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Abstract. Gendron proved that the strata of holomorphic differentials with prescribed orders of zeros do not
contain complete algebraic curves by applying the maximum modulus principle to saddle connections. Here
we provide an alternative proof for this result by using positivity of divisor classes on moduli spaces of curves.
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For µ = (m1, . . . , mn) with
∑n

i=1 mi = 2g − 2 and mi ≥ 0 for all i , let Hg (µ) be the stratum of
holomorphic differentials ω of zero type µ on smooth and connected complex genus g curves X ,
i.e., the underlying canonical divisor of ω is of type

∑n
i=1 mi pi for distinct points p1, . . . , pn in X .

The study of differentials is significant in surface dynamics and moduli theory. We simply
refer to [3, 10, 11] for an introduction to this fascinating subject. An important question for
understanding the geometry of a (non-compact) moduli space is to study complete subvarieties
contained in it. For instance for the moduli space of curves Mg , this amounts to finding families
of smooth curves that have non-constant complex structures and do not degenerate when
approaching to the boundary. While there exist complete subvarieties of positive dimension in
Mg , the sharp upper bound for their dimensions is largely unknown (see [8] for an upper bound),
e.g., it is unknown whether M4 contains a complete (algebraic) surface.

One can similarly ask this question for the strata of holomorphic differentials. In [9] Gendron
proved the following nice result.

Theorem. For µ= (m1, . . . , mn) with mi ≥ 0 for all i , the stratum Hg (µ) of holomorphic differen-
tials of type µ does not contain complete curves.

Gendron’s argument relies on flat geometry. It applies the maximum modulus principle to sad-
dle connections (i.e., geodesics joining the zeros of ω under the induced metric), which essen-
tially forces a complete family of differentials to be trivial. Below we provide a short algebraic
proof for this result, which uses positivity of divisor classes on moduli spaces of curves.

We first review some related moduli spaces and divisor classes. Denote by Pg (µ) =Hg (µ)/C∗

the projectivized stratum parameterizing canonical divisors of type µ; then Hg (µ) can be identi-
fied with the tautological bundle O (−1) over Pg (µ) with the zero section removed. We denote by
η= c1(O (−1)) the first Chern class of the tautological bundle. Consider the zeros of the canonical
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divisors of type µ as marked points in the underlying curves; then Pg (µ) can be embedded in
Mg ,n as a subvariety. Let κ= f∗(c1(ω f )2) where ω f is the relative dualizing sheaf on the universal
curve f : X →Mg ,n . Let ψi be the first Chern class of the bundle of cotangent lines with respect
to the i th marked point. We also use the same notations for the restrictions of these divisor classes
from Mg ,n to Pg (µ). It is known that the divisor classes ψi and κ are proportional to η on Pg (µ)
(see [5, Proposition 2.1]):

η= (mi +1)ψi , κ= κµη
where κµ = 2g −2+n −∑n

i=1 1/(mi +1).

Proof of the Theorem. Suppose C is a complete (irreducible) curve contained in Hg (µ). Let
C0 ⊂ Pg (µ) be the image of C under the projection Hg (µ) → Pg (µ). Since each fiber of Hg (µ)
over Pg (µ) is C∗, the complete curve C cannot be contained in a fiber. Therefore, C corresponds
to a multi-section of O (−1) over C0. Let s be the degree of C over C0. Then C gives a nowhere
vanishing section of O (−s) over C0, which implies that sη and hence ψi and κ are all trivial
restricted to C0 by the above divisor class relations. However, κ+∑n

i=1ψi is an ample divisor class
on M g ,n (see [7, Theorem (2.2)] and [1, Chapter XIV, Theorem (5.1)])1 which thus has positive
degree on every complete curve contained in it and cannot be trivial on C0. This leads to the
desired contradiction. �

Remark 1. For the strata of meromorphic differentials, i.e., when µ contains some negative
entries, in [4] it was shown that both Hg (µ) and Pg (µ) do not contain complete curves. The
proof relies on the sign change of mi +1 at a zero and at a pole. However for the case of all mi ≥ 0,
a complete curve C0 in Pg (µ), if it exists, would not necessarily lift to a complete curve in Hg (µ),
e.g., the lift might cross the zero section of O (−1). Hence it remains open to determine whether
Pg (µ) contains a complete curve when all the entries of µ are nonnegative.

Note that if one adds the boundary divisor ∆0 parameterizing differentials on nodal curves
with non-separating nodes only, then for every signature µ with nonnegative entries the partial
compactification Pg (µ)∪∆0 contains infinitely many complete curves arising from Teichmüller
curves (see [6, Corollary 3.2]).

Finally one can study the strata of k-differentials H k
g (µ) and k-canonical divisors P k

g (µ) where
µ is a partition of k(2g −2). Via the canonical k-cover π, a k-differential ξ can lift to an abelian
differential ω (up to kth roots of unity), i.e., π∗ξ=ωk , where ω is holomorphic if and only if ξ has
no pole of order ≤ −k (see e.g., [2, Section 2.1]). Therefore, H k

g (µ) contains no complete curves
for any µ and P k

g (µ) contains no complete curves if µ has an entry ≤ −k. It remains open to
determine whether P k

g (µ) contains a complete curve when all entries of µ are bigger than −k.
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