otherwise, we say that
τ is indecomposable. We define the Segre invariant of S as

S(S) = min{σ2,σ section of τ}.
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Remark 2. Let τ : S →C be a ruled surface.

(1) Let p ∈ S and σ be a section of τ. Recall that the blow-up of S at p followed by the
contraction of the strict transform of the fibre passing through p, yields a ruled surface
τ′ : S′ → C and a birational map ε : S 99K S′ called the elementary transformation of S
centered at p (see e.g. [14, V. Example 5.7.1]). Let σ′ be the strict transform of σ by ε. If
p ∈σ, then σ′2 =σ2 −1. Else, σ′2 =σ2 +1.

(2) As S is obtained by finitely many elementary transformations from C ×P1 (see e.g. [14, V.
Exercise 5.5]) and S(C ×P1) = 0 (see e.g. [11, Lemma 2.14]), it follows that S(S) > −∞.
If moreover S(S) < 0, then there exists a unique section with negative self-intersection
number (see e.g. [10, Lemma 2.10(1)]).

(3) The Segre invariant S(S) equals −e, where e is the invariant defined in [14, V. Proposi-
tion 2.8]. If τ is indecomposable, then by [14, V. Theorem 2.12(b)], we get S(S) ≥ 2−2g =
−deg(KC ). In particular, if S(S) <−deg(KC ), then τ is decomposable.

We recall the statement of Blanchard’s lemma and its corollary (see [6, Proposition 4.2.1,
Corollary 4.2.6]):

Proposition 3. Let f : X → Y be a proper morphism of schemes such that f∗(OX ) =OY , and let G
be a connected group scheme acting on X . Then there exists a unique action of G on Y such that f
is G-equivariant.

Corollary 4. Let f : X → Y be a proper morphism of schemes such that f∗(OX ) = OY . Then f
induces a homomorphism of group schemes f∗ : Aut◦(X ) → Aut◦(Y ).

Remark 5. Let τ : S → C be a decomposable ruled surface. Assume that C has genus g = 1 and
S(S) 6= 0, or that g ≥ 2. Then by [20, Lemma 7], the morphism induced by Blanchard’s lemma
τ∗ : Aut◦(S) → Aut◦(C ) is trivial.

In the next two lemmas, we compute Aut◦(S) and its orbits for a ruled surface τ : S → C with
S(S) <−(1+deg(KC )) (which is decomposable by Remark 2 3).

Lemma 6. Let C be a curve of genus g ≥ 1. Let τ : S =P(V ) →C be a decomposable P1-bundle such
that S(S) <−(1+deg(KC )). Let σ be the minimal section of τ and L(σ) be the line subbundle of V
associated to σ. We choose trivializations of τ such that σ is the infinity section. Then the following
hold:

(1) The group Aut◦(S) is isomorphic to Gm oΓ(C ,det(V )∨⊗L(σ)⊗2), where det(V ) denotes the
determinant line bundle of V . This isomorphism associates α ∈Gm and γ ∈ Γ(C ,det(V )∨⊗
L(σ)⊗2), to the element µα,γ ∈ Aut◦(S) obtained by gluing the automorphisms:

Ui ×P1 →Ui ×P1

(x, [u : v]) 7→ (
x, [αu +γ|Ui (x)v : v]

)
.

(2) The Aut◦(S)-orbits in S are {p} and τ−1(τ(p)) \ {p} for p ∈σ.

Proof. (1). The proof follows from the computation made in [20, case (b) p. 92]. For the sake of
self-containess, we recall it below. Since τ is decomposable, we can write its transition maps as
ti j : U j ×P1 →Ui ×P1, (x, [u : v]) 7→ (

x, [ai j (x)u : bi j (x)v]
)
, where [u : v] denotes the coordinates of

P1, ai j ∈OC (Ui ∩U j )∗ denotes the transition maps of the line bundle L(σ) and bi j ∈OC (Ui ∩U j )∗.
Let µ ∈ Aut◦(S). The morphism induced by Blanchard’s lemma τ∗ : Aut◦(S) → Aut◦(C ) is trivial
(Remark 5). Moreover, σ is fixed by Aut◦(S) as it is the unique minimal section. Therefore, for
each trivializing open subset Ui ⊂C , µ induces an automorphism µi : Ui ×P1 →Ui ×P1, given by
(x, [u : v]) 7→ (

x, [αi (x)u +γi (x)v : v]
)
, where αi ∈OC (Ui )∗ and γi ∈OC (Ui ). The condition µi ti j =

ti jµ j implies that αi =α j =α ∈Gm and γi = b−1
i j ai jγ j . Since ai j bi j are the transition maps of the
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line bundle det(V ), and ai j denote the transition maps of L(σ), it implies that γ ∈ Γ(C ,det(V )∨⊗
L(σ)⊗2). The data ofα ∈Gm and γ ∈ Γ(C ,det(V )∨⊗L(σ)⊗2) determine uniquely the automorphism
µ, this proves that we have an embedding Aut◦(S) ,→GmoΓ(C ,det(V )∨⊗L(σ)⊗2). Conversely, one
can check that the automorphisms defined in the statement commute with the transition maps,
hence their gluing defines an automorphism of S. Because Gm oΓ(C ,det(V )∨ ⊗ L(σ)⊗2) is also
connected, we get that it is isomorphic to Aut◦(S).

(2). Since the morphism induced by Blanchard’s lemma τ∗ : Aut◦(S) → Aut◦(C ) is trivial (Re-
mark 5), each Aut◦(S)-orbit is contained in a fibre of τ. As σ is the unique section with nega-
tive self-intersection number, it is fixed pointwise by Aut◦(S). It remains to see that Aut◦(S) acts
transitively on τ−1(τ(p)) \ {p} for each p lying on σ.

Let L = det(V )∨ ⊗ L(σ)⊗2. It follows from [11, Proposition 2.15] that deg(L) = −S(S) > 1 +
deg(KC ). Let p ∈σ and let τ(p) = z. We get by Serre duality that

h1(C ,L) = h0(C ,KC ⊗L∨) = 0,

where the last equality follows from the fact that deg(KC ⊗L∨) <−1. Similarly we get the equality
h1(C ,L⊗OC (z)∨) = 0. By Riemann–Roch, h0(C ,L⊗OC (z)∨) = deg(L)−g < deg(L)−g +1 = h0(C ,L).
Therefore, z is not a base point of the complete linear system |L|, i.e. there exists γ ∈ H 0(C ,L) such
that γ(z) 6= 0, and the subgroup Ga ' {µ1,λγ;λ ∈ k} acts transitively on τ−1(z) \ {p} (see 1 for the
definition of µ1,λγ). �

Let S be a ruled surface as in Lemma 6, and φ : S 99K S′ be an Aut◦(S)-equivariant birational
map. In the following lemma, we compute the fixed points of the action of φAut◦(S)φ−1 on S′.

Lemma 7. Let C be a curve of genus g ≥ 1. Let τ : S → C be a decomposable P1-bundle such that
S(S) < −(1 + deg(KC )). If τ′ : S′ → C is a ruled surface and there exists an Aut◦(S)-equivariant
birational map φ : S 99K S′ which is not an isomorphism, then S(S′) <S(S) and φAut◦(S)φ−1 (
Aut◦(S′). The fixed points of the action of φAut◦(S)φ−1 on S′ are the points lying on the minimal
section of τ′ and the base points of φ−1. Moreover, we can write φ as a product of Aut◦(S)-
equivariant elementary transformations centered on the minimal sections.

Proof. By [7, Theorem 7.7], we can write φ = φn · · ·φ1 where each φi is an Aut◦(S)-equivariant
elementary transformation. Without loss of generality, we can assume that this decomposition
is minimal (i.e. the number of elementary transformations n is minimal among all possible
factorizations), and we prove the statement by induction on n ≥ 1.

Let σ be the minimal section of τ. By Lemma 6 2, the algebraic group Aut◦(S) acts transitively
on τ−1(τ(p)) \ {p} for every p ∈ σ. Since φ1 is Aut◦(S)-equivariant, it follows that φ1 : S 99K S1

is an elementary transformation centered on a point p1 ∈ σ. The strict transform of σ by φ1

is the minimal section σ1 of the ruled surface τ1 : S1 → C , and so S(S1) = S(S)− 1. Since the
base point q1 of φ−1

1 does not lie on the minimal section σ1 of τ1, it follows by Lemma 6 2
that q1 is not fixed by Aut◦(S1). Since q1 is fixed by φ1 Aut◦(S)φ−1

1 , we have the strict inequality
φ1 Aut◦(S)φ−1

1 ( Aut◦(S1). In the complement of the fibres fp1 ⊂ S and fq1 ⊂ S1 containing the
points p1 and q1 respectively,φ1 is an isomorphism. Therefore, by Lemma 6, the only fixed points
of φ1 Aut◦(S)φ−1

1 that lie in the complement of fq1 are the points on the minimal section σ1.
It remains to check that the only fixed points on fq1 are the point q ′

1 ∈ σ1 and the base point
q1 of φ−1. Let U be a trivializing open subset of τ with τ(p1) ∈ U , and let f ∈ OC (U ) such that
div( f )|U = τ(p1). We also choose trivializations of τ such that σ is the infinity section. Up to
isomorphisms at the source and the target,φ1|U equals (x, [u : v]) 7→ (x, [ f (x)u : v]). By Lemma 6 1,
there is an action of Gm on S given locally by (x, [u : v]) 7→ (x, [αu : v]). It implies that there is
an action of φ1Gmφ−1

1 on S1, given locally by (x, [u : v]) 7→ (x, [α f (x)u : f (x)v]) = (x, [αu : v]).
Therefore, φ1Gmφ−1

1 ⊂ Aut◦(S′) acts transitively on fq1 \ {q1, q ′
1}. Since φ1 Aut◦(S)φ−1

1 ⊂ Aut◦(S′)
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acts fibrewise (Remark 5) and is connected, we get that q1 and q ′
1 are the fixed points of the action

of φ1 Aut◦(S)φ−1
1 on fq1 .

Assume the statement holds for the birational map ψ=φi · · ·φ1 : S 99K Si , for some i ≥ 1, and
where τi : Si → C is a ruled surface with a minimal section σi . We now prove that the statement
is then true forφi+1ψ. By induction, the fixed points ofψAut◦(S)ψ−1 on Si are the points lying on
the minimal section σi and the base points of ψ−1.

Assume that φi+1 is centered on a base point of ψ−1, which is (the image of) the base point
of the inverse of a previous elementary transformation φ j . A local calculation yields that we
may cancel both φ j and φi+1, which contradicts the minimality of the factorization of φ. So
φi+1 is centered on a point lying on the minimal section σi . Hence S(Si+1) = S(Si ) − 1 <
S(S) by induction, and φi+1(ψAut◦(S)ψ−1)φ−1

i+1 ⊂ Aut◦(Si+1). The base point of φi+1 is fixed
by φi+1(ψAut◦(S)ψ−1)φ−1

i+1, but is not fixed by Aut◦(Si ) (by Lemma 6). Thus, we get the strict
inclusion φi+1(ψAut◦(S)ψ−1)φ−1

i+1 (Aut◦(Si+1). �

The infinite increasing sequences of automorphism groups given in [11, Theorem A] can be
obtained from Lemma 7, but they do not imply that Aut◦(S) is not contained in a maximal
connected algebraic subgroup. As it is explained below, we can get an infinite increasing sequence
of connected algebraic subgroups, where each of them is included in a maximal one, which a
fortiori cannot be the same for all of them.

Remark 8. Let n ≥ d ≥ 2. Define the connected algebraic groups

Gd = {A2 →A2, (x, y) 7→ (x, y +p(x)), p ∈ k[x]≤d },

acting regularly onA2, and then birationally on P2 via any embeddingA2 ,→P2. Then Gd (Gd+1

for all d . On the other hand, using an explicit description of Aut◦(Fn) from [1, §4.2], we get for
all n ≥ d that Gd is a subgroup of Aut◦(Fn), which is a maximal connected algebraic subgroup of
Bir(P2).

Notice that for any variety X , using Remark 8, we may produce an infinite increasing sequence
of algebraic subgroups of Bir(X ×P2). In particular, for n ≥ 2 and C a curve of positive genus, the
same is true for Bir(C ×Pn) ' Bir(C ×Pn−2 ×P2).

We reprove below partially [11, Theorem C], without using [11, Theorem B].

Proposition 9. Let C be a curve of genus g ≥ 1 and let τ : S → C be a decomposable P1-bundle
such that S(S) <−(1+deg(KC )). Then Aut◦(S) is not contained in a maximal connected algebraic
subgroup of Bir(S).

Proof. Assume that Aut◦(S) is contained in a maximal connected algebraic subgroup G of Bir(S).
Then G acts regularly on a variety Y by Weil regularization theorem (see [25], or [17, 26] for
a modern proof). By [5, Corollary 3], we can choose Y to be normal and projective. Using an
equivariant resolution of singularities (see [18, Remark B, p. 155]), we can also assume Y to
be smooth. Then by Blanchard’s lemma (see Proposition 3), the successive contractions of the
(−1)-curves gives rise to a ruled surface S′ such that the induced birational morphism Y → S′

is G-equivariant. Since G is maximal and connected, it follows that G ' Aut◦(S′). The induced
birational map φ : S 99K S′ is Aut◦(S)-equivariant. If φ is an isomorphism, then S(S) = S(S′).
Else φ factorises as product of Aut◦(S)-equivariant elementary transformations centered on the
minimal sections and S(S′) < S(S) (by Lemma 7). In both cases, we have S(S′) ≤ S(S). Let
ε : S′ 99K S′′ be an elementary transformation centered on the minimal section of τ′ : S′ →C . Then
again by Lemma 7, it follows that εAut◦(S′)ε−1 (Aut◦(S′′), which contradicts the maximality of G
as a connected algebraic subgroup of Bir(S). �



318 Pascal Fong and Sokratis Zikas

3. Higher dimensional case

In what follows, we would like to utilize the machinery of the G-Sarkisov program for a connected
algebraic group G . Thus from now on, we furthermore assume that char(k) = 0. The G-Sarkisov
program is a non-deterministic algorithm that decomposes every G-equivariant birational map
between two G-Mori fibre spaces as a product of simpler maps called G-Sarkisov links. Its non-
equivariant version was proven by Hacon and McKernan in [13] and, building on their result,
Floris proved the G-equivariant version in [9]. We follow the strategy of the proof of Proposition 9,
and in view of using G-Sarkisov program, we recall first the definition:

Definition 10. Let G be a connected algebraic group. A G-Mori fibre space is a Mori fibre space
with a regular action of G. Let π1 : X1 → B1 and π2 : X2 → B2 be two birational G-Mori fibre spaces.
A G-Sarkisov diagram between X1/B1 and X2/B2 is a commutative diagram of the form

Y1

α1

��

χ // Y2

α2

��
X1

π1

��

X2

π2

��
B1

s1   

B2

s2~~
R

which satisfies the following properties:

(1) all morphisms appearing in the diagram are either isomorphisms or outputs of some G-
equivariant MMP on a Q-factorial klt G-pair (Z ,Φ) (recall that a G-pair is a pair (Z ,Φ)
such that G acts regularly on Z and there is an induced regular action on Φ),

(2) maximal dimensional varieties have Q-factorial and terminal singularities,
(3) α1 and α2 are G-equivariant divisorial contractions or isomorphisms,
(4) s1 and s2 are G-equivariant extremal contractions or isomorphisms,
(5) χ is an isomorphism or a composition of G-equivariant anti-flips/flop/flips (in that order),
(6) the relative Picard rank ρ(Z /R) of any variety Z in the diagram is at most 2.

We call R the base of the diagram.
Property 6 implies that α1 is a divisorial contraction if and only if s1 is an isomorphism. A

similar statement holds for the right hand side of the diagram. Depending whether s1 or s2 is an
isomorphism, we get four types of Sarkisov diagrams:

Type I

Y1
//

��

X2

π2

��
X1

π1

��

B2

{{
B1 = R

Type II

Y1
//

��

Y2

��
X1

π1

��

X2

π2

��
B1 = R = B2

Type III

X1
//

π1

��

Y2

��
B1

##

X2

π2

��
R = B2

Type IV

X1
//

π1

��

X2

π2

��
B1

��

B2

��
R .

The birational map ψ=α2χα
−1
1 between X1 and X2 is called a G-Sarkisov link.

Remark 11. Property 2 does not follow directly from the original definition of a (G-)Sarkisov
diagram of [13] and [9]. For a proof, see [4, Proposition 4.25].
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In subsequent proofs we are going to make heavy use of the following elementary but useful
observation:

Remark 12. Let Z be one of the varieties appearing in a G-Sarkisov diagram, such that the
relative Picard rank ρ(Z /R) is 2. Then the G-Sarkisov diagram is uniquely determined by the
datum of Z → R, by a process known as the 2-ray game (see [4, §2.F]).

More specifically, the 2-ray game is a deterministic process that assigns to any such Z → R a G-
Sarkisov diagram. Moreover any G-Sarkisov diagram can be recovered by the 2-ray game on any
of its relative Picard rank 2 morphisms. Thus, up to orientation of the diagram, there is a unique
G-Sarkisov diagram that contains Z → R.

Lemma 13. Let n ≥ 1 and C be a curve of genus g ≥ 1. Let τ : S → C be a decomposable P1-
bundle such that S(S) <−(1+deg(KC )) with minimal section σ and let φ : S 99K S′ be an Aut◦(S)-
equivariant birational map (possibly the identity) to aP1-bundle τ′ : S′ →C . Let π′ = τ′×idPn : S′×
Pn →C ×Pn and π′

1 : S′×Pn → S′ be the projection to the first factor. Then the following hold:

(1) The only non-trivial Aut◦(S×Pn)-Sarkisov diagrams, where π′ : S′×Pn →C ×Pn is the LHS
Mori fibre space, are the following ones:

T ×Pn T ×Pn S′×Pn S′×Pn

S′×Pn S′′×Pn C ×Pn S′

C ×Pn C ×Pn C .

α β π′ π′
1

π′ π′′
p1 τ′

In the first case, the induced Sarkisov link S′×Pn 99K S′′×Pn is equal to ψ× idPn , where
ψ : S′ 99K S′′ is an elementary transformation of P1-bundles whose center p is a point fixed
by φAut◦(S)φ−1, and T is the blow-up of S′ at p. In the second case, the induced Sarkisov
link S′×Pn 99K S′×Pn is equal to idS′×Pn .

(2) The only non-trivial Aut◦(S ×Pn)-Sarkisov diagrams, where π′
1 : S′ ×Pn → S′ is the LHS

Mori fibre space, are the following ones:

T ×Pn T ×Pn S′×Pn S′×Pn

S′×Pn T S′ C ×Pn

S′ C .

η×idPn π′′
1 π′

1 π′

π′
1 η τ p1

The induced Sarkisov link S′×Pn 99K T ×Pn is equal to η−1 × idPn in the former case and
idS′×Pn in the latter, where η : T → S′ is the blowup of S′ at point p fixed by φAut◦(S)φ−1.

Proof. (1). We distinguish between two cases depending on the base R of the diagram: if R =
C ×Pn then we have a link of Type I or II and so the first step of the link is an Aut◦(S ×Pn)-
equivariant divisorial contraction α : Y → S′×Pn . Note that by [6, Corollary 4.2.7], it follows that
(φ× idPn )Aut◦(S×Pn)(φ× idPn )−1 'φAut◦(S)φ−1×PGLn+1(k). Let (q, x) ∈ S′×Pn be a point in the
center of α. If q is not point fixed by φAut◦(S)φ−1, then and by Lemma 6 and the description of
φAut◦(S)φ−1, the closure of the orbit of (q, x) is a Cartier divisor and thus α is an isomorphism,
contradicting the assumption that α is a divisorial contraction.
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Thus we may assume that q is fixed by φAut◦(S)φ−1. In that case the orbit of (q, x) is precisely
{q}×Pn . Notice that the codimension of {q}×Pn is 2 and so by [4, Lemma 2.13]

α= (η× idPn ) : T ×Pn → S′×Pn ,

where η : T → S′ is the blowup of S′ at q . By Remark 12, the unique Sarkisov diagram containing
T ×Pn →C ×Pn is the one given in the statement.

We now consider the case when R 6=C ×Pn . Then we have a contraction C ×Pn → R of relative
Picard rank 1. Since ρ(C ×Pn) = 2, the cone of curves NE(C ×Pn) has two extremal rays and
so there are only two such contractions, namely the projections to the two factors: C ×Pn → C
and C ×Pn → Pn . However, by property (1) of Definition 10, C ×Pn → Pn would have to be an
output of some MMP on a klt pair (Z ,Φ), and thus by [12] its exceptional locus would be rationally
connected, a contradiction. Thus R =C and again we conclude by Remark 12 for S′×Pn →C×Pn .

(2). We again proceed by a similar distinction of cases. If R = S′ then, as in the proof of (1), the
first step is an Aut◦(S ×Pn)-equivariant divisorial contraction η× idPn : T ×Pn → S′×Pn , where
η : T → S′ is the blow-up of a point of S′ fixed by φAut◦(S)φ−1, and we conclude by Remark 12.

If R 6= S′, then S′ → R is one of the two morphisms S′ → C or S′ → Š′, where the latter is
the contraction of the minimal section. Again, by [12] we may exclude the latter case since its
exceptional locus is not rationally connected. Finally, Remark 12, once again, guarantees that the
Sarkisov diagram is the one in the statement. �

Lemma 14. Let n ≥ 1 and C be a curve of genus g ≥ 1. Let τ : S → C be a decomposable P1-
bundle such that S(S) < −(1+deg(KC )) with minimal section σ. Let φ : S 99K S′ be an Aut◦(S)-
equivariant birational map, with S′ being a smooth projective surface which is not minimal.
Denote by π′

1 : S′×Pn → S′ the projection to the first factor. Then the only non-trivial Aut◦(S ×Pn)-
Sarkisov diagrams, where π′

1 : S′×Pn → S′ is the LHS Mori fibre space, are the following ones:

T ×Pn T ×Pn S′×Pn S′×Pn

S′×Pn T S′ T ×Pn

S′ T.

η×idPn π′′
1 π′

1 κ×idPn

π′
1 η κ

π′′
1

In the first case, η : T → S′ is the blow-up of a point p fixed by φAut◦(S)φ−1. In the second case,
κ : S′ → T is the contraction of a (−1)-curve l . In both cases, π′′

1 denotes the projection to the first
factor.

Proof. We again distinguish between two cases depending on the base R of the Sarkisov diagram:
if R = S′ then the first step of the link is an Aut◦(S × Pn)-equivariant divisorial contraction
α : Y → S′×Pn . We follow the same strategy of the proof of Lemma 13: first by [6, Corollary 4.2.7],
(φ× idPn )Aut◦(S×Pn)(φ× idPn )−1 =φAut◦(S)φ−1×PGLn+1(k). This again implies that α has to be
an extraction with center of the form {q}×Pn , where q is a point fixed by the action ofφAut◦(S)φ−1

on S′. Since the center is of codimension 2, again using [4, Lemma 2.13], we conclude that

a = η× idPn : T ×Pn → S′×Pn ,

where η : T → S′ is the blow-up of q . By Remark 12, the diagram is the one given in the statement.
If R 6= S′,we have a morphism S′ → R of relative Picard rank 1. Since S′ is not minimal, its

Picard rank is greater or equal to 3 which already implies that R = T is a surface. Again, using
Remark 12 we may conclude that the diagram is the one proposed in the statement. Moreover, by
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property (2) of Definition 10, T ×Pn has to have terminal singularities. Thus the singular locus of
T ×Pn has codimension at least 3 (see [16, Corollary 5.18]). If q ∈ T is singular, then {q}×Pn is
singular and has codimension 2 in T ×Pn . This implies that T is smooth and consequently, S′ → T
is the contraction of a (−1)-curve. �

We prove below the higher dimensional analog of Proposition 9.

Theorem 15. Let n ≥ 1. Let C be a curve of genus g ≥ 1, let S be a decomposable P1-bundle over
C such that S(S) < −(1+deg(KC )). Then Aut◦(S ×Pn) is not contained in a maximal connected
algebraic subgroup of Bir(S ×Pn).

Proof. Assume that Aut◦(S ×Pn) is contained in a maximal connected algebraic subgroup G ⊂
Bir(S ×Pn). By [5, Corollary 3], there exists a normal and projective variety Y , G-birationally
equivalent to S × Pn , and on which G acts regularly. Then we use an equivariant resolution
of singularities (see [15, Theorem 3.36, Proposition 3.9.1]) to furthermore assume that Y is
smooth. Running an MMP, which is G-equivariant by [9, Lemma 2.5], we get an Aut◦(S ×Pn)-
equivariant birational map χ : S ×Pn 99K Y such that G ' Aut◦(Y ) and Y → B is a Mori fibre
space. By [9, Theorem 1.2], χ decomposes as a product of Aut◦(S×Pn)-equivariant Sarkisov links.
By Lemmas 13 and 14, it follows that Y = T ×Pn for some surface T and χ is of the form ψ× idPn ,
where ψ : S 99K T is an Aut◦(S)-equivariant birational map. Up to possibly performing an extra
link of Type IV (namely the RHS link in Lemma 13(1)), we may assume that B = T and θ is
given by the projection to the first factor. Contracting successively all (−1)-curves in T yields
an Aut◦(S ×Pn)-equivariant birational map φ× idPn : S ×Pn 99K S′×Pn (by Blanchard’s lemma,
see Proposition 3), where φ is Aut◦(S)-equivariant and S′ is a ruled surface. Two cases arise:
either φ is an isomorphism and S(S) =S(S′), or φ is not an isomorphism and S(S′) <S(S) by
Lemma 7. In both cases, S(S′) ≤S(S) and since G is maximal, G is isomorphic to Aut◦(S′×Pn) '
Aut◦(S′)×PGLn+1(k) ([6, Corollary 4.2.7]). Let φ′ : S′ 99K S′′ be an elementary transformation of
S′ centered at a point on the minimal section. Then φ′ Aut◦(S′)φ′−1 (Aut◦(S′′) by Lemma 6. Thus
(φ′ × idPn )Aut◦(S′ ×Pn)(φ′ × idPn )−1 ( Aut◦(S′′ ×Pn), which contradicts the maximality of G as
connected algebraic subgroup of Bir(S ×Pn). �

Proof of Theorem A. Let C be a curve of positive genus and S → C be a ruled surface. As S
is birational to C ×P1, we get for all n ≥ 1 that Bir(C ×Pn) ' Bir(S ×Pn−1). We conclude with
Proposition 9 for n = 1 and Theorem 15 for n ≥ 2. �

References

[1] J. Blanc, “Sous-groupes algébriques du groupe de Cremona”, Transform. Groups 14 (2009), no. 2, p. 249-285.
[2] J. Blanc, A. Fanelli, R. Terpereau, “Automorphisms of P1-bundles over rational surfaces”, 2021, https://arxiv.org/abs/

1707.01462.
[3] ——— , “Connected Algebraic Groups Acting on three-dimensional Mori Fibrations”, Int. Math. Res. Not. (2021),

article no. rnab293.
[4] J. Blanc, S. Lamy, S. Zimmermann, “Quotients of higher-dimensional Cremona groups”, Acta Math. 226 (2021), no. 2,

p. 211-318.
[5] M. Brion, “Algebraic group actions on normal varieties”, Trans. Mosc. Math. Soc. 78 (2017), p. 85-107.
[6] M. Brion, P. Samuel, V. Uma, Lectures on the structure of algebraic groups and geometric applications, CMI Lecture

Series in Mathematics, vol. 1, Hindustan Book Agency; Chennai Mathematical Institute, 2013, viii+120 pages.
[7] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, in Algebra, arithmetic, and geometry:

in honor of Yu. I. Manin. Vol. I, Progress in Mathematics, vol. 269, Birkhäuser, 2009, p. 443-548.
[8] F. Enriques, “Sui gruppi continui di trasformazioni cremoniane nel piano”, Rom. Acc. L. Rend. (5) 2 (1893), no. 1,

p. 468-473.
[9] E. Floris, “A note on the G-Sarkisov program”, Enseign. Math. 66 (2020), no. 1-2, p. 83-92.

[10] P. Fong, “Algebraic subgroups of the group of birational transformations of ruled surfaces”, 2021, https://arxiv.org/
abs/2111.09697.

https://arxiv.org/abs/1707.01462
https://arxiv.org/abs/1707.01462
https://arxiv.org/abs/2111.09697
https://arxiv.org/abs/2111.09697


322 Pascal Fong and Sokratis Zikas

[11] ——— , “Connected algebraic groups acting on algebraic surfaces”, 2021, https://arxiv.org/abs/2004.05101.
[12] C. D. Hacon, J. McKernan, “On Shokurov’s rational connectedness conjecture”, Duke Math. J. 138 (2007), no. 1, p. 119-

136.
[13] ——— , “The Sarkisov program”, J. Algebr. Geom. 22 (2013), no. 2, p. 389-405.
[14] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer, 1977, xvi+496 pages.
[15] J. Kollár, Lectures on resolution of singularities, Annals of Mathematics Studies, vol. 166, Princeton University Press,

2007, vi+208 pages.
[16] J. Kollár, S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge

University Press, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese
original, viii+254 pages.

[17] H. Kraft, “Regularization of Rational Group Actions”, 2018, https://arxiv.org/abs/1808.08729.
[18] J. Lipman, “Desingularization of two-dimensional schemes”, Ann. Math. 107 (1978), no. 1, p. 151-207.
[19] M. Maruyama, On classification of ruled surfaces, Lectures in Mathematics, Department of Mathematics, Kyoto

University, vol. 3, Kinokuniya Book-Store Co., 1970, iv+75 pages.
[20] ——— , “On automorphism groups of ruled surfaces”, J. Math. Kyoto Univ. 11 (1971), p. 89-112.
[21] H. Umemura, “Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables”, Nagoya Math. J.

79 (1980), p. 47-67.
[22] ——— , “Maximal algebraic subgroups of the Cremona group of three variables. Imprimitive algebraic subgroups of

exceptional type”, Nagoya Math. J. 87 (1982), p. 59-78.
[23] ——— , “On the maximal connected algebraic subgroups of the Cremona group. I”, Nagoya Math. J. 88 (1982), p. 213-

246.
[24] ——— , “On the maximal connected algebraic subgroups of the Cremona group. II”, in Algebraic groups and related

topics (Kyoto/Nagoya, 1983), Advanced Studies in Pure Mathematics, vol. 6, North-Holland, 1985, p. 349-436.
[25] A. Weil, “On algebraic groups of transformations”, Am. J. Math. 77 (1955), p. 355-391.
[26] D. Zaitsev, “Regularization of birational group operations in the sense of Weil”, J. Lie Theory 5 (1995), no. 2, p. 207-224.

https://arxiv.org/abs/2004.05101
https://arxiv.org/abs/1808.08729

	1. Introduction
	Acknowledgments

	2. Some preliminaries and the case of dimension two
	3. Higher dimensional case
	References

