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Abstract. The Fibonacci word f = 010010100100101 · · · is one of the most well-studied words in the area of
combinatorics on words. It is not periodic, but nevertheless contains many highly periodic factors (contigu-
ous subwords). For example, it contains many cubes (i.e., non-empty words of the form xxx). We study the
prefixes of the Fibonacci word that end with a cube. Using the computer prover Walnut, we obtain an exact
description of the positions of the Fibonacci word at which a cube ends. This gives a certain measure of how
close the Fibonacci word is to being periodic.
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1. Introduction

Periodicity is a fundamental concept in the study of combinatorics on words. An infinite word
w is ultimately periodic if it can be written in the form w = uv v v v v v · · · for some finite word u
and some non-empty finite word v . An infinite word that is not ultimately periodic is aperiodic.
Many of the classical results concerning periodicity give equivalent characterizations of ultimate
periodicity. For example, a classical result of Morse and Hedlund [8] states that w is ultimately
periodic if and only if there is a constant C such that for every length n, the word w contains at
most C factors (contiguous subwords) of length n.

This paper is motivated by another result of this type, which was originally conjectured by
Jeffrey Shallit and proved by Mignosi, Restivo, and Salemi [7]:

An infinite word w is ultimately periodic if and only if every sufficiently long prefix
of w ends with a suffix that has exponent at least ϕ2, where ϕ is the golden ratio.

Let x = x0x1 · · ·xn−1 be a finite word, with the xi single letters. We write |x| for the length of x;
i.e., we have |x| = n. We say that x has period p if 1 ≤ p ≤ n and xi = xi+p for i = 0, . . . , n −1−p.
A word may have several periods. The exponent of a word is the ratio of its length to its least
period. For example, the word aabaabaa has periods 3, 6, and 8 and exponent 8/3.
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Since ϕ2 ≈ 2.618, the result of Mignosi, Restivo, and Salemi implies that no aperiodic infinite
word can have every sufficiently long prefix end with a cube (a word with exponent 3). Counting
the number of prefixes of an infinite word that end with cubes can therefore provide a measure,
in some sense, of how close the infinite word is to being ultimately periodic.

The first candidate that one would choose to investigate in regards to this measure is the
Fibonacci word

f = 010010100100101001010010 · · ·
This word can be defined in terms of the following sequence of words, which are constructed by
an analogue of the Fibonacci reccurrence: let Φ0 = 0, Φ1 = 01, and let Φn = Φn−1Φn−2 for n ≥ 2.
Then

(Φn)n≥0 = (0,01,010,01001,01001010, . . .),

and f is the infinite word havingΦn as a prefix for every n ≥ 0.
The Fibonacci word is aperiodic, and, as shown by Mignosi et al., it witnesses the optimality of

their result in the following sense:

For any ε> 0, every sufficiently long prefix of the Fibonacci word ends with a suffix
that has exponent at least ϕ2 −ε.

In this paper we examine the positions at which a cube ends in the Fibonacci word (the starting
positions of cubes in the Fibonacci word have been characterized by Mousavi, Schaeffer, and
Shallit [10]). Let cubesf be the infinite word whose nth term (indexing starting from 0) is

{
1 if a cube ends at position n of f,

0 otherwise.

Our main results are given by describing precisely the runs of 1’s and 0’s in cubesf. A run is an
occurence of a factor containing only one distinct letter and which cannot be extended to the left
or to the right without encountering a different letter.

We describe the positions and lengths of the runs in cubesf using the Fibonacci (or Zeck-
endorf) numeration system, which we define later. For now, let us simply introduce some no-
tation. Let Fn denote the nth Fibonacci number and for any n ≥ 0, let (n)F denote the canon-
ical representation of n in the Fibonacci numeration system. We also use some notation from
the theory of regular expressions (see any standard text, such as [3]): the symbol ε denotes the
empty word; the operator + denotes union; and if w is a finite word, then w∗ denotes the set
{ε, w, w w, w w w, . . .} and w+ denotes the set w∗ \ {ε}.

Theorem 1. There are arbitrarily long runs of 1’s in cubesf. More precisely, the runs of 1’s in cubesf

are characterized by the following: If (i )F has the form

(i )F ∈ (10)+0(0+10)(00)∗0w,

where w ∈ 0(10)∗(ε+1) then cubesf contains a run of 1’s of length

• F2n+2 −1, if |w | = 2n for some n ≥ 0,
• F2n+3 −1, if |w | = 2n +1 for some n ≥ 0,

beginning at position i .

Theorem 2. The runs of 0’s in cubesf have lengths 1, 2, 3, 7, 8, and 13. The only run of length 13
occurs at the beginning of cubesf. For each of the other lengths (1, 2, 3, 7, and 8), there are infinitely
many runs of that length in cubesf.
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2. Walnut and automatic sequences

Our main results are all obtained by computer using a computer prover called Walnut [9],
which provides an implementation of an algorithm for proving many combinatorial properties
of infinite words such as the Fibonacci word. Walnut can be obtained from the website

https://cs.uwaterloo.ca/~shallit/walnut.html

which also contains a tutorial on how to use it and a list of papers that contain results proved
using Walnut.

Walnut operates on a class of sequences known as automatic sequences. The following is a brief
and somewhat informal overview of the basic definitions needed for this topic; for further details
the reader can consult [1].

Let Σ be a finite alphabet and let Σ∗ denote the set of all words over the alphabet Σ. A
deterministic finite automaton with output (DFAO) is a 6-tuple Γ = (Q,Σ,δ, q0,∆,τ), where Q is
a finite set of states, Σ is a finite input alphabet, δ : Q ×Σ is the transition function, ∆ is a finite
output alphabet, and τ : Q → ∆ is the output function. A DFAO is often represented as an edge-
labeled directed graph where the vertices are the states from Q, and for each (q, a) ∈Q×Σ there is
a directed edge from q to δ(q, a) labeled a. Given an input word w ∈Σ∗, the computation of Γ on
w is performed by starting in the initial state q0 and then, as w is processed symbol-by-symbol,
the computation moves from state to state based on the current state, the symbol being read,
and the transition function δ. Finally, after reading w , the automaton ends up in some state q
and outputs the value τ(q). This computation defines a map f :Σ∗ →∆.

Now suppose that Σ = {0,1, . . . ,k − 1} and let (n)k denote the base-k expansion of n. Then
such an f : Σ∗ → ∆ can be used to define a sequence (or infinite word) (an)n≥0 over ∆ by taking
an = f ((n)k ). In other words, Γ takes (n)k as input and outputs an . Such a sequence is called a
k-automatic sequence. In this paper it is assumed that DFAO’s read their input starting with the
most significant digit first.

We can generalize this model to numeration systems beyond the usual base-k systems. In this
paper, we will be using a numeration system based on the sequence of Fibonacci numbers. Let
F0 = 0, F1 = 1, and Fn = Fn−1 +Fn−2 for n ≥ 2. Several authors (Ostrowski [11], Lekkerkerker [5],
Zeckendorf [12]) showed that every non-negative integer has an essentially unique representa-
tion as a sum of Fibonacci numbers, subject to the constraint that one cannot use two consecu-
tive Fibonacci numbers in the sum. Let n =Σ`i=1ai F`+2−i be such a representation. If a1 6= 0, then
we call (n)F := a1a2 · · ·a` the canonical Fibonacci representation of n.

We can now define Fibonacci-automatic sequences via DFAO’s exactly as above, except that
now our sequence (an)n≥0 is defined by an = f ((n)F ); i.e., the DFAO takes (n)F as input and
returns an as output. The Fibonacci word f is Fibonacci-automatic and is defined by the DFAO
in Figure 1 (here the output associated with each state is simply its label). For example, the
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Figure 1. DFAO for f

Fibonacci representations of 0,1,2,3,4,5 are ϵ,1,10,100,101,1000 and we see that this DFAO
outputs 0,1,0,0,1,0 on these inputs, which are the first few values of f.

Now we can describe what Walnut does. Walnut is a software program that can prove or
disprove certain statements about automatic sequences. It takes the following as input: a DFAO
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Fibonacci representations of 0,1,2,3,4,5 are ε,1,10,100,101,1000 and we see that this DFAO
outputs 0,1,0,0,1,0 on these inputs, which are the first few values of f.

Now we can describe what Walnut does. Walnut is a software program that can prove or
disprove certain statements about automatic sequences. It takes the following as input: a DFAO
computing an automatic sequence s (it can handle k-automatic sequences, Fibonacci-automatic
sequences, and sequences defined using a few other numeration systems), and a formula ψ

in a certain first-order-logic that extends Presburger arithmetic. The formula ψ is a first-order
formula that involves variables, quantifiers, addition and subtraction of natural numbers, and
indexing into the sequence s. Arithmetic can only be done on indices, not the terms of s, and
multiplication and division are not allowed, other than multiplication by a constant (understood
as repeated addition). If the formula ψ has no free variables, then Walnut outputs either TRUE
or FALSE and if ψ does contain free variables, then Walnut outputs an automaton that accepts
the representations (in the appropriate numeration system) of the natural numbers (or tuples of
natural numbers) that can be assigned to the free variables to satisfy the formula ψ.

For example, Walnut can verify that f is aperiodic. A formula ψ expressing the property of
ultimate periodicity is

ψ :∃ p ≥ 1, n ≥ 0 ∀ i ≥ n f[i ] = f[i +p].

Translated into Walnut’s syntax, the command to evaluate the truth of this formula is

eval f_ult_per "?msd_fib Ep En (p >= 1) & (Ai (i >= n) =>F[i] = F[i+p])":
and the resulting output is FALSE, so we conclude that f is aperiodic. The reader may also
consult [10] to see a number of other properties of (or related to) f that can be proved using
Walnut.

3. Walnut computations

In this section we give the Walnut-assisted proofs of Theorems 1 and 2. We begin with the
command

eval fib_end_cubes "?msd_fib Ei En n > 1 & j = i+3*n-1 &(Ak k < 2*n
=> F[i+k] = F[i+k+n])":
which produces the automaton in Figure 2, which accepts the Fibonacci representations of the
positions at which a cube ends in f.
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Figure 2. Automaton for ending positions of cubes in f

(Proof of Theorem 1.) To determine the lengths of the runs of 1’s in cubesf, we use the command

eval fib_end_cubes_run "?msd_fib n>=1 & (At t<n =>
$fib_end_cubes(i+t)) & ~$fib_end_cubes(i+n) &
(i=0|~$fib_end_cubes(i-1))":

which produces the automaton in Figure 3, which accepts the Fibonacci representations of pairs
(i ,ℓ) such that there is a run of 1’s in cubesf of length ℓ starting at position i .

By examining the structure of this automaton we see that for an accepted pair (i ,ℓ), the rep-
resentation (i )F has the form (i )F = (10)+0(0+10)(00)∗0w , where w ∈ 0(10)∗(ϵ+1). Furthermore,
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Proof of Theorem 1. To determine the lengths of the runs of 1’s in cubesf, we use the command

eval fib_end_cubes_run "?msd_fib n>=1 & (At t<n =>$fib_end_cubes(i+t))
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0

[0,0]

1[1,0] 2[0,0]
[1,0]

3[0,0] 4

[0,0]

5

[1,0] 6[0,0]
[0,0] [0,0]

7[0,1] 8[1,0]
[0,1]

Figure 3. Automaton for runs of 1’s in cubesf

if |w | = 2n, then (ℓ)F = (10)n and if |w | = 2n +1, then (ℓ)F = (10)n1. Now, let Fm denote the m-th
Fibonacci number and recall the identities:

n−1∑
j=0

F2 j+1 = F2n and
n∑

j=1
F2 j = F2n+1 −1.

Hence, if |w | = 2n, we have

ℓ=
n∑

j=1
F2 j+1 = F2n+1 +F2n −F1 = F2n+2 −1

and if |w | = 2n +1 we have

ℓ=
n+1∑
j=1

F2 j = F2n+2 +F2n+1 −1 = F2n+3 −1.

□

(Proof of Theorem 2.) To determine the lengths of the runs of 0’s in cubesf, we use the command

eval fib_no_cubes_run "?msd_fib n>=1 & (At t<n =>
~$fib_end_cubes(i+t)) & $fib_end_cubes(i+n) &
(i=0|$fib_end_cubes(i-1))":

which produces the automaton in Figure 4, which accepts the Fibonacci representations of pairs
(i ,ℓ) such that there is a run of 0’s in cubesf of length ℓ starting at position i .
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Figure 4. Automaton for runs of 0’s in cubesf

We can project this automaton onto the second component of its input with the command

eval fib_no_cubes_run_length "?msd_fib Ei $fib_no_cubes_run(i,n)":

which produces the automaton in Figure 5. We see that the only possible run lengths are ℓ ∈
{1,2,3,7,8,13}.
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eval tmp "?msd_fib Ai Ej j>i & $fib_no_cubes_run(j,1)":

evaluates to TRUE, indicating that there are infinitely many runs of 0’s of length 1. This is also the
case for run lengths 2, 3, 7, and 8. For length 13 however, we get a result of FALSE. �

The positions of the runs of length 7 and 8 have a simple structure, so we describe these next.

Theorem 3.

• The runs of 0’s in cubesf of length 8 begin at positions i where (i )F ∈ (10)+0001.
• The runs of 0’s in cubesf of length 7 begin at positions i where (i )F ∈ (10)+01001.

Proof. These are obtained via the commands

eval tmp "?msd_fib $fib_no_cubes_run(j,8)":
eval tmp "?msd_fib $fib_no_cubes_run(j,7)":

�

The descriptions of the starting positions for the other lengths of runs of 0’s in cubesf are a little
more complicated, so we omit them here, but the reader can easily compute these with Walnut.

Theorem 4. The density of 0’s in cubesf is zero.

Proof. We examine the complement of the automaton in Figure 2. The Walnut command

eval fib_no_end_cubes "?msd_fib~$fib_end_cubes(j)":

produces the automaton in Figure 6, which gives the positions in f where no cube ends.
To complete the proof, it suffices to show that there are only polynomially many strings of

length n that are accepted by this automaton. This can be seen directly from the structure of the
automaton: since this automaton does not have two cycles that can both mutually reach each
other, we can conclude that the number of strings of length n accepted by this automaton is
polynomially bounded (see, for example, [2]).
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4. Other Sturmian words

Although the Fibonacci word is “optimal” with respect to the result of Mignosi et al. mentioned
in the Introduction, some computer calculations suggest that there may be other words that have
even more prefixes that end with cubes than the Fibonacci word. The Fibonacci word is just one
example of a much larger class of words known as Sturmian words. These are words with the
property that they have n +1 factors of length n for all n ≥ 0.

The structure of such words is determined by a parameterα, which is an irrational real number
between 0 and 1, called the slope, and more specifically, by the continued fraction expansion
α = [0,d1,d2,d3, . . .], where di ∈ Z and di ≥ 1 for i ≥ 1. The characteristic Sturmian word with
slopeα (see [1, Chapter 9]) is the infinite word cα obtained as the limit of the sequence of standard
words sn defined by

s0 = 0, s1 = 0d1−11, sn = sdn
n−1sn−2, n ≥ 2.

So, for example, we have f = cθ, where θ := 1/ϕ2 = [0,2,1].
For any infinite word w, let us define cubesw to be the binary word whose nth term is 1 if

cubesw has a cube ending at position n, and 0 otherwise. Let max_no_cubes(w) denote the largest
` such that cubesw contains infinitely many runs of 0’s of length `. So, for instance, Theorem 2
shows that max_no_cubes(f) = 8. Let us also define Sw(n) to be the sum of the first n terms of
cubesw. That is, Sw(n) counts the number of positions < n at which a cube ends in w.

Problem 5. Is it possible to determine max_no_cubes(cα) from the continued fraction expansion
of α?

Problem 6. What is the least (resp. greatest) possible value of max_no_cubes(cα) over all α?

Jeffrey Shallit (personal communication) has proved (also using Walnut) that

max_no_cubes
(
cp2−1

)
= 9,

and has empirical evidence that

max_no_cubes
(
cp3−1

)
= 3.

Perhaps these are the extremal values.
Regarding Scα (n), we pose the following problem:

Problem 7. Is there an α such that for all other α′ the function Scα (n) is eventually greater than
Scα′ (n)?

Similarly, we can also ask:

Problem 8. Can one prove that the density of 0’s in cubescα is 0 for all α?

One might also wish to investigate the relationship between the critical exponent of an infinite
word w and the density of 0’s in cubesw. The critical exponent of w is the quantity

sup{r : w contains a factor with exponent r }.

Note that it is easy to construct an aperiodic word with unbounded critical exponent for which
“almost all” positions are the ending position of a cube: for example, the infinite word

0102104108101610321 · · ·
has this property. So it is natural to restrict our attention to words with bounded critical exponent.
The Fibonacci word has critical exponent 2+ϕ ≈ 3.618 [6], and all Sturmian words have critical
exponent at least this large. Are there words w with lower critical exponent for which the density
of 0’s in cubesw is still 0? The answer is “yes”. For instance, the fixed point x (starting with 0) of
the morphism 0 → 0001, 1 → 1011 has critical exponent 10/3 [4, p. 99], and just as we did for the
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Fibonacci word, we can use Walnut to show that the density of 0’s in cubesx is 0 (after computing
the automaton for the 0’s in cubesx, one computes the eigenvalues of the adjacency matrix and
finds that they are all strictly smaller than 4).

Problem 9. What is the infimum of the critical exponents among all infinite words w for which
the density of 0’s in cubesw is 0? Is it 3?
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