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Abstract. For each positive integer n, function f , and point x, the 1998 conjecture by Ginchev, Guerragio,
and Rocca states that the existence of the nth Peano derivative f(n)(x) is equivalent to the existence of all
n(n +1)/2 generalized Riemann derivatives,

Dk,− j f (x) = lim
h→0

1

hn

k∑
i=0

(−1)i

(
k

i

)
f (x + (k − i − j )h),

for j ,k with 0 ≤ j < k ≤ n. A version of it for n ≥ 2 replaces all − j with j and eliminates all j = k − 1. Both
the GGR conjecture and its version were recently proved by the authors using non-inductive proofs based on
highly non-trivial combinatorial algorithms. This article provides a second, inductive, algebraic proof to each
of these theorems, based on a reduction to (Laurent) polynomials.
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Arguably, the most important application of higher order derivatives is Taylor’s theorem,
asserting that an n times differentiable function f at a point c is approximated near c by a
polynomial p with error f (c +h)− p(c +h) = o(hn) as h → 0. It is also well known that Taylor’s
theorem provides only a sufficient condition for this approximation to happen, and all functions
f with this property are said to be n times Peano differentiable at c.

In 1998, Ginchev, Guerragio, and Rocca (GGR) conjectured the following result:

Conjecture (GGR Conjecture). When n ≥ 2, the following two conditions,

(i) f is n −1 times Peano differentiable at c and
(ii) limh→0

1
hn

∑n
j=0(−1)n− j

(n
j

)
f (c + ( j −k)h) exists for all k with 0 ≤ k ≤ n −1,

are sufficient to make f an n times differentiable function at c.

They proved the theorem by hand for n = 2,3,4 in [7], and with the use of a computer they
proved it for n = 5,6,7,8 in [8], leaving the rest as a conjecture. The GGR conjecture was recently
proved in [2] and is now a theorem. The result proved in [2] is slightly stronger for n odd, by
eliminating the second condition for k = 0. A variant of the conjecture, where the bounds for k
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are replaced by −(n −2) ≤ k ≤ 0, is proved in [4]. Article [6] sheds some light towards extending
the GGR conjecture for n = 1.

The original statement of the GGR conjecture is actually an equivalent version of the above, by
the principle of mathematical induction: If Dn,k denote the above limits, Ginchev, Guerragio, and
Rocca conjectured that the

(n+1
2

)
limits Dm,k for 0 ≤ k < m ≤ n will be enough for f to be n times

Peano differentiable at c. The limit Dn,0 = Dn,0 f (c) is called the nth Riemann derivative of f at c,
and Dn,n/2 f (c) is the nth symmetric Riemann derivative of f at c. Both of these derivatives were
invented by Riemann in the mid 1800s, see [11]. The Peano derivatives were invented by Peano
in [10] in 1892, and then developed greatly by de la Vallée Poussin in [12]. For this reason, they are
often referred to as de la Vallée Poussin derivatives.

The purpose of this note is to provide a new, simple proof to both the GGR conjecture and its
variant.

∗ ∗ ∗
Let Rn(h) be the difference defined recursively by R1(h) = f (c + h) − f (c), and Rn(h) =

Rn−1(2h)−2n−1Rn−1(h) for n ≥ 2. Closed form formulas for generalizations of these differences
are deduced in [3]; they involve the Gaussian or q-binomial coefficients, so they are q-analogues
of the Riemann differences. Other q-analogues of Riemann differences are found in [1] and [5].

We will use the following 1936 result of Marcinkiewicz and Zygmund in [9].

Theorem 1. Suppose f is n −1 times Peano differentiable at c. If limh→0 Rn(h)/hn exists, then f
is n times Peano differentiable at c.

If we denote ∆k (h) as the difference
∑n

j=0(−1)n− j
(n

j

)
f (c + ( j −k)h) in the GGR limit condition,

then this condition can be concisely written as limh→0∆k (h)/hn exists. It is also obvious that if all
GGR limit conditions are met then the following linear combination

lim
h→0

∑
k ck∆k (sk h)

hn exists, where ck , sk are arbitrary real constants.

Hence, if we can show that R(h) is a linear combination
∑

k ck∆k (sk h), then the GGR conjecture
follows from Theorem 1.

That this is indeed the case will follow from the analogous result for polynomials, via the linear
isomorphism, ∆(h) := ∑

c j f (c + b j h) 7→ d(t ) := ∑
c j t b j , from the R-space of all differences of

f at c and h with integer nodes (the b j ), to the R-space R[t , t−1] of all Laurent polynomials in
indeterminate t with real coefficients. In this way, (1) if

∆k (h) =
n∑

j=0
(−1)n− j

(
n

j

)
f (c + ( j −k)h),

then

dk (t ) =
n∑

j=0
(−1)n− j

(
n

j

)
t j−k = t−k (t −1)n ;

(2) the polynomial corresponding to ∆k (sh) is dk (t s ); and (3) if rn(t ) is the polynomial that
corresponds to Rn(h) under this linear isomorphism, then its recursive definition is r1(t ) = t −1,
and rn(t ) = rn−1(t 2)−2n−1rn−1(t ) for n ≥ 2.

Based on these properties of the above linear isomorphism, we will be done by showing that
the following result is true.

Theorem 2. There are constants ck and sk such that rn(t ) =∑
ck dk (t sk ).

Before proceeding with the proof of Theorem 2, we need to make a clarification. Our solution
to the theorem has the numbers sk non-negative integers instead of real numbers, so we can
think of sk as s, with s ≥ 0. Then the ck are viewed as ck,s , for a more precisely indexed sum
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∑
ck dk (t sk ) =∑∞

s=0
∑

k ck,s dk (t s ) =∑∞
s=0

∑
k ck,s t−sk (t s−1)n , where the ranges for k will be clarified

later, since these are different for different cases in the proof of the theorem. Summarizing, in
order to prove Theorem 2, it suffices to show that

rn(t ) ∈Vn := span
{

t−sk (t s −1)n
∣∣∣k = (0),1, . . . , n −1, s = 1,2, . . .

}
,

where (0) means that the value 0 is taken only for n even.

∗ ∗ ∗
The proof of Theorem 2 is much shorter for the variant of the GGR conjecture than it is for the

conjecture itself. For this reason, we deal with the variant first.

Proof of Theorem 2 (Variant Case)

In this case, by replacing the index of summation k with −k, the range −(n −2) ≤ k ≤ 0 becomes
0 ≤ k ≤ n −2. In this way, Vn becomes

Vn = span
{

t sk (
t s −1

)n
∣∣∣k = 0, . . . , n −2; s = 1,2, . . .

}
.

The following lemma provides a new set of generators for the space Vn .

Lemma 3. Vn = span{(t s −1)n+k | k = 0,1, . . . , n −2, s = 1,2, . . .}.

Proof. It suffices to show the following equality of subspaces:

span
{

t k (t −1)n
∣∣∣k = 0,1, . . . , n −2

}
= span

{
(t −1)n+k

∣∣∣k = 0,1, . . . , n −2
}

.

Indeed, this is the result of multiplying by (t −1)n both sides of the obvious equation

span
{
1, t , t 2, . . . , t n−2}= span

{
1, t −1,(t −1)2, . . . , (t −1)n−2} . �

We are now ready to proceed with the proof of Theorem 2 in its variant case.

Proof of Theorem 2 (Variant Case). Induct on n. When n = 2, r2 = (t − 1)2 is clearly in V2.
Suppose rn ∈ Vn , for some n, n ≥ 2, and prove the same property for n + 1. By Lemma 3, rn is
a linear combination of polynomials of the form (t s − 1)n+k , where s is a positive integer and
k = 0,1, . . . ,n − 2. By the recursion, rn+1(t ) = rn(t 2) − 2nrn(t ) will be a linear combination of
polynomials (

t 2s −1
)n+k −2n (

t s −1
)n+k , for various k and s.

By Lemma 3, these polynomials belong to Vn+1 in all cases, except for k = 0, when(
t 2s −1

)n −2n (
t s −1

)n = (
t s −1

)n ((
t s +1

)n −2n)= (
t s −1

)n+1 p
(
t s) ,

where p is a polynomial in t of degree n − 1, so that (t s − 1)n+1p(t s ) belongs to the subspace
span{(t s −1)n+1, (t s −1)n+2, . . . , (t s −1)2n} of Vn+1. �

Proof of Theorem 2 (GGR Case)

The GGR case in the proof of Theorem 2 is similar to the variant case. The proof of the inductive
step is now split further into two subcases, n odd and n even. In both cases, following the refined
result of the GGR Theorem from [2],

Vn = span
{

t−sk (
t s −1

)n
∣∣∣k = (0),1, . . . , n −1; s = 1,2, . . .

}
,

where (0) means that 0 is taken for n even, and not taken for n odd. More explicitly, this is

Vn =
{

span
{
(t −1)n , t−1(t −1)n , . . . , t−(n−1)(t −1)n , . . .

}
, n even,

span
{

t−1(t −1)n , t−2(t −1)n , . . . , t−(n−1)(t −1)n , . . .
}

, n odd,
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where the last dots in both cases mean that the generating set also includes the previously listed
generators evaluated at t s , for all s at least 2. Let Wn be the subspace of Vn spanned by all
generators with s = 1. Then Wn has the expression

Wn =
{

span
{
(t −1)n , t−1(t −1)n , . . . , t−(n−1)(t −1)n

}
, n even,

span
{

t−1(t −1)n , t−2(t −1)n , . . . , t−(n−1)(t −1)n
}

, n odd.

The following lemma provides new sets of generators for Wn in both parity cases.

Lemma 4. With the above notation,

Wn =
{

span
{

t−n/2(t −1)n , t−1(t −1)n+1, . . . , t−(n−1)(t −1)n+1
}

, n even,

span
{

t−(n−1)/2(t −1)n , t−2(t −1)n+1, . . . , t−(n−1)(t −1)n+1
}

, n odd.

Proof. When n is even, the result follows from t−n/2(t − 1)n being one of the generators in the
definition of Wn , and t−k (t −1)n+1 = t−(k−1)(t −1)n − t−k (t −1)n , for each k = 1, . . . , n−1. The case
when n is odd has a similar proof. �

We are now ready to prove Theorem 2 in the GGR case.

Proof of Theorem 2 (Case GGR). Induct on n. When n = 1, r1 = t−1 ∈V1. We assume that rn ∈Vn

and prove that rn+1 ∈Vn+1 in two possible cases:
Case 1. When n is even,

Vn+1 = span
{

t−1(t −1)n+1, t−2(t −1)n+1, . . . , t−n(t −1)n+1, . . .
}

.

The inductive hypothesis and Lemma 4 imply that rn(x) is a linear combination of

t−n/2(t −1)n and t−k (t −1)n+1, for k = 1, . . . , n −1,

and their evaluations at t s , for s at least 2. Then rn+1(t ) = rn(t 2)−2nrn(t ) is a linear combination
of two kinds of polynomials and their evaluations at t s , for s ≥ 2. The first kind of polynomial has
the form t−n(t 2 −1)n −2n t−n/2(t −1)n

= t−n(t −1)n (
(t +1)n −2n t n/2)= t−n(t −1)n+1p(t ),

where p(t ) is a polynomial degree n −1, hence the whole expression lives inside of

(t −1)n+1 span
{

t−1, t−2, . . . , t−n}
,

a subspace of Vn+1. The polynomials of the second kind are polynomials of the form

t−2k (
t 2 −1

)n+1 −2n t−k (t −1)n+1, for k = 1, . . . , n −1.

Their second term is a scalar multiple of a generator of Vn+1, while their first term is an (s = 2)-
dilation of the same generator, so all polynomials of the second kind also belong to Vn+1. We
conclude that rn+1 ∈Vn+1, as needed.

Case 2. When n is odd,

Vn+1 = span
{
(t −1)n+1, t−1(t −1)n+1, . . . , t−n(t −1)n+1, . . .

}
.

The inductive hypothesis and Lemma 4 imply that rn(x) is a linear combination of

t−(n−1)/2(t −1)n and t−k (t −1)n+1, for k = 2, . . . , n −1,

and their evaluations at t s , for s at least 2. Then rn+1(t ) = rn(t 2)−2nrn(t ) is a linear combination
of two kinds of polynomials and their evaluations at t s , for s ≥ 2. The first kind of polynomial is
of the form t−(n−1)(t 2 −1)n −2n t−(n−1)/2(t −1)n

= t−(n−1)(t −1)n (
(t +1)n −2n t (n−1)/2)= t−(n−1)(t −1)n+1p(t ),

where p(t ) is a polynomial degree n −1, hence the above expression lives inside of

(t −1)n+1 span
{
1, t−1, t−2, . . . , t−(n−1)} ,
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a subspace of Vn+1. The polynomials of the second kind are polynomials of the form

t−2k (
t 2 −1

)n+1 −2n t−k (t −1)n+1, for k = 2, . . . , n −1.

Their second term is a scalar multiple of a generator of Vn+1, while their first term is an (s = 2)-
dilation of the same generator, so all polynomials of the second kind also belong to Vn+1. We
conclude that rn+1 ∈Vn+1 in this case as well. �
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