Comptes Rendus

Mathématique

Elon Lindenstrauss, Amir Mohammadi and Zhiren Wang
Polynomial effective equidistribution
Volume 361 (2023), p. 507-520
Published online: 1 February 2023
https://doi.org/10.5802/crmath. 411
(c) BY \quad This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

Polynomial effective equidistribution

Elon Lindenstrauss ${ }^{a}$, Amir Mohammadi ${ }^{*, b}$ and Zhiren Wang ${ }^{c}$

${ }^{a}$ The Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
${ }^{b}$ Department of Mathematics, University of California, San Diego, CA 92093, USA
${ }^{c}$ Pennsylvania State University, Department of Mathematics, University Park, PA 16802, USA
E-mails: elon@math.huji.ac.il (E. Lindenstrauss), ammohammadi@ucsd.edu
(A. Mohammadi), zhirenw@psu.edu (Z. Wang)

Abstract

We prove effective equidistribution theorems, with polynomial error rate, for orbits of the unipotent subgroups of $\mathrm{SL}_{2}(\mathfrak{l})$ in arithmetic quotients of $\mathrm{SL}_{2}(\mathbb{C})$ and $\mathrm{SL}_{2}(\mathfrak{l}) \times \mathrm{SL}_{2}(\mathfrak{l})$.

The proof is based on the use of a Margulis function, tools from incidence geometry, and the spectral gap of the ambient space. Résumé. Nous prouvons des théorémes d'équidistribution effectifs, avec un taux d'erreur polynomial pour les orbites des sous-groupes unipotents de $\mathrm{SL}_{2}(\mathfrak{l})$ en quotients arithmétiques $\operatorname{de~}_{\mathrm{SL}_{2}(\mathbb{C})}$ et $\mathrm{SL}_{2}(\mathfrak{l}) \times \mathrm{SL}_{2}(\mathfrak{l})$.

La preuve est basée sur l'utilisation d'une fonction de Margulis, des outils de la géométrie d'incidence, et le trou spectral de l'espace ambiant.

Funding. E.L. acknowledges support by ERC 2020 grant HomDyn (grant no. 833423). A.M. acknowledges support by the NSF, grants DMS-1764246 and 2055122. Z.W. acknowledges support by the NSF, grant DMS1753042.

Manuscript received 13 April 2022, revised 27 July 2022, accepted 1 August 2022.

1. Introduction

A landmark result of Ratner [35] states that if G is a Lie group, Γ a lattice in G and if u_{t} is a oneparameter Ad-unipotent subgroup of G, then for any $x \in G / \Gamma$ the orbit $u_{t} \cdot x$ is equidistributed in a periodic orbit of some subgroup $L<G$ that contains both the one parameter group u_{t} and the initial point x. We say an orbit $L . x$ of a group L in some space X is periodic if the stabilizer of x in L is a lattice in L, equivalently that the stabilizer of x in L is discrete and $L . x$ supports a unique L-invariant probability measure $m_{L . x}$; and $u_{t} . x$ is equidistributed in $L . x$ in the sense that

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T} f\left(u_{t} . x\right) d t \rightarrow \int f d m_{L . x} \quad \text { for any } f \in C_{0}(G / \Gamma) \tag{1}
\end{equation*}
$$

[^0]In order to prove this equidistribution result, Ratner first classified the u_{t}-invariant probability measures on $G / \Gamma[33,34]$; the proof also uses the non-divergence properties of unipotent flows established by Dani and Margulis [5,6,29].

A key motivation behind Ratner's equidistribution theorem for one parameter unipotent flows has been to establish Raghunathan's conjecture regarding the possible orbit closures of groups generated by one-parameter unipotent groups; using the equidistribution theorem Ratner proved that if G and Γ are as above, and if $H<G$ is generated by one parameter unipotent groups, then for any $x \in G / \Gamma$ one has that $\overline{H . x}=L . x$ where $H<L<G$ and $L . x$ is periodic. Important special cases of Raghunathan's conjecture were proven earlier by Margulis and by Dani and Margulis using a different more direct approach, which in particular gave a proof of a rather strong form of the longstanding Oppenheim conjecture [7,8,30].

These results have had a surprisingly rich trove of applications in number theory and beyond. One drawback of this method, compared to more traditional number theoretic techniques, is that these equidistribution results were neither effective nor quantitative. Indeed, Ratner's proof relies heavily on the pointwise ergodic theorem and Lusin's theorem, both rather fundamental theorems but that do not have good effective analogues. The Dani-Margulis method is somewhat easier to make effective and a result in this direction was given by Margulis and the first named author in [26]; moreover a general result in this direction was announced by Margulis, Shah and two of us (E.L. and A.M.) with the first installment of this work appearing in [28]. However, this only gives density properties of these flows, not equidistribution, and the rate of density obtained in this way is far from optimal (polylog at best, though in most cases one only has an iterative-log type bound).

In this paper we announce a quantitative equidistribution result for orbits of a one parameter unipotent group on quotients G / Γ where G is either $\mathrm{SL}_{2}(\mathbb{C})$ or $\mathrm{SL}_{2}(\mathfrak{l}) \times \mathrm{SL}_{2}(\mathfrak{l})$ with a polynomial error rate, which is the first quantitative equidistribution statement for individual orbits of unipotent flows on quotients of semi-simple groups beyond the horospherical case. Our approach builds on the paper [27] by the first two authors, where an effective density result with a polynomial rate for orbits of a Borel subgroup of a subgroup $H \simeq \mathrm{SL}_{2}(\mathbb{R})$ of G was proved.

Recall that a group $N<G$ is horospheric if there is some $g \in G$ so that

$$
N=\left\{h \in G: g^{-n} h g^{n} \rightarrow 1 \text { as } n \rightarrow \infty\right\} .
$$

For instance, the one parameter unipotent group

$$
\left\{\left(\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right): r \in \mathbb{R}\right\}
$$

is horospheric in $\mathrm{SL}_{2}(\mathbb{R})$ as are the groups

$$
\left\{\left(\begin{array}{cc}
1 & r+i s \\
0 & 1
\end{array}\right): r, s \in \mathbb{R}\right\} \quad \text { and } \quad\left\{\left(\left(\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right)\right): r, s \in \mathbb{R}\right\}
$$

in $\mathrm{SL}_{2}(\mathbb{C})$ and $\mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$, respectively. The classification of invariant measures and orbit closures for horospherical flows was established prior to Ratner's work by Hedlund, Furstenberg, Dani, Veech and others, and this has been understood for some time also quantitatively since one can relate the distribution properties of individual N orbits to the ergodic theoretic properties of the action of g on G / Γ (cf. $\S 3$ for more details).

We also mention that while our result is the first quantitative equidistribution statement for individual orbits of unipotent flows on quotients of semi-simple groups beyond the horospherical case ${ }^{1}$ there have been some other interesting quantitative equidistribution results. When G is

[^1]unipotent, an effective equidistribution result for unipotent flows on G / Γ was given by Green and Tao in [19], and was a key ingredient in a series of works by Green, Tao and Ziegler about linear equations in primes. In the case of quotients of the skew product $G=\mathrm{SL}_{2}(\mathbb{R}) \ltimes \mathbb{R}^{2}$, Strombergsson [41] has an effective equidistribution result for one parameter unipotent orbits (which are not horospheric in G, but project to a horospheric group on $\mathrm{SL}_{2}(\mathbb{R})$), and this has been generalized by several authors, in particular by Wooyeon Kim [24] (using a completely different argument) to $\mathrm{SL}_{n}(\mathbb{R}) \ltimes \mathbb{R}^{n}$. Moreover there is an important work of Einsiedler, Margulis and Venkatesh [11] showing that periodic orbits of semisimple subgroups H of a semisimple group G are quantitatively equidistributed in an appropriate homogeneous subspace of G / Γ if Γ is a congruence lattice and H has finite centralizer in G. Subsequently Einsiedler, Margulis, Venkatesh and the second named author by using Prasad's volume formula and a more adelic view point were able to prove such an equidistribution result for periodic orbits of maximal semisimple subgroups of G when the subgroup is allowed to vary [10] with arithmetic applications (the equidistribution of periodic orbits of semisimple groups is also closely connected to the equidistribution of Hecke points; a quantitative treatment of such equidistribution was given by Clozel, Oh and Ullmo in [4]).

In a slightly different direction, Bourgain, Furman, Mozes and the first named author [1] gave a quantitative equidistribution result with exponential rates (this is analogous to polynomial rates in our problem) for random walks by automorphisms of the torus. In this case this equidistribution result was new even without rates. There have been several extensions of this result, in particular [20] where a proximality assumption was removed. Kim in [24] used the techniques of [1] to study $\mathrm{SL}_{n}(\mathbb{R}) \ltimes \mathbb{R}^{n}$. Our work is also heavily influenced by [1].

We now proceed to describe our results and some of the ingredients of the proofs. Let

$$
G=\mathrm{SL}_{2}(\mathbb{C}) \quad \text { or } \quad G=\mathrm{SL}_{2}(\mathfrak{l}) \times \mathrm{SL}_{2}(\mathfrak{l})
$$

Let $\Gamma \subset G$ be a lattice, and put $X=G / \Gamma$. We let m_{X} denote the G-invariant probability measure on X. Throughout the paper, we will denote by H a subgroup of G isomorphic to $\mathrm{SL}_{2}(\mathfrak{l})$, namely

$$
\mathrm{SL}_{2}(\mathfrak{l}) \subset \mathrm{SL}_{2}(\mathbb{C}) \quad \text { or } \quad\left\{(g, g): g \in \mathrm{SL}_{2}(\mathfrak{l})\right\} \subset \mathrm{SL}_{2}(\mathfrak{l}) \times \mathrm{SL}_{2}(\mathfrak{l}) .
$$

For all $t, r \in \mathbb{R}$, let a_{t} and u_{r} denote the image of

$$
\left(\begin{array}{cc}
e^{t / 2} & o \\
0 & e^{-t / 2}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right)
$$

in H, respectively.
We fix maximal compact subgroups $\mathrm{SU}(2) \subset \mathrm{SL}_{2}(\mathbb{C})$ and $\mathrm{SO}(2) \times \mathrm{SO}(2) \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$. Let d be the right invariant metric on G which is defined using the Killing form and the aforementioned maximal compact subgroups. This metric induces a metric d_{X} on X, and natural volume forms on X and its submanifolds. We define the injectivity radius of a point $x \in X$ using this metric. In the sequel, $\left\|\left\|\|\right.\right.$ denotes the maximum norm on $\operatorname{Mat}_{2}(\mathbb{C})$ or $\operatorname{Mat}_{2}(\mathfrak{l}) \times \operatorname{Mat}_{2}(\mathfrak{l})$ with respect to the standard basis.

The following are the main results in this paper.
Theorem 1. Assume Γ is an arithmetic lattice. For every $x_{0} \in X$ and large enough R (depending explicitly on the injectivity radius of x_{0}), for any $T \geq R$, at least one of the following holds.
(1) For every $\varphi \in C_{c}^{\infty}(X)$, we have

$$
\left|\int_{0}^{1} \varphi\left(a_{\log T} u_{r} x_{0}\right) \mathrm{d} r-\int \varphi \mathrm{d} m_{X}\right| \leq C_{1} \mathscr{S}(\varphi) R^{-\kappa_{\kappa_{1}}}
$$

where $\mathscr{S}(\varphi)$ is a certain Sobolev norm.
(2) There exists $x \in X$ such that $H x$ is periodic with $\operatorname{vol}(H x) \leq R$, and

$$
d_{X}\left(x, x_{0}\right) \leq C_{1} R^{A}(\log T)^{A} T^{-1}
$$

The constants A, κ_{1}, and C_{1} are positive, and depend on X but not on x_{0}.
Theorem 1 can be viewed as an effective version of [40, Theorem 1.4]. Combining Theorem 1 and the Dani-Margulis linearization method [9] (cf. also Shah [39]), that allows to control the amount of time a unipotent trajectory spends near invariant subvarieties of a homogeneous space, we also obtain an effective equidistribution theorem for long pieces of unipotent orbits (more precisely, we use a sharp form of the linearization method taken from [28]).

Theorem 2. Assume Γ is an arithmetic lattice. For every $x_{0} \in X$ and large enough R (depending explicitly on the injectivity radius of x_{0}), for any $T \geq R$, at least one of the following holds.
(1) For every $\varphi \in C_{c}^{\infty}(X)$, we have

$$
\left|\frac{1}{T} \int_{0}^{T} \varphi\left(u_{r} x_{0}\right) \mathrm{d} r-\int \varphi \mathrm{d} m_{X}\right| \leq C_{2} \mathscr{S}(\varphi) R^{-\kappa_{2}}
$$

where $\mathscr{S}(\varphi)$ is a certain Sobolev norm.
(2) There exists $x \in G / \Gamma$ with $\operatorname{vol}(H . x) \leq R^{A_{1}}$, and for every $r \in[0, T]$ there exists $g \in G$ with $\|g\| \leq R^{A_{1}}$ so that

$$
d_{X}\left(u_{s} x_{0}, g H . x\right) \leq C_{2} R^{A_{1}}\left(\frac{|s-r|}{T}\right)^{1 / A_{2}} \quad \text { for all } \in[0, T]
$$

(3) For every $r \in[0, T]$ and $t \in[\log R, \log T]$, the injectivity radius at $a_{-t} u_{r} x_{0}$ is at most (2) $R^{A_{1}} e^{-t}$.
The constants A_{1}, A_{2}, κ_{2}, and C_{2} are positive, and depend on X but not on x_{0}.
The assumption in Theorem 1 that Γ is arithmetic may be relaxed. Let us say Γ has algebraic entries if the following is satisfied: there is a number field F, a semisimple F-group \mathbf{G} of adjoint type, and a place v of F so that $F_{\nu}=\mathbb{R}$ and $\mathbf{G}\left(F_{\nu}\right)$ and G are locally isomorphic - in which case there is a surjective homomorphism from G onto the connected component of the identity in $\mathbf{G}\left(F_{\nu}\right)$ - and the image of Γ in $\mathbf{G}\left(F_{\nu}\right)$ (possibly after conjugation) is contained in $\mathbf{G}(F)$. Every arithmetic lattice has algebraic entries, but there are lattices with algebraic entries that are not arithmetic.

Note that the condition that Γ has algebraic entries is automatically satisfied if Γ is an irreducible lattice in $\mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$ or if $G=\mathrm{SL}(2, \mathbb{C})$. Indeed, by arithmeticity theorems of Selberg and Margulis, irreducible lattices in $\mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$ are arithmetic [31, Chapter IX]. Moreover, by local rigidity, lattices in $\mathrm{SL}_{2}(\mathbb{C})$ always have algebraic entries [18, Theorem 0.11] (see also [37, 43, 44]).

Theorem 3. Assume Γ is a lattice which has algebraic entries. For every $0<\delta<1$, every $x_{0} \in X$ and large enough T (depending explicitly on δ and the injectivity radius of x_{0}) at least one of the following holds.
(1) For every $\varphi \in C_{c}^{\infty}(X)$, we have

$$
\left|\int_{0}^{1} \varphi\left(a_{\log T} u_{r} x_{0}\right) \mathrm{d} r-\int \varphi \mathrm{d} m_{X}\right| \leq C_{1} \mathscr{S}(\varphi) T^{-\delta^{2} \kappa_{\kappa_{1}}}
$$

where $\mathscr{S}(\varphi)$ is a certain Sobolev norm.
(2) There exists $x \in X$ with

$$
d_{X}\left(x, x_{0}\right) \leq C_{1} T^{-1 / A}
$$

satisfying the following: there are elements γ_{1} and γ_{2} in $\operatorname{Stab}_{H}(x)$ with $\left\|\gamma_{i}\right\| \leq T^{\delta}$ for $i=1,2$ so that the group generated by $\left\{\gamma_{1}, \gamma_{2}\right\}$ is Zariski dense in H.

The constants A, κ_{1}, and C_{1} are positive, and depend on X but not on δ and x_{0}.
The obstacle to effective equidistribution in Theorem 1 is much cleaner and simpler than in Theorem 2. This is not an artifact of the proof but a reflection of reality; a unipotent orbit may fail to equidistribute at the expected rate without it staying near a single period orbit of some subgroup $\left\{u_{t}\right\}<L<G$: one must allow a slow drift of the periodic orbit in the direction of the centralizer of u_{t}. Unlike the work of Shah in [40], where (in particular) a non-effective version of Theorem 1 is proved relying on Ratner's measure classification theorem for unipotent flows, our proof goes the other way, first establishing Theorem 1, and then reducing Theorem 2 from it using a linearization and non-divergence argument.

An extremely interesting analogue to unipotent flows on homogeneous spaces is given by the action of $\mathrm{SL}_{2}(\mathbb{R})$ and its subgroups on strata of abelian differentials. Let $g \geq 1$, and let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be a partition of $2 g-2$. Let $\mathscr{H}(\alpha)$ be the corresponding stratum of abelian differentials, i.e., the space of pairs (M, ω) where M is a compact Riemann surface with genus g and ω is a holomorphic 1 -form on M whose zeroes have multiplicities $\alpha_{1}, \ldots, \alpha_{n}$. The form ω defines a canonical flat metric on M with conical singularities and a natural area form. Let $\mathscr{H}_{1}(\alpha)$ be the space of unit area surfaces in $\mathscr{H}(\alpha)$. The space $\mathscr{H}(\alpha)$ admits a natural action of $\mathrm{SL}_{2}(\mathbb{R})$; this action preserves the unit area hyperboloid $\mathscr{H}_{1}(\alpha)$.

A celebrated theorem of Eskin and Mirzakhani [13] shows that any P-invariant ergodic measure is $\mathrm{SL}_{2}(\mathbb{R})$-invariant and is supported on an affine invariant manifold, where P denotes the group of upper triangular matrices in $\mathrm{SL}_{2}(\mathbb{R})$. We shall refer to these measures as affine invariant measures. Moreover if we define, for any interval $I \subset \mathbb{R}$ and $x \in \mathscr{H}_{1}(\alpha)$, the probability measure μ_{I}^{x} on $\mathscr{H}_{1}(\alpha)$ by

$$
\mu_{I}^{x}=|I|^{-1} \int_{I} \delta_{u_{s} x} \mathrm{~d} s,
$$

then Eskin, Mirzakhani and the second named author [14] showed that for any $x \in \mathscr{H}_{1}(\alpha)$ the limit

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{t=0}^{T} a_{t} \mu_{[0,1]}^{x} \mathrm{~d} t \text { exists in weak* sense } \tag{2}
\end{equation*}
$$

and is equal to an (SL($2, \mathbb{R}$)-invariant) affine invariant probability measure with x in its support. On the other hand, there are several results, in particular by Chaika, Smillie and B. Weiss in [2], that show that an analogue of Ratner's equidistribution theorem (or our Theorem 2) fails to hold in this setting, for instance for some x the sequence of measure $\mu_{[0, T]}^{x}$ may fail to converge as $T \rightarrow \infty$, or may converge to a non-ergodic measure. We believe the following strengthening of (2), which we have learned has already been conjectured by Forni in [17, Conjecture 1.4], should however hold:

Conjecture 4. Let $\mathscr{H}_{1}(\alpha)$ be the space of unit area surfaces in stratum of abelian differentials on a genus g surface whose zeros have multiplicities given by $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, and let $x \in \mathscr{H}_{1}(\alpha)$. Then $\lim _{t \rightarrow \infty} a_{t} \mu_{[0,1]}^{x}$ exists in the weak* sense and is equal to an affine invariant measure with x in its support.

Of course, once one establishes that $\lim _{t \rightarrow \infty} a_{t} \mu_{[0,1]}^{x}$ exists, the rest follows from [14].

2. Some preliminaries

We discuss the proofs of Theorems 1 and 3 . As mentioned above, Theorem 2 is proved by combining Theorem 1 and the linearization techniques; in this announcement we focus on the proof of the former results. We note that the idea of using equidistribution of expanding translates of a fixed piece of a U orbit of the type $\left\{a_{t} u_{s} . x: 0 \leq s \leq 1\right\}$ to deduce equidistribution of a large segment of a non-translated U orbit $\left\{u_{s} . x: 0 \leq s \leq T\right\}$ is quite classical.

Let $U \subset N$ denote the group of upper triangular unipotent matrices in $H \subset G$, respectively, and let $A=\left\{a_{t}: t \in \mathbb{R}\right\} \subset H$. More explicitly, if $G=\mathrm{SL}_{2}(\mathbb{C})$, then

$$
N=\left\{n(r, s)=\left(\begin{array}{cc}
1 & r+i s \\
0 & 1
\end{array}\right):(r, s) \in \mathfrak{l}^{2}\right\}
$$

and $U=\{n(r, 0): r \in \mathfrak{l}\}$; note that $n(r, 0)=u_{r}$ for $r \in \mathbb{R}$. Let

$$
V=\left\{n(0, s)=v_{s}: s \in \mathfrak{l}\right\} ;
$$

if $G=\mathrm{SL}_{2}(\mathrm{l}) \times \mathrm{SL}_{2}(\mathrm{l})$, then

$$
N=\left\{n(r, s)=\left(\left(\begin{array}{cc}
1 & r+s \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right)\right):(r, s) \in \mathfrak{l}^{2}\right\}
$$

and $U=\left\{n(r, 0): r \in\{ \}\right.$. As before, $n(r, 0)=u_{r}$ for $r \in \mathbb{R}$. Let

$$
V=\left\{n(0, s)=v_{s}: s \in \mathfrak{l}\right\} .
$$

In both cases, we have $N=U V$. Let us denote the transpose of U by U^{-}and its elements by u_{r}^{-}.
Let $\mathfrak{g}=\operatorname{Lie}(G)$, that is, $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{C})$ or $\mathfrak{g}=\mathfrak{s l}_{2}(\mathfrak{l}) \oplus \mathfrak{S l}_{2}(\mathfrak{l})$. Let $\mathfrak{r}=i \mathfrak{S l}_{2}(\mathbb{R})$ if $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{C})$ and $\mathfrak{r}=$ $\mathfrak{s l}_{2}(\mathbb{R}) \oplus\{0\}$ if $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{R}) \oplus \mathfrak{S l}_{2}(\mathbb{R})$. In either case $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{r}$ where $\mathfrak{h}=\operatorname{Lie}(H) \simeq \mathfrak{s l}_{2}(\mathbb{R})$, and both \mathfrak{h} and \mathfrak{r} are $\operatorname{Ad}(H)$-invariant.

We fix a norm on \mathfrak{h} by taking the maximum norm where the coordinates are given by $\operatorname{Lie}(U)$, $\operatorname{Lie}\left(U^{-}\right)$and $\operatorname{Lie}(A)$; similarly fix a norm on \mathfrak{r}. By taking maximum of these two norms, we obtain a norm on \mathfrak{g}. All these norms will be denoted by $\|\|$.

For all $\beta>0$, we define $\mathrm{B}_{\beta}:=\exp \left(B_{\mathfrak{h}}(0, \beta)\right) \cdot \exp \left(B_{\mathfrak{r}}(0, \beta)\right)$ where $B \cdot(0, \beta)$ denotes the ball of radius β in \bullet with respect to $\|\|$.

We also define

$$
\mathrm{B}_{\beta}^{H}:=\left\{u_{s}^{-}:|s| \leq \beta\right\} \cdot\left\{a_{t}:|t| \leq \beta\right\} \cdot\left\{u_{r}:|r| \leq \beta\right\}
$$

for all $0<\beta<1$.
For the sake of simplicity of the exposition here, let us assume X is compact. Let $0<\eta_{0}<1$ be so that the map $g \mapsto g x$ is injective on $\mathrm{B}^{\mathrm{G}}{ }_{100 \eta_{0}}$ for all $x \in X$.

3. From large dimension to equidistribution

We begin with an equidistribution theorem which is of independent interest. In the proof of Theorem 1, this proposition will be applied to each of the sets obtained in the bootstrap phase, see Proposition 8.

Let us recall the following quantitative decay of correlations for the ambient space X : There exists $0<\kappa_{0} \leq 1$ so that

$$
\begin{equation*}
\left|\int \varphi(g x) \psi(x) \mathrm{d} m_{X}-\int \varphi \mathrm{d} m_{X} \int \psi \mathrm{~d} m_{X}\right| \ll \mathscr{S}(\varphi) \mathscr{S}(\psi) e^{-\kappa_{0} d(e, g)} \tag{3}
\end{equation*}
$$

for all $\varphi, \psi \in C_{c}^{\infty}(X)+\mathbb{C} \cdot 1$, where m_{X} is the G-invariant probability measure on X and d is our fixed right G-invariant metric on G. See, e.g., $[25, \S 2.4]$ and references there for (3); we note that κ_{0} is absolute if Γ is a congruence subgroup. This is known in much greater generality, but the cases relevant to our paper are due to Selberg and Jacquet-Langlands [21,38].

The quantitative decay of correlation can be used to establish quantitative results regarding the equidistribution of translates of pieces of an N-orbit. Specifically we employ the results in [25], but there is rich literature around the subject; a more complete list of such papers can be found in $[27, \S 1]$.

Now let $\xi:[0,1] \rightarrow \mathfrak{r}$ be a smooth nonconstant curve. Then using the quantitative results regarding equidistribution of translates of pieces of an N-orbit such as [25], one can show that for every $x \in X$,

$$
a_{\tau}\left\{u_{r} \exp (\xi(s)) \cdot x: r, s \in[0,1]\right\}
$$

is equidistributed in X as $\tau \rightarrow \infty$ (with a rate which is polynomial in $e^{-\tau}$). The key point in the deduction of this equidistribution result from the equidistribution of shifted N orbits is that conjugation by a_{τ} moves $u_{r} \exp (\xi(s))$ to the direction of N, hence the above average essentially reduces to an average on a N orbit.

Roughly speaking, the following proposition states that one may replace the curve $\{\xi(s): s \in$ $[0,1]\}$ with a measure on \mathfrak{r} so long as the measure has dimension $\geq 1-\theta$, for an appropriate choice of θ depending on κ_{0}.

The precise formulation is the following.
Proposition 5. For any $\theta>0$ and $c>0$ there is a κ_{3} so that the following holds: Let $0<\varrho<10^{-6}$, and let $F \subset B_{\mathfrak{r}}(0, \varrho)$ be a finite set satisfying

$$
\frac{\#\left(F \cap B_{\mathrm{r}}(0, b)\right)}{\# F} \leq \rho^{-c}(b / \varrho)^{1-\theta} \quad \text { for all } b \geq \rho
$$

where $\rho<\varrho^{20}$.
Then for all $x \in X$ and all $2 \log (1 / \rho) \leq \tau \leq \frac{1}{10} \log (1 / \rho)$, we have

$$
\left|\int_{0}^{1} \frac{1}{\# F} \sum_{w \in F} \varphi\left(a_{\tau} u_{r} \exp (w) x\right) \mathrm{d} r-\int \varphi \mathrm{d} m_{X}\right| \ll X_{X} \mathscr{S}(\varphi) \max \left((\rho / \varrho)^{\kappa_{3}}, \rho^{-2 c} e^{2 \tau \theta} \varrho^{\kappa_{0}^{2} / M}\right),
$$

where $\mathscr{S}(\varphi)$ is a certain Sobolev norm and $M \geq 100$ an absolute constant.
The proof of this proposition is significantly more delicate than that of the "toy version" of a shifted curve, and relies on an adaptation of a projection theorem due to Käenmäki, Orponen, and Venieri [22], based on the works of Wolff [45], Schlag [36], and [46], in conjunction with a sparse equidistribution argument due to Venkatesh [42]. These elements also played a crucial role in previous work by E.L. and A.M. [27] regarding quantitative density for the action of $A U$ on the spaces we consider here.

The goal in the remaining steps is to show that unless Theorem 1 (2) holds, we can find a subset $J \subset[0,1]$, where $[0,1] \backslash J$ has an exponentially small measure, and up to an exponentially small error the uniform measure on $\left\{a_{A \log T} u_{r} x_{0}: r \in J\right\}$ can be decomposed into counting measures on sets each of which satisfies the conditions in Proposition 5.

4. Inheritance of the Diophantine property

If part (2) in Theorem 1 holds, we are done. Let us, therefore, assume the alternative, which gives some Diophantine condition on the point x_{0} in terms of its distance to nearby periodic H-orbits. The first step in the proof is to improve this Diophantine condition, perhaps not at x_{0}, but at some (indeed all except a set of exponentially small measure) point on the translation of a the U-orbit segment $\left\{u_{r} \cdot x_{0}: r \in[0,1]\right\}$ by a big diagonal element a_{t}.
Proposition 6. There exist D_{0} (absolute) and C_{3} (depending on X) so that the following holds. Let $S \geq R$, and let $x_{0} \in X$ be so that

$$
d_{X}\left(x, x_{0}\right) \geq(\log S)^{D_{0}} S^{-1}
$$

for all x with $\operatorname{vol}(H x) \leq R$. Then for all $s \geq \log S$ we have the following

$$
\left|\left\{r \in[0,1]: \quad \begin{array}{l}
\text { There is } x \text { with } \operatorname{vol}(H x) \leq R \\
\text { so that } \left.d_{X}\left(x, a_{s} u_{r} x_{0}\right) \leq C_{3}^{-1} R^{-D_{0}}\right\}
\end{array}\right\}\right| \leq C_{3} R^{-1} .
$$

In the proof of Proposition 6 we consider each periodic orbit individually, and then use the fact that the number of periodic H-orbits with volume $\leq R$ in X is $\ll R^{6}$, see e.g. [32, § 10] to conclude. The desired result for an individual orbit can be proved using Margulis functions for periodic H-orbits similar to those which were used in [27, $\S 9$], see also [14, Proposition 2.13].

It is worth mentioning that even though [28, Theorem 1.4] concerns long pieces of U-orbits and Proposition 6 concerns translates of pieces of U-orbits, similar tools are applicable here as well. In particular, a version of Proposition 6 can also be proved using the methods of [28].

5. Closing lemma

Let $t>0$ be a large parameter and fix some $e^{-0.01 t}<\beta=e^{-\kappa t}<\eta_{0}$; in our application, κ will be chosen to be $\ll 1 / D_{0}$ where the implied constant depends on X and D_{0} is as in Proposition 6 .

For every $\tau \geq 0$, put

$$
\mathrm{E}_{\tau}=\mathrm{B}_{\beta}{ }_{\beta} \cdot a_{\tau} \cdot\left\{u_{r}: r \in[0,1]\right\} \subset H .
$$

If $y \in X$ is so that the map $h \mapsto h y$ is injective on E_{τ}, then $\mu_{\mathrm{E}_{\tau} \cdot y}$ denotes the pushforward of the normalized Haar measure on E_{τ} to $\mathrm{E}_{\tau} . y \subset X$.

Let $\tau \geq 0$ and $y \in X$. For every $z \in \mathrm{E}_{\tau} . y$, put

$$
I_{\tau}(z):=\left\{w \in \mathfrak{r}: 0<\|w\|<\eta_{0} \quad \text { and } \quad \exp (w) z \in \mathrm{E}_{\tau} \cdot y\right\} ;
$$

this is a finite subset of \mathfrak{r} since E_{τ} is bounded - we will define $I_{\mathscr{E}}(h, z)$ for all $h \in H$ and more general sets \mathscr{E} in the bootstrap phase below.

Let $0<\alpha<1$. Define the function $f_{\tau}: \mathrm{E}_{\tau} \cdot y \rightarrow[1, \infty)$ as follows

$$
f_{\tau}(z)=\left\{\begin{array}{ll}
\sum_{w \in I_{\tau}(z)}\|w\|^{-\alpha} & \text { if } I_{\tau}(z) \neq \varnothing \\
\eta_{0}^{-\alpha} & \text { otherwise }
\end{array} .\right.
$$

The following proposition supplies an initial dimension which we will bootstrap in the next phase. Roughly speaking, it asserts that points in $\mathrm{E}_{8 t} . x_{0}$ (possibly after removing an exponentially small set of exceptions) are separated transversal to H, unless x_{0} is extremely close to a periodic H orbit.

Proposition 7. Assume Γ is arithmetic. There exists D_{1} (which depends on Γ explicitly) satisfying the following. Let $D \geq D_{1}$ and $x_{1} \in X$. Then for all large enough t at least one of the following holds.
(1) There is a subset $I\left(x_{1}\right) \subset[0,1]$ with $\left|[0,1] \backslash I\left(x_{1}\right)\right| \lll X \beta$ such that for all $r \in I\left(x_{1}\right)$ we have the following
(a) $\mathrm{h} \mapsto \mathrm{h} . a_{8 t} u_{r} x_{1}$ is injective on E_{t}.
(b) For all $z \in \mathrm{E}_{t} \cdot a_{8 t} u_{r} x_{1}$, we have

$$
f_{t}(z) \leq e^{D t}
$$

(2) There is $x \in X$ such that $H x$ is periodic with

$$
\operatorname{vol}(H x) \leq e^{D_{1} t} \quad \text { and } \quad d_{X}\left(x, x_{1}\right) \leq e^{\left(-D+D_{1}\right) t}
$$

This proposition is where the arithmeticity assumption on Γ is used. The proof is similar to the proof of [27, Proposition 6.1]. If we replace the assumption that Γ is arithmetic with the weaker requirement that Γ has algebraic entries, we get a version of this proposition where part (2) is replaced with the following.
(2') There is $x \in X$ with

$$
d_{X}\left(x, x_{1}\right) \leq e^{\left(-D+D_{1}\right) t}
$$

satisfying the following: there are elements γ_{1} and γ_{2} in $\operatorname{Stab}_{H}(x)$ with $\left\|\gamma_{i}\right\| \leq e^{D_{1} t}$ for $i=1,2$ so that the group generated by $\left\{\gamma_{1}, \gamma_{2}\right\}$ is Zariski dense in H.

6. Improving the dimension

Proposition 7 shows that up to an exponentially small error, the set $\left\{a_{9 t} u_{r} x_{0}: r \in[0,1]\right\}$ has a small positive dimension transversal to H at controlled scales. The objective in this step is to show that by applying elements of the form $a_{\ell} u_{r}$, for a fixed ℓ and a random $r \in[0,1]$, we can inductively improve this dimension transversal to H at controlled scales to α (which will be chosen to be smaller than but quite close to 1). This is achieved by investigating the evolution of a certain Margulis function (cf. the survey [15], though the Margulis function we use here is somewhat intricate).

To state the main result which is Proposition 8, we need some notation. Let R be as in Theorem 1, and set $t=\frac{1}{D_{1}} \log R$ with D_{1} as in Proposition 7. We will assume R is large enough so that the conclusion of Proposition 7 holds with this t.

Let

$$
\mathrm{E}=\mathrm{B}_{\beta}{ }_{\beta} \cdot\left\{u_{r}:|r| \leq \eta_{0}\right\} .
$$

where $\beta=e^{-\kappa t}$ for some small $\kappa>0$. (More explicitly, we will fix some $0<\varepsilon \leq 10^{-8}$ which will depend on κ_{0}, and let $\kappa=10^{-6} \varepsilon / D$ where $D=D_{1}\left(D_{0}+1\right)$.)

It will be more convenient to approximate translations $\left\{a_{s} u_{r} x_{0}: r \in[0,1]\right\}$ with sets which are a disjoint union of local E-orbits as we now define. Let $F \subset B_{\mathrm{r}}(0, \beta)$ be a finite set with $\# F \geq e^{t / 2}$, and let $y \in X$. For every $w \in F$, let $\mathrm{E}_{w} \subset \mathrm{E}$ be a Borel set so that $m_{H}\left(\mathrm{E}_{w}\right) \geq \beta^{4}$ and $m_{H}\left(\mathrm{E}_{w} \Delta\left(\mathrm{~B}^{\mathrm{H}}{ }_{\beta^{10}} \cdot \mathrm{E}_{w}\right)\right) \leq \beta m_{H}\left(\mathrm{E}_{w}\right)$, where m_{H} denotes a fixed Haar measure on H. Put

$$
\begin{equation*}
\mathscr{E}=\bigcup \mathrm{E}_{w} \cdot\{\exp (w) y: w \in F\} . \tag{4}
\end{equation*}
$$

We equip \mathscr{E} with the probability measure $\mu_{\mathscr{E}}=\frac{1}{\sum_{w_{w} m_{H}\left(\mathrm{E}_{w}\right)}} \sum_{w} \mu_{w, y}$ where $\mu_{w, y}$ denotes the pushforward of $m_{H} \mid \mathrm{E}_{w}$ to E_{w}. $\exp (w) y$ for every $w \in F$.

Let θ be a small constant depending on the decay of matrix coefficients in G / Γ (the exact value we shall use is $\theta=\kappa_{0}^{2} / 10^{4} M$, where κ_{0} is as (3) and M as in Proposition 5). Let

$$
\alpha=1-\theta \quad \text { and } \quad \sqrt{\varepsilon}=\theta .
$$

Let $\ell=0.01 \varepsilon t$, and let v_{ℓ} be the probability measure on H defined by

$$
v_{\ell}(\varphi)=\int_{0}^{1} \varphi\left(a_{\ell} u_{r}\right) \mathrm{d} r \quad \text { for all } \varphi \in C_{c}(H)
$$

let $v_{\ell}^{(n)}=v_{\ell} \star \cdots \star v_{\ell}$ denote the n-fold convolution of v_{ℓ} for all $n \in \mathbb{N}$.
The following is the main statement.
Proposition 8. Let $x_{1} \in X$, and assume that Proposition 7(2) does not hold for D, x_{1}, and t. Let $r_{1} \in I\left(x_{1}\right)$, where $I\left(x_{1}\right)$ is as in Proposition 7(1), and put $x_{2}=\mathrm{a}_{8 t} u_{r_{1}} x_{1}$. Let

$$
J:=\left[d_{1}-10^{4} \varepsilon^{-1 / 2}, d_{1}\right] \cap \mathbb{N},
$$

where $d_{1}=100\left\lceil\frac{4 D-3}{2 \varepsilon}\right\rceil$. For every $d \in J$, there is a collection

$$
\Xi_{d}=\left\{\mathscr{E}_{d, i}: 1 \leq i \leq N_{d}\right\}
$$

of sets defined as in (4) for some $F_{d, i} \subset B_{\mathfrak{r}}(0, \beta)$, so that both of the following hold:
(1) Put $\varrho=e^{-\sqrt{\varepsilon} t}$. Let $d \in J, 1 \leq i \leq N_{d}$, and let $w_{0} \in B_{\mathfrak{r}}(0, \beta)$. Then for every $w \in B_{\mathfrak{r}}\left(w_{0}, \varrho\right)$ and all $b \geq e^{-t / 2}$, we have

$$
\begin{equation*}
\frac{\#\left(B_{\mathfrak{r}}(w, b) \cap B_{\mathfrak{r}}\left(w_{0}, \varrho\right) \cap F_{d, i}\right)}{\#\left(B\left(w_{0}, \varrho\right) \cap F_{d, i}\right)} \leq e^{\varepsilon t}(b / \varrho)^{\alpha} . \tag{5}
\end{equation*}
$$

(2) For all $s \leq t$ and all $r \in[0,2]$, we have

$$
\begin{equation*}
\left|\int \varphi\left(a_{s} u_{r} z\right) \mathrm{d} v_{\ell}^{\left(d_{1}\right)} \star \mu_{\mathrm{E}_{t} . x_{2}}(z)-\sum_{d, i} c_{d, i} \int \varphi\left(a_{s} u_{r} z\right) \mathrm{d} v_{\ell}^{\left(d_{1}-d\right)} \star \mu_{\mathscr{E}_{d, i}}(z)\right| \ll \operatorname{Lip}(\varphi) \beta^{(2)} \tag{6}
\end{equation*}
$$

where $\varphi \in C_{c}^{\infty}(X), c_{d, i} \geq 0$ and $\sum_{d, i} c_{d, i}=1-O\left(\beta^{(2)}\right), \operatorname{Lip}(\varphi)$ is the Lipschitz norm of φ, and κ_{4} and the implied constants depend on X.
Roughly speaking, the proposition states that up to an exponentially small error, $v_{\ell}^{\left(d_{1}\right)} \star \mu_{\mathrm{E}_{t} \cdot x_{1}}$ may be decomposed as

$$
\sum_{d, i} c_{d, i} v_{\ell}^{\left(d_{1}-d\right)} \star \mu_{\mathscr{E}_{d, i}} \quad \text { where } \quad \sum_{d, i} c_{d, i}=1-O\left(\beta^{(2)}\right)
$$

(see (6)) and for all $d \in J$ and $1 \leq i \leq N_{d}$ the dimension of $\mathscr{E}_{d, i}$ transversal to H at controlled scales is $\geq \alpha$ (see (5)).

Combining Proposition 8 with the previous discussion, we may complete the proof of Theorem 1. A brief outline of this deduction follows: Let x_{0} be as in the statement and suppose that part (2) in Theorem 1 does not hold. We first apply Proposition 6 with $s=\log T-C \log R$ for an appropriate large constant C to improve the (weak) Diophantine property of x_{0} provided by the failure of part (2) in Theorem 1 to the stronger Diophantine property,

$$
\begin{equation*}
d_{X}\left(x, x_{1}\right) \gg R^{-D_{0}} \quad \text { for all } x \text { with } \operatorname{vol}(H x) \leq R \tag{7}
\end{equation*}
$$

for most points x_{1} on $\left\{a_{\log T-C \log R} u_{r} x_{0}: r \in[0,1]\right\}$. Thus, in order to show that $\int_{0}^{1} \varphi\left(a_{\log T} u_{r} x_{0}\right) \mathrm{d} r$ is within $R^{-\star}$ of $\int \phi$ it is enough to show the same for $\int_{0}^{1} \varphi\left(a_{C \log R} u_{r} x_{1}\right) \mathrm{d} r$ for x_{1} satisfying the stronger Diophantine property (7).

The remaining time, i.e., $C \log R$, will be divided into three phases:

Phase I

Recall that $t=\frac{1}{D_{1}} \log R$. We apply Proposition 7 with the point x_{1}. Then for every $r_{1} \in I\left(x_{1}\right)$, the conclusion of part (1) in that proposition holds for $x_{2}=a_{8 t} u_{r_{1}} x_{1}$. That is, $h \mapsto h x_{2}$ is injective over E_{t} and the transverse dimension of $\mathrm{E}_{t} \cdot x_{2}$ is $\geq 1 / D$ for all

$$
\begin{equation*}
x_{2} \in\left\{a_{8 t} u_{r_{1}} x_{1}: r_{1} \in I\left(x_{1}\right)\right\} \tag{8}
\end{equation*}
$$

where $D=D_{0} D_{1}+D_{1}$. Therefore, in order to show that $\int_{0}^{1} \varphi\left(a_{C \log R} u_{r} x_{1}\right) \mathrm{d} r$ is within $R^{-\star}$ of $\int \phi$, it is enough to show a similar estimate for $\int_{0}^{1} \varphi\left(a_{C \log R-8 t} u_{r} x_{2}\right) \mathrm{d} r$ for all x_{2} as in (8).

Phase II

Let $s=2 \sqrt{\varepsilon} t$ (note that this is much larger than $\ell=0.01 \varepsilon t$). Then

$$
\int_{0}^{1} \varphi\left(a_{s+d_{1} \ell+t} u_{r} x_{2}\right) \mathrm{d} r
$$

is within $R^{-\star}$ of

$$
\int_{0}^{1} \int \varphi\left(a_{s} u_{r} z\right) \mathrm{d} v_{\ell}^{\left(d_{1}\right)} \star \mu_{\mathrm{E}_{t} \cdot x_{2}}(z) \mathrm{d} r
$$

We now use Proposition 8 to improve the small transversal dimension from $1 / D$ to α. More precisely, Proposition 8 shows that

$$
\int_{0}^{1} \int \varphi\left(a_{s} u_{r} z\right) \mathrm{d} v_{\ell}^{\left(d_{1}\right)} \star \mu_{\mathrm{E}_{t} \cdot x_{2}}(z) \mathrm{d} r
$$

is within $R^{-\star}$ of a convex combination of integrals of the form

$$
\int_{0}^{1} \int \varphi\left(a_{s} u_{r} z\right) \mathrm{d} v_{\ell}^{(n)} \star \mu_{\mathscr{E}}(z) \mathrm{d} r
$$

where $0 \leq n=d_{1}-d \leq 10^{4} \varepsilon^{-1 / 2}$ and $\mathscr{E}=\mathscr{E}_{d, i}$ has dimension at least α transversal to H at controlled scales, see (5).

Phase III

It now suffices to show that $\int_{0}^{1} \int \varphi\left(a_{s} u_{r} z\right) \mathrm{d} v_{\ell}^{(n)} \star \mu_{\mathscr{E}}(z) \mathrm{d} r$ is within $R^{-\star}$ of $\int \varphi$ for all \mathscr{E} and n as above. We will use Proposition 5 to show this. First note that

$$
\int_{0}^{1} \int \varphi\left(a_{s} u_{r} z\right) \mathrm{d} v_{\ell}^{(n)} \star \mu_{\mathscr{E}}(z) \mathrm{d} r
$$

is within $R^{-\star}$ of

$$
\iint_{0}^{1} \varphi\left(a_{s+n \ell} u_{r} z\right) \mathrm{d} r \mathrm{~d} \mu_{\mathscr{E}}(z)
$$

Moreover, we have

$$
2 \sqrt{\varepsilon} t \leq s+n \ell \leq 2 \sqrt{\varepsilon} t+\frac{10^{4} \ell}{\sqrt{\varepsilon}}=102 \sqrt{\varepsilon} t
$$

in view of our choice of θ the right most term in the above series of inequalities is $\leq \frac{\kappa_{0}^{2}}{4 M \theta} \sqrt{\varepsilon} t$. Thus, Proposition 5, applied with $\theta=1-\alpha, c=2 \varepsilon, \varrho=e^{-\sqrt{\varepsilon} t}, \rho=e^{-t / 2}$, and $\tau=s+n \ell$, gives

$$
\begin{equation*}
\left|\iint \varphi\left(a_{s+n \ell} u_{r} z\right) \mathrm{d} \mu_{\mathscr{E}}(z) \mathrm{d} r-\int \varphi \mathrm{d} m_{X}\right| \ll \mathscr{S}(\varphi) e^{-\star t}=\mathscr{S}(\varphi) R^{-\star} \tag{9}
\end{equation*}
$$

where the implied constants depend on X.
Note that the total time required for these three phases is $s+d_{1} \ell+9 t$ which in view of the choices of s, ℓ and t is indeed a (large) constant times $\log R$. Theorem 1 follows.

In the setting of Theorem 3, we cannot utilize Proposition 6 combined with Proposition 7 as we did above; cf. the weaker conclusion in (2') following Proposition 7. Thus, we only use the three phases above (with $t=\star \delta \log T$) to improve the small dimension, namely the parameter δ in Theorem 3, to α. Thus the number of steps required is $\gg 1 / \delta$ which forces $\kappa \ll \delta$. Hence, we only obtain the rate $T^{-\star \delta^{2}}$ in part (1) of Theorem 3.

The proof of Propositions 8 relies on the evolution of the Margulis function $\widehat{f}_{\mathscr{E}, \varrho, \mathrm{K}}$ defined below. For every $(h, z) \in H \times \mathscr{E}$, put

$$
I_{\mathscr{E}, \varrho}(h, z):=\{w \in \mathfrak{r}: 0<\|w\|<\varrho \text { and } \exp (w) h z \in h \mathscr{E}\}
$$

Since E is bounded, $I_{\mathscr{E}, \varrho}(h, z)$ is a finite set for all $(h, z) \in H \times \mathscr{E}$.
For every $\mathrm{K} \geq 0$, define the modified and localized Margulis function $\widehat{f}_{\mathscr{E}, \varrho, \mathrm{K}}: H \times \mathscr{E} \rightarrow[1, \infty)$ as follows ${ }^{2}$: if $\# I_{\mathscr{E}, \varrho}(h, z) \leq \mathrm{K}$, put

$$
\widehat{f}_{\mathscr{E}, \varrho, \mathrm{K}}(h, z)=\varrho^{-\alpha}
$$

and if $\# I_{\mathscr{E}, \varrho}(h, z)>K$, put

We begin the outline of the proof of Propositions 8 with the following observation: the set $\mathrm{E}_{t} \cdot x_{1}$ gives rise to sets \mathscr{E} which are defined as in (4) and since we assume that Proposition 7 (2) does not hold these satisfy $\widehat{f}_{\mathscr{E}, \varrho, 0}(e, z) \leq e^{D t}$ for all $z \in \mathscr{E}$.

Let \mathscr{E} be one of these sets, then up to an exponentially small error, $v_{\ell} \star \mu_{\mathscr{E}}$ may be decomposed into $\sum c_{j}^{\prime} \mu_{\mathscr{E}_{j}^{\prime}}$ where $c_{j}^{\prime} \geq 0$ and $\sum c_{j}^{\prime}=1-O\left(\beta^{\star}\right)$. This can be seen by first decomposing $v_{\ell} \star \mu_{\mathscr{E}}$ into a combination of measures supported on subsets of X which are exponentially thin in the

[^2]direction of U^{-}(note that $a_{\ell} \mathrm{E} . y$ will be exponentially thin in the direction of U^{-}), and then smearing these measures with B_{β}^{H}. Continuing inductively, we obtain the decomposition (6).

The fact that the energy estimate (5) is also satisfied for the terms appearing in (6) is at the heart of the proposition. The proof of this fact is based on the following bootstrap step: for all but an exponentially small set of $r \in[0,1]$ and all but an exponentially small set of $z \in \mathscr{E}$,

$$
\begin{equation*}
\widehat{f}_{\mathscr{E},,, \beta^{-1}}\left(a_{\ell} u_{r}, z\right) \leq e^{-\ell / 2} e^{D t}+4 e^{\ell} \varrho^{-\alpha} \psi_{\mathscr{E}, \varrho}\left(a_{\ell} u_{r}, z\right) \tag{10}
\end{equation*}
$$

where $\psi_{\mathscr{E}, \varrho}(h, z):=\max \left\{\# I_{\mathscr{E}, \varrho}(h, z), 1\right\}$.
The proof of (10) relies on the aforementioned works of Wolff, Schlag, and Zahl [36, 45, 46], see also the discussion below.

The set $a_{\ell} u_{r} . \mathscr{E}$ can now be used to construct sets \mathscr{E}^{\prime} (defined as in (4)), and in view of (10), the estimate for $\widehat{f}_{\mathscr{E}^{\prime}, Q, \beta^{-1}}$ is improved. Continuing inductively and using $D t-0.5 d_{1} \ell \leq 3 t / 4$, after $d \leq d_{1}$ steps, we have

$$
\begin{equation*}
\widehat{f}_{\mathcal{E}^{\prime},,, d \beta^{-1}}(e, z) \leq e^{\varepsilon t} \varrho^{-\alpha} \psi_{\mathcal{E}^{\prime}, \varrho}(e, z), \tag{11}
\end{equation*}
$$

which implies the dimension estimate (5) for the set $F^{\prime} \subset B_{\mathfrak{r}}(0, \beta)$ which is used in the definition of \mathscr{E}^{\prime}, see (4).

We emphasize that our inductive scheme produces sets \mathscr{E}^{\prime} at every step $0<d \leq d_{1}$ with an improved bound on $\widehat{f}_{\mathscr{E}^{\prime}, Q, d \beta^{-1}}$, however, it does not guarantee that (11) is only satisfied for $d \in J$. On the other hand, and as it was discussed above, the fact that our stopping times d satisfy $d_{1}-d \leq 10^{4} \varepsilon^{-1 / 2}$ is essential for us when we apply Proposition 5. We remedy this issue as follows: if (5) holds for some $\mathscr{E}^{\prime \prime}$ defined at step $d<d_{1}-10^{4} \varepsilon^{-1 / 2}$, then we use the above inductive scheme to show that starting with \mathscr{E}^{\prime}, the process again terminates (i.e., (11) is satisfied) in at most $10^{4} \varepsilon^{-1 / 2}$-many further steps.

On a related note, it should also be mentioned that ideally one would like to replace the interval of possible choices of $d \in J$ with the singleton $\left\{d_{1}\right\}$, i.e., to show that after exactly d_{1} steps, one obtains sets which satisfy (5). Indeed, such statement can be obtained if one is content with restricting to $\alpha<1 / 2$ - this can be achieved using estimates analogues to [12, Lemma 5.1] where one replaces the integral over $[0,1]$ with integrals over much smaller intervals and by conditioning the random walk.

However, it is essential for us to work with $\alpha=1-\theta$ where $\theta>0$ is rather small. For such choices of α, there are vectors $w \in \mathfrak{r}$ where the growth of $\left\|a_{t} u_{r} w\right\|$ is too slow. Indeed, in general, one can only guarantee that

$$
\begin{equation*}
\int_{0}^{1}\left\|a_{t} u_{r} w\right\|^{-\alpha} \mathrm{d} r \ll e^{-\theta t}\|w\|^{-\alpha} \tag{12}
\end{equation*}
$$

Using this general fact (which is an exercise in linear algebra) as an input, one can prove a version of Proposition 8 where

$$
\left[d_{1}-\frac{10^{4}}{\sqrt{\varepsilon}}, d_{1}\right] \text { is replaced by }\left[d_{1}-\frac{36}{\theta \sqrt{\varepsilon}}, d_{1}\right]
$$

in particular, the length of the interval cannot be made smaller than $(\theta \sqrt{\varepsilon})^{-1}$.
As it was discussed above, this improvement is pivotal to our analysis, and it is made possible by bringing to bear $[36,45,46]$ in this step of the argument as well. Indeed, the poor rate in (12) is closely related to the existence of double zeroes for the map $r \mapsto\left(a_{t} u_{r} w\right)_{12}$ (the (1,2)-entry of $\left.a_{t} u_{r} w\right)$; we thus use $[36,45,46]$, to control tangencies between the two parabolas $\left\{\left(u_{r} w_{1}\right)_{12}\right.$: $r \in[0,1]\}$ and $\left\{\left(u_{r} w_{2}\right)_{12}: r \in[0,1]\right\}$ for most pairs $w_{1}, w_{2} \in F$ and most $r \in[0,1]$. This yields an improved version of (12) which we use crucially.

References

[1] J. Bourgain, A. Furman, E. Lindenstrauss, S. Mozes, "Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus", J. Am. Math. Soc. 24 (2011), no. 1, p. 231-280.
[2] J. Chaika, J. Smillie, B. Weiss, "Tremors and horocycle dynamics on the moduli space of translation surfaces", https://arxiv.org/abs/2004.04027, 2020.
[3] S. Chow, L. Yang, "An effective Ratner equidistribution theorem for multiplicative Diophantine approximation on planar lines", https://arxiv.org/abs/1902.06081, 2019.
[4] L. Clozel, H. Oh, E. Ullmo, "Hecke operators and equidistribution of Hecke points", Invent. Math. 144 (2001), no. 2, p. 327-351.
[5] S. G. Dani, "On orbits of unipotent flows on homogeneous spaces", Ergodic Theory Dyn. Syst. 4 (1984), no. 1, p. 25-34.
[6] - "On orbits of unipotent flows on homogeneous spaces. II", Ergodic Theory Dyn. Syst. 6 (1986), no. 2, p. 167182.
[7] S. G. Dani, G. Margulis, "Values of quadratic forms at primitive integral points", Invent. Math. 98 (1989), no. 2, p. 405424.
[8] , "Orbit closures of generic unipotent flows on homogeneous spaces of SL(3, R)", Math. Ann. 286 (1990), no. 13, p. 101-128.
[9] —, "Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces", Proc. Indian Acad. Sci., Math. Sci. 101 (1991), no. 1, p. 1-17.
[10] M. Einsiedler, G. Margulis, A. Mohammadi, A. Venkatesh, "Effective equidistribution and property (τ)", J. Am. Math. Soc. 33 (2020), no. 1, p. 223-289.
[11] M. Einsiedler, G. Margulis, A. Venkatesh, "Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces", Invent. Math. 177 (2009), no. 1, p. 137-212.
[12] A. Eskin, G. Margulis, S. Mozes, "Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture", Ann. Math. 147 (1998), no. 1, p. 93-141.
[13] A. Eskin, M. Mirzakhani, "Invariant and stationary measures for the SL($2, \mathbb{R}$) action on moduli space", Publ. Math., Inst. Hautes Étud. Sci. 127 (2018), p. 95-324.
[14] A. Eskin, M. Mirzakhani, A. Mohammadi, "Isolation, equidistribution, and orbit closures for the $\operatorname{SL}(2, \mathbb{R})$ action on moduli space", Ann. Math. 182 (2015), no. 2, p. 673-721.
[15] A. Eskin, S. Mozes, "Margulis Functions and Their Applications", in Dynamics, Geometry, Number Theory: the impact of Margulis on modern mathematics (D. Fisher, D. Kleinbock, G. Soifer, eds.), University of Chicago Press, 2022.
[16] L. Flaminio, G. Forni, J. Tanis, "Effective equidistribution of twisted horocycle flows and horocycle maps", Geom. Funct. Anal. 26 (2016), no. 5, p. 1359-1448.
[17] G. Forni, "Limits of geodesic push-forwards of horocycle invariant measures", Ergodic Theory Dyn. Syst. 41 (2021), no. 9, p. 2782-2804.
[18] H. Garland, M. S. Raghunathan, "Fundamental Domains for Lattices in \mathbb{R}-rank 1 Semisimple Lie Groups", Ann. Math. 92 (1970), no. 2, p. 279-326.
[19] B. Green, T. Tao, "The quantitative behaviour of polynomial orbits on nilmanifolds", Ann. Math. 175 (2012), no. 2, p. 465-540.
[20] W. He, N. de Saxcé, "Linear random walks on the torus", https://arxiv.org/abs/1910.13421v1, 2019.
[21] H. Jacquet, R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in Mathematics, vol. 114, Springer, 1970.
[22] A. Käenmäki, T. Orponen, L. Venieri, "A Marstrand-type restricted projection theorem in $\mathbb{R}^{3 "}$, https://arxiv.org/abs/ 1708.04859v1, 2017.
[23] A. Katz, "Quantitative disjointness of nilflows from horospherical flows", https://arxiv.org/abs/1910.04675, 2019.
[24] W. Kim, "Effective equidistribution of expanding translates in the space of affine lattices", https://arxiv.org/abs/2110. 00706, 2021.
[25] D. Y. Kleinbock, G. Margulis, "Bounded orbits of nonquasiunipotent flows on homogeneous spaces", in Sinai's Moscow Seminar on Dynamical Systems, American Mathematical Society Translations, Series 2, vol. 171, American Mathematical Society, 1996, p. 141-172.
[26] E. Lindenstrauss, G. Margulis, "Effective estimates on indefinite ternary forms", Isr. J. Math. 203 (2014), no. 1, p. 445499.
[27] E. Lindenstrauss, A. Mohammadi, "Polynomial effective density in quotients of \mathbb{H}^{3} and $\mathbb{H}^{2} \times \mathbb{H}^{2}$ ", https://arxiv.org/ abs/2112.14562v1, 2021.
[28] E. Lindenstrauss, A. Mohammadi, G. Margulis, N. A. Shah, "Quantitative behavior of unipotent flows and an effective avoidance principle", https://arxiv.org/abs/1904.00290vl, 2019.
[29] G. Margulis, "The action of unipotent groups in a lattice space", Mat. Sb., N. Ser. 86(128) (1971), p. 552-556.
[30] , "Indefinite quadratic forms and unipotent flows on homogeneous spaces", in Dynamical systems and ergodic theory (Warsaw, 1986), Banach Center Publications, vol. 23, Polish Academy of Sciences, 1989, p. 399-409.
[31] -, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 17, Springer, 1991.
[32] A. Mohammadi, H. Oh, "Isolations of geodesic planes in the frame bundle of a hyperbolic 3-manifold", https: //arxiv.org/abs/2002.06579vl, 2020.
[33] M. Ratner, "On measure rigidity of unipotent subgroups of semisimple groups", Acta Math. 165 (1990), no. 3-4, p. 229309.
[34] - , "On Raghunathan's measure conjecture", Ann. Math. 134 (1991), no. 3, p. 545-607.
[35] _ , "Raghunathan's topological conjecture and distributions of unipotent flows", Duke Math. J. 63 (1991), no. 1, p. 235-280.
[36] W. Schlag, "On continuum incidence problems related to harmonic analysis", J. Funct. Anal. 201 (2003), no. 2, p. 480521.
[37] A. Selberg, "On discontinuous groups in higher-dimensional symmetric spaces", in Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), Tata Institute of Fundamental Research, 1960, p. 147-164.
[38] - , "On the estimation of Fourier coefficients of modular forms", in Proc. Sympos. Pure Math., Vol. VIII, American Mathematical Society, 1965, p. 1-15.
[39] N. A. Shah, "Uniformly distributed orbits of certain flows on homogeneous spaces", Math. Ann. 289 (1991), no. 2, p. 315-334.
[40] , "Limit distributions of expanding translates of certain orbits on homogeneous spaces", Proc. Indian Acad. Sci., Math. Sci. 106 (1996), no. 2, p. 105-125.
[41] A. Strömbergsson, "An effective Ratner equidistribution result for $\operatorname{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^{2 "}$, Duke Math. J. 164 (2015), no. 5, p. 843-902.
[42] A. Venkatesh, "Sparse equidistribution problems, period bounds and subconvexity", Ann. Math. 172 (2010), no. 2, p. 989-1094.
[43] A. Weil, "On Discrete Subgroups of Lie Groups", Ann. Math. 72 (1960), no. 2, p. 369-384.
[44] -, "Remarks on the Cohomology of Groups", Ann. Math. 80 (1964), no. 1, p. 149-157.
[45] T. H. Wolff, "Local smoothing type estimates on L^{p} for large p", Geom. Funct. Anal. 10 (2000), no. 5, p. 1237-1288.
[46] J. Zahl, " L^{3} estimates for an algebraic variable coefficient Wolff circular maximal function", Rev. Mat. Iberoam. 28 (2012), no. 4, p. 1061-1090.

[^0]: * Corresponding author.

[^1]: ${ }^{1}$ As pointed out by Venkatesh in [42], the distinction between horospheric and non-horospheric is not completely clear cut, and indeed the results of that paper can also be recast as a nonhorospheric equidistribution problem; cf. [16] as

[^2]: ${ }^{2}$ If Γ is nonuniform, this Margulis function needs to be modified accordingly; but in this section we limit ourselves to the compact case.

