
Comptes Rendus

Mathématique

Ludovic Godard-Cadillac

Hölder estimate for the 3 point-vortex problem with alpha-models

Volume 361 (2023), p. 355-362

https://doi.org/10.5802/crmath.414

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.414
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2023, Vol. 361, p. 355-362
https://doi.org/10.5802/crmath.414

Partial differential equations, Dynamical systems / Equations aux dérivées partielles,
Systèmes dynamiques

Hölder estimate for the 3 point-vortex

problem with alpha-models

Ludovic Godard-Cadillac∗, a

a Laboratoire Jean Leray, Nantes Université, 2 Chem. de la Houssinière, 44322 Nantes,
France

E-mail: lugocadi@yahoo.fr
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Introduction

We study in this article the dynamical system called the point-vortex system in the general setting
ofα-models. This consists in N ≥ 1 points x1, . . . , xN in the plane R2 that evolve in time according
to the following evolution equation (α≥ 0):

d

d t
xi (t ) :=

N∑
j=1
j 6= i

a j
(xi −x j )⊥∣∣xi −x j

∣∣α+1 . (1)

In the equation above, the notation ⊥ stands for the counter clockwise rotation of angle π/2. The
quantity ai 6= 0 is called the intensity (or the circulation) of the i th vortex.

This dynamical system arises in several models for inviscid planar fluid mechanics. It is a
standard model introduced by Helmholtz [12] and still have numerous open problems. The
most studied case is α = 1, which corresponds to the point-vortex system associated to the bi-
dimensional Euler equations. In this case, the point-vortex system gives account of the nat-
ural situation where the vorticity ω is sharply concentrated around a finite number of points
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x1, . . . , xN . This models the intuitive notion of “center of whirlpools” at the surface of a fluid or in-
side a planar flow. In such a situation, the vorticity of the fluid writes as a pondered sum of Dirac
masses and the velocity of the fluid is computed using the Biot–Savart law. The case α = 2 cor-
responds to the point-vortex system for the surface quasi-geostrophic equations that are widely
used in geophysical sciences for atmospheric dynamics and weather forecast. In this situation,
the point-vortex system is a simplified model for the dynamics of atmospheric vortices. Other
values of α also have a physical meaning. For a more extensive presentation of the point-vortex
systems, we refer to [8, 9, 15, 16]. See also references therein.

This dynamical system (1) is well-defined as a consequence of the Cauchy–Lipschitz theorem
(also called Picard–Lindelöf theorem) provided that the vortices does not show a collapse behav-
ior. In other words, if T > 0 is the maximal time of existence for the system, then

liminf
t →T − min

i 6= j

∣∣xi (t )−x j (t )
∣∣= 0. (2)

The existence of collapses for the 3 vortex problem for the Euler equations (α= 1) was obtained
independently by [1, 10, 17]. Other works for a better description of 3 vortex collapses when
α = 1 can be found at [2, 11, 13]. Concerning the surface quasi-geostrophic case (α = 2), the
collapses for the 3 vortex system have been studied by [4,18]. The collapses of 3 vortices for other
values of α ≥ 0 has been investigated only recently [6, 19]. It is also worth mentioning a series
of results concerning the improbability of collapses. More precisely, these results states that the
point-vortex system is globally well-defined for almost every initial datum under standard non-
degeneracy hypothesis on the intensities [5, 7, 9, 14, 15].

The aim of the present work is to study a particular type of collapse called the mono-scale
collapse which consists in the hypothesis that the distances between all the vortices involved in
a collapse have the same scale, meaning that they are comparable. This hypothesis may seem
quite restrictive at first sight, but we are able to prove that this is always verified for the 3-vortex
problem, in the general setting α ≥ 1. In particular, we are able to obtain a Hölder estimate on
the trajectories of the vortices for the 3 vortex problem in presence of a collapse. This implies
in particular that the position of the 3 vortices admits a limit as t → T , where T is the time
of collapse. In the preprint [6] written a few time later, we recover this result with different
arguments.

1. Presentation of the problem and main result

In the study of the point-vortex system associated to the Euler equation made by [14, § 4], the
authors focus on systems of vortices which circulations satisfy the following hypothesis:

∀ A ⊆ {1 · · · N } s.t . A 6= ;,
∑

i ∈ A
ai 6= 0. (3)

In this article, the hypothesis above will be referred as the “non-neutral clusters hypothesis”. This
hypothesis exactly means that any subset of vortices is non-neutral: the sum of the intensities
is nonzero. This term of “neutral” is coming from the study of coulomb interactions where the
same hypothesis exist. In [9], under the non-neutral clusters hypothesis, a uniform bound was
obtained. This bound writes as follows, provided that the dynamics is well-defined on [0,T ):

∀ t ∈ [0,T ), ∀ i = 1 . . . N , |xi (t )−xi (0)| ≤C . (4)

Moreover it is proved that the constant C is independent on the initial datum and on α ≥ 0.
Nevertheless, such a bound (4) fails to describe the collapse in itself. In particular, it does not
says whether or not the positions of the vortices are convergent as t goes to the time of collapse.
What makes this problem non trivial comes from the fact that the velocity of the vorticies (1)
blows up in presence of a collapse (2).
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The main idea guiding this work consists in the following simple observation. Consider in
dimension 1 a dynamical system x : t 7→ x(t ) ∈ R, with x(t ) > 0, governed by the following
evolution equation.

∀ t ,
d

d t
x(t ) = − 1

x(t )α
. (5)

This simple evolution system can be seen as a toy problem for the more general and complicated
α-point vortex model (1). It is a direct computation to check that the solution to this toy-system is

x(t ) =
[

x(0)α+1 − (α+1) t
] 1
α+1

. (6)

Such a solution “collapses” with the value 0 and shows a 1/(α+ 1) Hölder regularity. This toy
problem is expected to be a model of collapses for the α vortices under the non-degeneracy
hypothesis (3).

For this article, we restrict the analysis to the particular case of the mono-scale clusters. A
system of vortices from a given initial datum X ∈ R2N supposed well-defined on the interval of
time [0,T ) is said to satisfy the mono-scale clusters condition if their exists two positive constants
C1,C2 and a partition (P1 · · ·PK ) of the set {1 · · ·N } such that the two following conditions are
satisfied:

∀ k ∈ {1 · · ·K }, ∀ t ∈ [0;T ), max
i , j ∈Pk

i 6= j

|xi (t )−x j (t )| ≤ C1 min
i , j ∈Pk

i 6= j

∣∣xi (t )−x j (t )
∣∣ , (7)

∀ k 6= l ∈ {1 · · ·K }, ∀ t ∈ [0;T ), min
i ∈Pk

min
j ∈Pl

∣∣xi (t )−x j (t )
∣∣ ≥ C2. (8)

The subsets Pk ⊆ {1 · · ·N } are called the clusters of vortices since they give the indices of the
sets of vortices that stay “together” during the dynamics. Condition (7) means that the vortices
belonging to a same cluster have all their mutual distance that stay of same order, or comparable,
even in case of collapse. This property justifies the name “mono-scale clusters”.

Proposition 1 (Mono-scale Hölder estimate). Let T > 0 be a final time and let α> 0. Let X ∈R2N

an initial datum. Consider the point-vortex dynamic (1). Assume that the dynamics is well-defined
on [0,T ) and that the mono-scale hypothesis (7)-(8) holds. Assume also that these mono-scale
clusters are non-neutral:

∀ k = 1, . . . , K ,
∑

i ∈Pk

ak 6= 0.

Then there exists a constant C > 0 such that for all i = 1 . . . N ,

∀ t1, t2 ∈ [0,T ), |xi (t2)−xi (t1)| ≤ C |t2 − t1|
1

α+1 .

Moreover, the constant C is independent of the initial condition.

In particular, the position of the vortices converges as t → T −. In other words, if the system
shows a “pathological behavior” (meaning : non-convergent) in the presence of a collapse (2)
then it has necessarily a multi-scale structure.

One consequence of this proposition is the main result of this article:

Theorem 2 (Hölder estimate for 3 point-vortex without external fields). Let T > 0 be a final
time and let α> 1. Let X ∈R2N an initial datum. Consider the point-vortex dynamic (1) in the case
N = 3 and assume that this dynamics is well-defined on the interval of time [0,T ). Assume that the
system is non-neutral:

a1 +a2 +a3 6= 0.

Then, there exists a constant C > 0 such that for all i ∈ {1,2,3}:

∀ t1, t2 ∈ [0,T ), |xi (t2)−xi (t1)| ≤ C |t2 − t1|
1

α+1 .
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The proof of this theorem is divided into two parts. We prove on the one hand Proposition 1
for the mono-scale collapses. On the other hand, we establish that the 3 vortex problem always
shows mono-scale collapses if α> 1.

This theorem does not solve the problem in the case 0 <α≤ 1. Nevertheless, in the particular
case where α= 1, corresponding to the Euler point-vortex, the 3 vortex problem is already widely
studied [1, 2, 11, 13] so that this result is already standard in this case. In [11], they study the case
where the 3 vortices are submitted to a lipschitz external field and obtain a similar conclusion.
We do not know if their arguments can be extend to the case α> 1.

2. Monoscale structure of the 3-vortex collapses

2.1. Hamiltonian of the point-vortex

One main element to point-out is the Hamiltonian nature of the point-vortex equations (1). This
allows us to obtain several conservation laws which eventually provide strong tools to study the
equation.

The Hamiltonian of the point-vortex system, when α> 1 is given by

H :R2N −→R,

X = (x1 · · ·xN ) 7−→
∑

i 6= j

ai a j∣∣x j −xi
∣∣α−1 .

(9)

The system (1) is said to be Hamiltonian because it can be rewritten

ai
d

d t
xi (t ) =∇⊥

xi
H

(
X

)
The first consequence of this Hamiltonian reformulation is the preservation of the Hamiltonian
H along the flow of (1) [3, § 3]. This Hamiltonian formulation allows us to extract the quantities
conserved by the flow, one of them being the vorticity vector:

M(X ) :=
N∑

i=1
ai xi .

When the system is non-neutral, meaning that
∑

i ai 6= 0, this lemma implies the preservation of
the center of vorticity of the system defined by

B(X ) :=
(

N∑
i=1

ai

)−1 N∑
i=1

ai xi . (10)

2.2. Shortest and second shortest distances

In this section we study the relative value between the shortest distance and the second shortest
distance between vortices. The shortest distance is defined by

ζ1(t ) := min
i < j=1···N

∣∣xi (t )−x j (t )
∣∣ . (11)

The second shortest distance is defined by

ζ2(t ) := min
i < j=1···N

(i , j ) 6= (i1, j1)

∣∣xi (t )−x j (t )
∣∣ . (12)

where (i1, j1) with i1 < j1 is a pair of indices that realizes the shortest distance:∣∣xi1 (t )−x j1 (t )
∣∣= ζ1(t ). (13)
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One of the consequence of the Hamiltonian structure of the equations is that a pair of vortex
cannot collapse without the presence of a third one. Otherwise, the Hamiltonian of the system (9)
would blow up, which in contradiction with the fact that it is a constant of the movement. More
precisely, we are able to prove that these two distances must be of same order.

Lemma 3 (Comparing small distances). Let T > 0 be a final time and let α > 1. Let X ∈ R2N an
initial datum such that the dynamics for the point-vortex dynamic (1) is well-defined on [0,T ).

Then there exists a constant C such that

∀ t ∈ [0,T ), ζ2(t ) ≤C ζ1(t ),

with ζ1 and ζ2 defined at (11) and (12).

Proof. Suppose for the sake of contradiction that there exists a sequence of time (tn) such that
ζ1(tn)/ζ2(tn) → 0 as n → +∞. Recall the definition of the indices (i1, j1) at (13). These indices
depends on n the minimal distance is not always realized by the same pair of vortices as n grows.
Nevertheless and since the number of vortices is finite, it is always possible up to an omitted
extraction to assume that (i1, j1) does not depend on n ∈ N. Indeed at least one pair of vortices
realizes the minimal distance infinitely many times as n → +∞. After such an extraction, the
contradiction hypothesis implies

∀ i < j ∈ {1 · · ·N }, (i , j ) 6= (
i1, j1

)
,

∣∣xi1 (tn)−x j1 (tn)
∣∣∣∣xi (tn)−x j (tn)
∣∣ −→ 0, as n →+∞. (14)

In particular (14) gives ∣∣xi1 (tn)−x j1 (tn)
∣∣ −→ 0 as n →+∞.

Using the definition of the Hamiltonian (9),

ai1 a j1 =
H(X )

2
∣∣xi1 (tn)−x j1 (tn)

∣∣1−α −
N∑

i < j=1
(i , j )6=(i1, j1)

ai a j

∣∣xi (t )−x j (t )
∣∣1−α∣∣xi1 (tn)−x j1 (tn)

∣∣1−α . (15)

With the preservation of the Hamiltonian, the limit |xi1 (tn)−x j1 (tn)|→ 0 implies

H(X )

2
∣∣xi1 (tn)−x j1 (tn)

∣∣1−α −→ 0, as n →+∞.

Using now (14) gives, as n →+∞,

∀ i < j ∈ {1 · · ·N }, (i , j ) 6= (i1, j1),

∣∣xi1 (tn)−x j1 (tn)
∣∣1−α∣∣xi (tn)−x j (tn)
∣∣1−α −→+∞.

Therefore, passing to the limit n →+∞ in (15)

ai1 a j1 = 0.

This is in contradiction with ai 6= 0 for all i . �

Corollary 4. The point-vortex system (1) with α > 1 when the number of vortices is N = 3 satisfy
the mono-scale property (7)(8) with K = 1.

Proof. Since we have only 3 vortices, the triangular inequality writes:

max
i , j ∈ {1,2,3}

∣∣xi (t )−x j (t )
∣∣ ≤ ζ1(t )+ζ2(t ).

Combining this with Lemma 3 eventually gives (7) with K = 1. Concerning (8), this condition is
void when K = 1. �
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3. Proof of Proposition 1

For the rest of the article, the notation C stands for some constant (independent of the time)
which value has no real importance and that may change from one line to another.

3.1. Comparison with the toy model

The first step of the proof consists in giving a rigorous meaning to the idea adumbrated at (5)
and (6) which consists in obtaining the Hölder regularity by comparing with the dynamics of the
toy model. For that purpose we study this toy model in the general setting given by the following
lemma.

Lemma 5 (Hölder estimate for the generalized toy problem). Consider a general dynamical
system X : t ∈ [0,T ) 7→ X (t ) ∈Rd supposed weakly differentiable. Assume that this system satisfy

∀ t ∈ [0,T ),

∣∣∣∣ d

d t
X (t )

∣∣∣∣ ≤ 1

|X (t )−X0|α
+1, (16)

for some X0 ∈Rd (with α≥ 0). Then, there exists a constant C such that

∀ t1, t2 ∈ [0,T ), |X (t2)−X (t1)| ≤ C |t2 − t1|
1

α+1 .

Proof. We first prove this lemma in the case d = 1. Define x(t ) := X (t )− X0 ∈ R. Equation (16)
gives

∀ t ∈ [0,T ),

∣∣∣∣ d

d t
x(t )

∣∣∣∣ ≤ 1

|x(t )|α +1. (17)

We now observe that the derivative of x is bounded by 2 whenever |x| ≥ 1. Then two cases occurs.
Either we have |x(t )| ≥ 1 for all times (and the dynamics is uniformly Lipschitz so that there is
nothing to prove) or there exists a time t0 such that |x(t )| ≤ 1. In the second situation, the bound
on the derivative of x(t ) when |x| ≥ 1 implies |x(t )| ≤ 1+2T for all t ∈ [0,T ). Therefore, and with
such a bound at hand, it is direct from (17) to check that

∀ t ∈ [0,T ),

∣∣∣∣ d

d t
x(t )|x(t )|α

∣∣∣∣ ≤ C .

Thus, if one integrates this inequality in time,

∀ t1, t2 ∈ [0,T ),
∣∣∣ x(t2)|x(t2)|α−x(t1)|x(t1)|α

∣∣∣ ≤ C |t2 − t1|. (18)

In the case where x(t2) and x(t1) have the same sign, the convexity inequality |aα+1 − bα+1| ≥
|a −b|α+1 (true for a,b ≥ 0) gives∣∣∣ x(t2)|x(t2)|α−x(t1)|x(t1)|α

∣∣∣ ≥ ∣∣x(t2)−x(t1)
∣∣α+1.

In the other case, using the convexity inequality (a +b)α+1 ≤ 2α(aα+1 +bα+1),∣∣∣ x(t2)|x(t2)|α−x(t1)|x(t1)|α
∣∣∣ ≥ 1

2α
∣∣x(t2)−x(t1)

∣∣α+1.

In both cases, Equation (18) leads to

∀ t1, t2 ∈ [0,T ),
∣∣x(t2)−x(t1)

∣∣ ≤ C |t2 − t1|
1

α+1 .

This eventually conclude the proof in the case d = 1.
We now consider d ≥ 2. For i = 1 . . . N , by simply observing that |Xi (t )−X0,i | ≤ |X (t )−X0|, we

infer from Condition (16) that (17) holds for x(t ) := Xi (t )−X0,i . We have reduced the problem to
the case d = 1 already studied and this concludes the proof. �
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3.2. Study of the relative dynamics inside a cluster

Now that we have a good understanding of the toy model in its generality, there remain to study
the dynamics of the vortices in comparison with this toy model.

Lemma 6. Consider the point-vortex dynamics (1) under the mono-scale assumption (7)-(8).
Consider the partition (P1 · · ·Pk ) given by the mono-scale assumption and let k ∈ {1 · · ·K }. Let
i , j ∈ Pk . Then we have

∀ t1, t2 ∈ [0,T ),
∣∣∣yi j (t2)− yi j (t1)

∣∣∣ ≤ C
∣∣t2 − t1

∣∣ 1
α+1 ,

where yi j (t ) := xi (t )−x j (t ).

Proof. Consider the partition (P1 · · ·PK ) given by the mono-scale assumption (7)-(8) and let
k ∈ {1 · · ·K }. We focus on the case where #Pk ≥ 2 and we take i 6= j ∈ Pk . We are interested in
the dynamics of

yi j : t ∈ [0,T ) 7−→ xi (t )−x j (t )

The equations of motion (1) give

d

d t
yi j (t ) =

N∑
l=1
l 6=i

al
(xl (t )−xi (t ))⊥

|xl (t )−xi (t )|α+1 −
N∑

l=1
l 6= j

al

(
xl (t )−x j (t )

)⊥∣∣xl (t )−x j (t )
∣∣α+1 .

Thus, ∣∣∣∣ d

d t
yi j (t )

∣∣∣∣ ≤ N∑
l=1
l 6=i

|al |∣∣yi l (t )
∣∣α +

N∑
l=1
l 6= j

|al |∣∣y j l (t )
∣∣α .

Concerning the indices l that does not belong to the set Pk , it is possible to estimate the
associated term in the sums above using the constant C2 given by mono-scale assumption (8).
This gives∣∣∣∣ d

d t
yi j (t )

∣∣∣∣ ≤ ∑
l ∈Pk
l 6=i

|al |∣∣yi l (t )
∣∣α + ∑

l ∈Pk
l 6= j

|al |∣∣y j l (t )
∣∣α +C ≤ C

(
1

minl 6=m∈Pk

∣∣ylm(t )
∣∣α +1

)
.

For this indices l that belong to the same cluster Pk , they are estimated using the mono-scale
assumption (7). We are led to∣∣∣∣ d

d t
yi j (t )

∣∣∣∣ ≤ C

(
1

maxl 6= l ∈Pk

∣∣ylm(t )
∣∣α +1

)
≤ C

(
1∣∣yi j (t )

∣∣α +1

)
.

Therefore t 7→ yi j (t ) satisfy the hypothesis of Lemma 5 which eventually gives the announced
Hölder regularity. �

3.3. Proof of Proposition 1 completed

It is now possible to complete the proof of Proposition 1. The system made only of the vortices
of Pk can be seen as an autonomous point-vortex system with an extra term, viewed as an
external field, which consists in the interaction with the vortices that does not belong to Pk .
Assumption (8) ensures that the interaction between the vortices of different clusters is uniformly
Lipschitz. Invoking now the conservation of the center of vorticity (10), we obtain that Bk :=
(
∑

j ∈Pk
a j )−1 ∑

j ∈Pk
a j x j , the center of vorticity of the the cluster Pk , is uniformly Lipschitz on

the interval of time [0,T ). Remark that Bk is well-defined as a consequence of the non-neutral
clusters hypothesis (3). Let i ∈ Pk , and let t1, t2 ∈ [0,T ), we have by triangular inequality

|xi (t2)−xi (t1)| ≤ |(xi (t2)−Bk (t2))− (xi (t1)−Bk (t1))|+ |Bk (t2)−Bk (t1)| .
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The second term of the sum above is directly estimated using the fact that Bk is uniformly
Lipschitz. To conclude, we need to estimate the first term. With the definition of Bk , we write

(
xi (t2)−Bk (t2)

)− (
xi (t1)−Bk (t1)

)=
∑

j ∈Pk

a j
(
xi (t2)−x j (t2)

)−a j
(
xi (t1)−x j (t1)

)
∑

j ∈Pk

a j

=

∑
j ∈Pk

a j
(
yi j (t2)− yi j (t1)

)
∑

j ∈Pk

a j
.

Thus, ∣∣∣(xi (t2)−Bk (t2)
)− (

xi (t1)−Bk (t1)
)∣∣∣ ≤ C

∑
j ∈Pk

∣∣yi j (t2)− yi j (t1)
∣∣,

and we can conclude the proof of Proposition 1 by using Lemma 6 in this last estimate. �

3.4. Proof of Theorem 2 completed

Proof. We can deduce from Lemma 3 that if there is only 3 vortices, then the collapse is mono-
scale in the sense given by (7)-(8). Therefore, the conclusion of Theorem 2 follows by direct
application of Proposition 1. �
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