Comptes Rendus

Mathématique

Chenyan Wang and Huoxiong Wu
A note on singular oscillatory integrals with certain rational phases

Volume 361 (2023), p. 363-370
https://doi.org/10.5802/crmath. 418
(c) Br \quad This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

A note on singular oscillatory integrals with certain rational phases

Chenyan Wang ${ }^{a}$ and Huoxiong Wu ${ }^{*, a}$

${ }^{a}$ School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
E-mails: chenyanwangxmu@163.com (C. Wang), huoxwu@xmu.edu.cn (H. Wu)

Abstract. Let Ω be homogeneous of degree zero with mean value zero, P and Q real polynomials on \mathbb{R}^{n} with $Q(0)=0$ and $\Omega \in B_{q}^{0,0}\left(S^{n-1}\right)$ for some $q>1$. This note extends and improves a classical result of Stein and Wainger (Ann. Math. Stud. 112, pp. 307-355, (1986)) to the following general form

$$
\mid \text { p. v. } \left.\int_{\mathbb{R}^{n}} e^{i(P(x)+1 / Q(x))} \frac{\Omega(x /|x|)}{|x|^{n}} d x \right\rvert\, \leq B
$$

where B depend only on $\|\Omega\|_{B_{q}^{0,0}\left(S^{n-1}\right)}, n$ and the degrees of P and Q, but not on their coefficients.
2020 Mathematics Subject Classification. 42B15, 42B20, 42A50, 42A45.
Funding. Supported by the NNSF of China (Nos. 12171399, 11871101).
Manuscript received 23 February 2022, accepted 1 September 2022.

1. Introduction

Let P be a polynomial on \mathbb{R}^{n} of degree at most d with real coefficients and K be a homogeneous function of degree $-n$ on \mathbb{R}^{n}, that is,

$$
K(x)=\frac{\Omega(x /|x|)}{|x|^{n}},
$$

where Ω is an integrable function on the unit sphere S^{n-1} and satisfies $\int_{S^{n-1}} \Omega d \sigma=0$.
In [8] Stein showed that if $\Omega \in L^{\infty}\left(S^{n-1}\right)$, then

$$
\begin{equation*}
\mid \text { p. v. } \int_{\mathbb{R}^{n}} e^{i P(x)} K(x) d x \mid \leq C_{d, n, K}, \tag{1}
\end{equation*}
$$

where $C_{d, n, K}$ is independent of the coefficients of P. The corresponding one-dimensional estimation was obtained by Stein and Wainger in [9], see also [7] for the sharp bound. Subsequently, Papadimitrakis and Parissis [6], Al-Qassem et al. [1] successively extended the estimate (1) to the cases of that $\Omega \in L \log L\left(S^{n-1}\right)$ and $H^{1}\left(S^{n-1}\right)$, the Hardy space defined on S^{n-1}. It is natural to ask the following question.

Question. Can one extend the estimate (1) to phases which are general rational functions?

[^0]In 2003, Folch-Gabayet and Wright [3] showed that for general rational phases, the estimate (1) is not true. Meanwhile, they considered the rational phases of the form $P(x)+1 / Q(x)$, where P and Q are real polynomials with $Q(0)=0$, and for $\Omega \in L \log L\left(S^{n-1}\right)$, obtained the following estimate:

$$
\begin{equation*}
\mid \text { p. v. } \int_{\mathbb{R}^{n}} e^{i(P(x)+1 / Q(x))} K(x) d x \mid \leq A, \tag{2}
\end{equation*}
$$

where A depends on $\|\Omega\|_{L \log L\left(S^{n-1}\right)}, n$ and the degrees of P and Q, but not otherwise on the coefficients of P and Q. It is well known that

$$
L^{\infty}\left(S^{n-1}\right) \varsubsetneqq \bigcup_{r>1} L^{r}\left(S^{n-1}\right) \varsubsetneqq L \log L\left(S^{n-1}\right) .
$$

Therefore, the estimate (2) essentially improved and generalized the corresponding results in $[6,8,9]$.

On the other hand, to study the mapping properties of singular integrals with rough kernels on $L^{p}\left(\mathbb{R}^{n}\right)$, Jiang and Lu introduced the following block spaces $B_{q}^{0, v}\left(S^{n-1}\right)$ for $v>-1$ and $q>1$ (see [5] for the details of block spaces).
Definition 1 ([5]). Aq-block on S^{n-1} is an L^{q}-function $b(1<q \leq \infty)$ that satisfies

$$
\begin{array}{r}
\operatorname{supp}(b) \subseteq Q, \\
\|b\|_{L^{q}\left(S^{n-1}\right)} \leq|Q|^{1 / q-1}, \tag{ii}
\end{array}
$$

where $Q=S^{n-1} \cap\left\{y \in \mathbb{R}^{n}:|y-\zeta|<\rho\right.$ for some $\zeta \in S^{n-1}$ and $\left.\rho \in(0,1]\right\}$.
Definition 2 ([5]). For $v>-1$ and $q>1$, the block spaces $B_{q}^{0, v}$ on S^{n-1} are defined by

$$
B_{q}^{0, v}\left(S^{n-1}\right)=\left\{\Omega \in L^{1}\left(S^{n-1}\right): \Omega\left(y^{\prime}\right)=\sum_{s} \lambda_{s} b_{s}\left(y^{\prime}\right), M_{q}^{0, v}\left(\left\{\lambda_{s}\right\}\right)<\infty\right\} .
$$

where each λ_{s} is a complex number, each b_{s} is a q-block supported in Q_{s},

$$
M_{q}^{0, v}\left(\left\{\lambda_{s}\right\}\right)=\sum_{s}\left|\lambda_{s}\right|\left\{1+\left(\log ^{+} \frac{1}{\left|Q_{s}\right|}\right)^{1+v}\right\},
$$

and

$$
\|\Omega\|_{B_{q}^{0, v}\left(S^{n-1}\right)}=\inf \left\{M_{q}^{0, v}\left(\left\{\lambda_{s}\right\}\right): \Omega\left(x^{\prime}\right)=\sum_{s} \lambda_{s} b_{s}\left(x^{\prime}\right)\right\} .
$$

It is easy to check that

$$
B_{q}^{0, v_{1}}\left(S^{n-1}\right) \varsubsetneqq B_{q}^{0, v_{2}}\left(S^{n-1}\right), \quad \forall v_{1}>v_{2}>-1 .
$$

Moreover, it follows from [4,10] that for any $q>1$,

$$
\bigcup_{r>1} L^{r}\left(S^{n-1}\right) \varsubsetneqq B_{q}^{0, v}\left(S^{n-1}\right) \subset H^{1}\left(S^{n-1}\right)+L\left(\log ^{+} L\right)^{1+v}\left(S^{n-1}\right), \quad \forall v>-1,
$$

and $B_{q}^{0, v}\left(S^{n-1}\right) \nsubseteq L \log ^{+} L\left(S^{n-1}\right)$ for any $v \in(-1,0)$, in particular,

$$
\bigcup_{r>1} L^{r}\left(S^{n-1}\right) \varsubsetneqq B_{q}^{0,0}\left(S^{n-1}\right), L \log ^{+} L\left(S^{n-1}\right) \varsubsetneqq H^{1}\left(S^{n-1}\right),
$$

but the relationship between $B_{q}^{0,0}\left(S^{n-1}\right)$ and $L \log ^{+} L\left(S^{n-1}\right)$ remains open. Therefore, it is interesting to establish the estimate (2) under the assumption of that $\Omega \in B_{q}^{0,0}\left(S^{n-1}\right)$, and more generally $\Omega \in H^{1}\left(S^{n-1}\right)$.

In this paper, we will establish the estimate (2) provided that $\Omega \in B_{q}^{0,0}\left(S^{n-1}\right)$. As for the case of that $\Omega \in H^{1}\left(S^{n-1}\right)$, which is more interesting, it is still open. Our results can be formulated as follows.

Theorem 3. Suppose that $K(x)=\Omega(x) /|x|^{n}$, where $\Omega \in B_{q}^{0,0}\left(S^{n-1}\right)$ is homogeneous of degree zero with mean value zero and $q>1, P$ and Q are real polynomials with $Q(0)=0$. Then

$$
\begin{equation*}
\left|p . v . \int_{\mathbb{R}^{n}} e^{i(P(x)+1 / Q(x))} K(x) d x\right| \leq B \tag{3}
\end{equation*}
$$

where B depends on $\|\Omega\|_{B_{q}^{0,0}\left(S^{n-1}\right)}, n$ and the degrees of P and Q, but not otherwise on the coefficients of P and Q.
Remark 4. Employing the arguments in [3, Proposition 1.4], the following result shows that the requirement $Q(0)=0$ in Theorem 3 is most likely not necessary.
Theorem 5. With K and P as in Theorem 3, but now $Q(x)=a+v \cdot x$, where $a \in \mathbb{R}$ and $v \in \mathbb{R}^{n}$

$$
\begin{equation*}
\left|p . v . \int_{\mathbb{R}^{n}} e^{i(P(x)+1 / Q(x))} K(x) d x\right| \leq B \tag{4}
\end{equation*}
$$

where B depends on $\|\Omega\|_{B_{q}^{0,0}\left(S^{n-1}\right)}$, n and the degree of P but not otherwise on the coefficients of P.
As an immediate consequence of Theorems 3 and 5, we have the following result.
Corollary 6. With K and Q as in Theorem 3 or 5 , but now $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ being a polynomial mapping, convolution with the distribution

$$
L(\phi)=p \cdot v \cdot \int_{\mathbb{R}^{n}} \phi(P(x)) e^{i / Q(x)} K(x) d x, \quad \phi \in \mathscr{S}\left(\mathbb{R}^{m}\right)
$$

is bounded on $L^{2}\left(\mathbb{R}^{m}\right)$.
Employing the arguments in proving [3, Theorem 1.1], the main ingredient of the proof of Theorem 3 or 5 in the current paper is to establish the following integral estimate, which has an independent interest.
Proposition 7. Let $\Omega \in B_{q}^{0,0}\left(S^{n-1}\right)$ for some $q>1, P(x)=\sum_{|\alpha|=d} c_{\alpha} x^{\alpha}$ be a homogeneous polynomial of degree d on \mathbb{R}^{n}. Write $m_{P}=\sum_{|\alpha|=d}\left|c_{\alpha}\right|$. Then

$$
\begin{equation*}
\int_{S^{n-1}}|\Omega(\omega)| \cdot\left|\log \left(\frac{|P(\omega)|}{m_{P}}\right)\right| d \sigma(\omega) \lesssim C_{d}\|\Omega\|_{B_{q}^{0,0}\left(S^{n-1}\right)} \tag{5}
\end{equation*}
$$

The rest of this paper is organized as follows. In Section 2 we will give some auxiliary lemmas. The proofs of our main results will be given in Section 3. We remark that some ideas in our arguments are taken from [3].

Finally, we make some conventions on notation. Throughout this paper, we denote by C a positive constant which is independent of the main parameters, but it may vary from line to line. Let A, B be complex-valued quantities. We use $A \lesssim B$ or $A=O(B)$ to denote the estimate $|A| \leq C|B|$. We use $A \sim B$ to denote the estimate $A \lesssim B \lesssim A$. For $1 \leq \gamma \leq \infty, \gamma^{\prime}$ is the conjugate index of γ, and $1 / \gamma+1 / \gamma^{\prime}=1$.

2. Preliminaries

In this section, we recall and establish some auxiliary lemmas, which will be used in our arguments later.
Lemma 8 ([3]). For any polynomial $Q(r)=\sum_{j=1}^{d} b_{k} r^{k}$ on \mathbb{R}^{+}, there is a finite collection $\left\{G_{j}\right\}_{j=1}^{M}$ of disjoint intervals, called "gaps", of \mathbb{R}^{+}with $M=O(1)$ such that
(1) The complement $\mathbb{R}^{+} \backslash \bigcup_{j=1}^{M}\left\{G_{j}\right\}$ is the union of $M-1$ disjoint "dyadic" intervals, that is, the ratio of the endpoints of such intervals is ~ 1.
(2) For each G_{j}, there is a $k=k_{j}, 1 \leq k_{j} \leq d$, such that for $r \in G_{j}$,

$$
|Q(r)| \sim\left|b_{k_{j}}\right| r^{k_{j}} \quad \text { and } \quad\left|Q^{\prime}(r)\right| \sim\left|b_{k_{j}}\right| r^{k_{j}-1}
$$

Also if L_{j} and R_{j} denote the left and right endpoints of G_{j} respectively, then
(i) if $R_{j}<\infty$, then $R_{j}=C_{d}\left[\left|b_{l}\right|| | b_{m}\right]^{1 / m-l}$ for some $1 \leq l<m \leq d$ and
(ii) if $L_{j}>0$, then $L_{j}=C_{d}\left[\left|b_{r}\right|| | b_{s} \mid\right]^{1 / s-r}$ for some $1 \leq r<s \leq d$.

Lemma 9 ([8]). Suppose ϕ is real-valued and smooth on (a,b), and that $\left|\phi^{(k)}\right| \geq \lambda>0$ for all $t \in(a, b)$. Then

$$
\left|\int_{a}^{b} e^{i \phi(t)} d t\right| \leq C_{k} \lambda^{-1 / k}
$$

when either $k \geq 2$, or $k=1$ and $\phi^{\prime}(t)$ is monotonic.
Lemma 10. Let $\gamma>1, \Omega \in L^{\gamma}\left(S^{n-1}\right)$ and $P(x)=\sum_{|\alpha|=d} c_{\alpha} x^{\alpha}$ be a homogeneous polynomial of degree d on \mathbb{R}^{n}. Write $m_{P}=\sum_{|\alpha|=d}\left|c_{\alpha}\right|$. Then

$$
\begin{equation*}
\int_{S^{n-1}}|\Omega(\omega)| \cdot\left|\log \left(\frac{|P(\omega)|}{m_{P}}\right)\right| d \sigma(\omega) \lesssim C_{d} \gamma^{\prime}\|\Omega\|_{L^{r}\left(S^{n-1}\right)} . \tag{6}
\end{equation*}
$$

Proof. We may assume $m_{P}=1$. By the Hölder inequality,

$$
\int_{S^{n-1}}|\Omega(\omega)| \cdot|\log (|P(\omega)|)| d \sigma(\omega) \leq\|\Omega\|_{L^{\gamma}\left(S^{n-1}\right)}\left(\int_{S^{n-1}}|\log (|P(\omega)|)|^{\gamma^{\prime}} d \sigma(\omega)\right)^{1 / \gamma^{\prime}} .
$$

And

$$
\begin{aligned}
\left(\int_{S^{n-1}}|\log (|P(\omega)|)|^{\gamma^{\prime}} d \sigma(\omega)\right)^{1 / \gamma^{\prime}} & \lesssim\left(\int_{1 / 2}^{1} r^{n-1} \int_{S^{n-1}}|\log (|P(\omega)|)|^{\gamma^{\prime}} d \sigma(\omega) d r\right)^{1 / \gamma^{\prime}} \\
& \lesssim\left(\sum_{k \geqslant 0}\left(k \gamma^{\prime}\right)^{\gamma^{\prime}} \int_{1 / 2}^{1} r^{n-1} d r \int_{\left\{\omega \in S^{n-1}: r^{d}|P(\omega)| \leqslant 2^{-k \gamma^{\prime}}\right\}} d \sigma(\omega)\right)^{1 / \gamma^{\prime}} \\
& \leqslant \gamma^{\prime}\left(\sum_{k \geqslant 0} k^{\gamma^{\prime}} \int_{\left\{\frac{1}{2} \leqslant|x| \leqslant 1: 2^{-k \gamma^{\prime}-1} \leqslant|P(x)| \leqslant 2^{-k \gamma^{\prime}}\right\}} d x\right)^{1 / \gamma^{\prime}} \\
& \leqslant \gamma^{\prime}\left(\sum_{k \geqslant 0} k^{\gamma^{\prime}}\left|\left\{\frac{1}{2} \leqslant|x| \leqslant 1:|P(x)| \leqslant 2^{-k \gamma^{\prime}}\right\}\right|\right)^{1 / \gamma^{\prime}},
\end{aligned}
$$

which reduces matters to obtaining uniform sublevel set estimates for P under the normalisation $m_{P}=1$. Using the fact that all norms are equivalent on the space of polynomials of degree at most d, we can find a derivative $\partial^{\alpha}, 0 \leq|\alpha| \leq d$, such that $1 \lesssim\left|\partial^{\alpha} P(x)\right|$ on $|x| \leqslant 1$. If $\alpha=0$, then the above sublevel sets are empty for large k and so we may assume $\alpha>0$. In this case, using the mean value theorem, one can show that $\mid\left\{|x| \leqslant 1:|P(x)| \leqslant 2^{\left.-k \gamma^{\prime}\right\} \mid} \lesssim 2^{-k \gamma^{\prime}| | \alpha \mid}\right.$ (see e.g. [2]). Thus

$$
\begin{aligned}
\left(\sum_{k \geqslant 1} k^{\gamma^{\prime}}\left|\left\{\frac{1}{2} \leqslant|x| \leqslant 1:|P(x)| \leqslant 2^{-k \gamma^{\prime}}\right\}\right|\right)^{1 / \gamma^{\prime}} & \leqslant\left(\sum_{k \geqslant 1} k^{\gamma^{\prime}} 2^{-k \gamma^{\prime}| | \alpha \mid}\right)^{1 / \gamma^{\prime}} \\
& \leq \sum_{k \geqslant 1} k 2^{-k / d} \lesssim C_{d} .
\end{aligned}
$$

This implies the desired conclusion and completes the proof of Lemma 10.

3. Proofs of Main Results

In this section, we present the proofs of Proposition 7 and Theorem 3.

Proof of Proposition 7. Since $\Omega \in B_{q}^{0,0}\left(S^{n-1}\right)$, we know by Definition 2 that there is a decomposition: $\Omega\left(x^{\prime}\right)=\sum_{s} \lambda_{s} b_{s}\left(x^{\prime}\right)$, where each b_{s} is a q-block, supported in Q_{s} and

$$
\sum_{s}\left|\lambda_{s}\right|\left(1+\log ^{+} \frac{1}{\left|Q_{s}\right|}\right)<\infty
$$

Therefore,

$$
\begin{aligned}
\int_{S^{n-1}}|\Omega(\omega)| \cdot\left|\log \left(\frac{|P(\omega)|}{m_{P}}\right)\right| d \sigma(\omega) & \leq \sum_{s}\left|\lambda_{s}\right| \int_{S^{n-1}}\left|b_{s}(\omega)\right| \cdot\left|\log \left(\frac{|P(\omega)|}{m_{P}}\right)\right| d \sigma(\omega) \\
& \leq\left(\sum_{\left|Q_{s}\right| \geq e^{-q^{\prime}}}+\sum_{\left|Q_{s}\right|<e^{-q^{\prime}}}\right)\left|\lambda_{s}\right| \int_{S^{n-1}}\left|b_{s}(\omega)\right| \cdot\left|\log \left(\frac{|P(\omega)|}{m_{P}}\right)\right| d \sigma(\omega) \\
& =I+I I .
\end{aligned}
$$

Recall that for each $b_{s}, \operatorname{supp}\left(b_{s}\right) \subset Q_{s}$ and $\left\|b_{s}\right\|_{L^{q}\left(S^{n-1}\right)} \leq\left|Q_{s}\right|^{1 / q-1}=\left|Q_{s}\right|^{-1 / q^{\prime}}$. If $\left|Q_{s}\right| \geq e^{-q^{\prime}}$, we take $\gamma=q$ and obtain

$$
\gamma^{\prime}\left\|b_{S}\right\|_{L^{\gamma}\left(S^{n-1}\right)} \leq q^{\prime}\left\|b_{s}\right\|_{L^{q}\left(S^{n-1}\right)} \leq q^{\prime}\left|Q_{s}\right|^{-1 / q^{\prime}} \lesssim 1
$$

if $\left|Q_{s}\right|<e^{-q^{\prime}}$, we take $\gamma=\log \left|Q_{s}\right| /\left(1+\log \left|Q_{s}\right|\right)$, then $1<\gamma<q, \gamma^{\prime}=\log \left(1 /\left|Q_{s}\right|\right)$ and

$$
\gamma^{\prime}\left\|b_{s}\right\|_{L^{\gamma}\left(S^{n-1}\right)} \leq \log \frac{1}{\left|Q_{s}\right|}\left\|b_{s}\right\|_{L^{q}\left(S^{n-1}\right)}\left|Q_{s}\right|^{1 / \gamma-1 / q} \leq \log \frac{1}{\left|Q_{s}\right|}\left|Q_{s}\right|^{-1 / \gamma^{\prime}} \lesssim \log \frac{1}{\left|Q_{s}\right|}
$$

These, combining with Lemma 10, lead to

$$
I \leq C_{d} \sum_{\left|Q_{s}\right| \geq e^{-q^{\prime}}}\left|\lambda_{s}\right| q^{\prime}\left\|b_{s}\right\|_{L^{q}\left(S^{n-1}\right)} \lesssim C_{d} \sum_{\left|Q_{s}\right| \geq e^{-q^{\prime}}}\left|\lambda_{s}\right|,
$$

and for $\gamma=\log \left|Q_{s}\right| /\left(1+\log \left|Q_{s}\right|\right)$,

$$
I I \leq C_{d} \sum_{\left|Q_{s}\right|<e^{-q^{\prime}}}\left|\lambda_{s}\right| \gamma^{\prime}\left\|b_{s}\right\|_{L^{\gamma}\left(S^{n-1}\right)} \lesssim C_{d} \sum_{\left|Q_{s}\right|>e^{-q^{\prime}}}\left|\lambda_{s}\right| \log \frac{1}{\left|Q_{s}\right|}
$$

Consequently,

$$
\int_{S^{n-1}}|\Omega(\omega)| \cdot\left|\log \left(\frac{|P(\omega)|}{m_{P}}\right)\right| d \sigma(\omega) \lesssim C_{d} \sum_{s}\left|\lambda_{s}\right|\left(1+\log \frac{1}{\left|Q_{s}\right|}\right)
$$

which completes the proof of Proposition 7.
Proof of Theorem 3. The arguments are completely similar to those in proving [3, Theorem 1.1]. The only difference is replacing [3, Lemma 2.2] by Proposition 7 in the current setting. For completeness, we present the details as follows.

We may assume $P(0)=0$. Using polar coordinates write the integral in (3) as

$$
I=\int_{S^{n-1}} \Omega(\omega) \int_{0}^{\infty} e^{i\left[P_{\omega}(r)+1 / Q_{\omega}(r)\right]} \frac{1}{r} d r d \sigma(\omega)
$$

where $Q(x)=Q_{\omega}(r)=\sum_{j=1}^{d^{\prime}} q_{j}(\omega) r^{j}, P(x)=P_{\omega}(r)=\sum_{k=1}^{d} p_{j}(\omega) r^{k}$ and p_{j}, q_{k} are homogeneous polynomials of degree j and k. Using Lemma 8, we may write $I=\sum I_{j, k}+O(1)$, where

$$
I_{j, k}=\int_{S^{n-1}} \Omega(\omega) \int_{G_{j} \cap F_{k}} e^{i\left[P_{\omega}(r)+1 / Q_{\omega}(r)\right]} \frac{1}{r} d r d \sigma(\omega)
$$

Here $\left\{G_{j}\right\}$ and $\left\{F_{k}\right\}$ are the "gaps" of $Q_{\omega}(r)$ and $P_{\omega}(r)$, respectively. Note that although the inner integral of $I_{j, k}$ depends on ω in a complicated way, we know the form of the endpoints of G_{j} and F_{k} as given by Lemma 8 and so it is at least measurable as a function of ω. It suffices to bound each $I_{j, k}$ separately.

We have $\left|Q_{\omega}(r)\right| \sim\left|q_{j_{l}}(\omega)\right| r^{j_{l}}$ and $\left|Q_{\omega}^{\prime}(r)\right| \sim\left|q_{j_{l}}(\omega)\right| r^{j_{l}-1}$ on G_{j}, for some $1 \leq j_{l} \leq d^{\prime}$, and $\left|P_{\omega}(r)\right| \sim\left|p_{k_{m}}(\omega)\right| r^{k_{m}}$ and $\left|P_{\omega}^{\prime}(r)\right| \sim\left|p_{k_{m}}(\omega)\right| r^{k_{m}-1}$ on F_{k}, for some $1 \leq k_{m} \leq d$.

Therefore away from where $r^{j_{l}+k_{m}} \sim\left(\left|p_{k_{m}}(\omega)\right| \cdot\left|q_{j_{l}}(\omega)\right|\right)^{-1}$ the size of the phase $\phi_{\omega}(r)=$ $P_{\omega}(r)+1 / Q_{\omega}(r)$ and its derivative is understood. In fact, on $R_{j, k}=G_{j} \cap F_{k} \cap\left[C\left(\left|p_{k_{m}}(\omega)\right|\right.\right.$. $\left.\left.\left|q_{j_{l}}(\omega)\right|\right)^{-1 /\left(k_{m}+j_{l}\right)}, \infty\right)$ (for C large enough), we have

$$
\left|\phi_{\omega}(r)\right| \sim\left|p_{k_{m}}(\omega)\right| r^{k_{m}} \quad \text { and } \quad\left|\phi_{\omega}^{\prime}(r)\right| \sim\left|p_{k_{m}}(\omega)\right| r^{k_{m}-1}
$$

An application of van der Corput's Lemma 9 shows

$$
\left|\int_{\left\{r \in R_{j, k}: r \geq \Theta\right\}} e^{i \phi_{\omega}(r)} \frac{1}{r} d r\right|=O(1)
$$

where $\Theta=\left|p_{k_{m}}(\omega)\right|^{1 / k_{m}}$. Since we are applying Lemma 9 with $k=1$, we need to first split the integration of the above integral into $O(1)$ intervals, where $\phi_{\omega}^{\prime}(r)$ is monotone. In the complementary interval, $r<\Theta$, due to the size of $\phi_{\omega}(r)$ on $R_{j, k}$, we see that

$$
\left|\int_{\left\{r \in R_{j, k}: r<\theta\right\}}\left[e^{i \phi_{\omega}(r)} \frac{1}{r}-1\right] d r\right|=O(1) .
$$

Therefore for the part of $I_{j, k}$ over $R_{j, k}$,

$$
\int_{S^{n-1}} \Omega(\omega) \int_{R_{j, k}} e^{i \phi_{\omega}(r)} \frac{1}{r} d r d \sigma(\omega)=\int_{S^{n-1}} \Omega(\omega) \int_{\left\{r \in R_{j, k}: r<\theta\right\}} \frac{d r}{r} d \sigma(\omega)+O(1) .
$$

Similarly for $L_{j, k}=G_{j} \cap F_{k} \cap\left(-\infty, \delta\left(\left|p_{k_{m}}(\omega)\right| \cdot\left|q_{j_{l}}(\omega)\right|\right)^{-1 /\left(k_{m}+j_{l}\right)}\right.$] (for δ small enough), we have

$$
\int_{S^{n-1}} \Omega(\omega) \int_{L_{j, k}} e^{i \phi_{\omega}(r)} \frac{1}{r} d r d \sigma(\omega)=\int_{S^{n-1}} \Omega(\omega) \int_{\left\{r \in L_{j, k}: r \geq \Lambda\right\}} \frac{d r}{r} d \sigma(\omega)+O(1),
$$

where $\Lambda=\left|q_{j_{l}}(\omega)\right|^{1 / j_{l_{2}}}$. Therefore

$$
\begin{align*}
I_{j, k}= & \int_{S^{n-1}} \Omega(\omega) \int_{G_{j} \cap F_{k}} e^{i\left[P_{\omega}(r)+1 / Q_{\omega}(r)\right]} \frac{1}{r} d r d \sigma(\omega) \\
= & \int_{S^{n-1}} \Omega(\omega) \int_{\left\{r \in R_{j, k}: r \leq \Theta\right\}} \frac{d r}{r} d \sigma(\omega) \tag{7}\\
& \quad+\int_{S^{n-1}} \Omega(\omega) \int_{\left\{r \in L_{j, k}: r \geq \Lambda\right\}} \frac{d r}{r} d \sigma(\omega)+O(1)
\end{align*}
$$

and these two last integrals can be shown to be $O(1)$ by repeatedly applying Proposition 7 .
In fact, by the structures of $R_{j, k}$ and $L_{j k}$, the integrals in (7):

$$
\int_{S^{n-1}} \Omega(\omega) \int_{\left\{r \in R_{j, k}: r \leq \Theta\right\}} \frac{d r}{r} d \sigma(\omega), \quad \text { and } \quad \int_{S^{n-1}} \Omega(\omega) \int_{\left\{r \in L_{j, k}: r \geq \Lambda\right\}} \frac{d r}{r} d \sigma(\omega)
$$

can be written in the form

$$
\int_{S^{n-1}} \Omega(\omega) \int_{E(\omega)} \frac{d r}{r} d \sigma(\omega)
$$

where $E(\omega)$ is the intersection of $O(1)$ intervals of the form $[a(\omega), \infty)$ or $(-\infty, a(\omega)]$ with

$$
\begin{aligned}
& a(\omega) \in\left\{\left(\left|p_{k_{1}}(\omega)\right| /\left|p_{k_{2}}(\omega)\right|\right)^{1 /\left(k_{2}-k_{1}\right)},\left(\left|q_{j_{1}}(\omega)\right| /\left|q_{j_{2}}(\omega)\right|\right)^{1 /\left(j_{2}-j_{1}\right)},\right. \\
& \left.\left|p_{k}(\omega)\right|^{-1 / k},\left|q_{j}(\omega)\right|^{-1 / j},\left(\left|p_{k}(\omega)\right| \cdot\left|q_{j}(\omega)\right|\right)^{-1 /(j+k)}\right\} .
\end{aligned}
$$

Without loss of the generality, we may say that $E(\omega)$ is the intersection of M half infinite intervals such as $[a(\omega), \infty)$ or $(-\infty, a(\omega)]$. Let us write $E(\omega)=[a(\omega), \infty) \cap E^{\prime}(\omega)$, where $a(\omega)$, say, is $\left(\left|p_{k_{1}}(\omega)\right| /\left|p_{k_{2}}(\omega)\right|\right)^{1 /\left(k_{2}-k_{1}\right)}$ and $E^{\prime}(\omega)$ is the intersection of $M-1$ half infinite intervals as in $E(\omega)$. We can then use Proposition 7 to write

$$
\left|\int_{S^{n-1}} \Omega(\omega) \int_{E(\omega)} \frac{d r}{r} d \sigma(\omega)\right| \leq\left|\int_{S^{n-1}} \Omega(\omega) \int_{\left[A_{1}, \infty\right) \cap E^{\prime}(\omega)} \frac{d r}{r} d \sigma(\omega)\right|+O(1)
$$

where $A_{1}=\left(m_{p_{k_{1}}} / m_{p_{k_{2}}}\right)^{1 /\left(k_{2}-k_{1}\right)}$, which is independent of ω. Indeed,

$$
\begin{aligned}
\left|\int_{S^{n-1}} \Omega(\omega) \int_{[a(\omega), \infty) \cap E^{\prime}(\omega)} \frac{d r}{r} d \sigma(\omega)\right| & \leq\left|\int_{S^{n-1}} \Omega(\omega) \int_{\left[A_{1}, \infty\right) \cap E^{\prime}(\omega)} \frac{d r}{r} d \sigma(\omega)\right| \\
& +\left|\int_{S^{n-1}} \Omega(\omega) \int_{\left[A_{1}, a(\omega)\right] \cap E^{\prime}(\omega)} \frac{d r}{r} d \sigma(\omega)\right|
\end{aligned}
$$

and for the second integral, by Lemma 9 and Proposition 7, we have

$$
\begin{aligned}
& \left|\int_{S^{n-1}} \Omega(\omega) \int_{\left[A_{1}, a(\omega)\right] \cap E^{\prime}(\omega)} \frac{d r}{r} d \sigma(\omega)\right| \\
& \quad \leq\left|\int_{S^{n-1}} \Omega(\omega) \int_{\left[A_{1}, a(\omega)\right]} \frac{d r}{r} d \sigma(\omega)\right| \\
& \quad \leq \frac{1}{\left|k_{2}-k_{1}\right|}\left[\int_{S^{n-1}}|\Omega(\omega)|\left|\log \left(\frac{\left|p_{k_{1}}(\omega)\right|}{m_{p_{k_{1}}}}\right)\right| d \sigma(\omega)+\int_{S^{n-1}}|\Omega(\omega)|\left|\log \left(\frac{\left|p_{k_{2}}(\omega)\right|}{m_{p_{k_{2}}}}\right)\right| d \sigma(\omega)\right] \\
& \quad \lesssim O(1)
\end{aligned}
$$

For the other forms of $a(\omega)$, the argument is similar.
Similarly, we have

$$
\left|\int_{S^{n-1}} \Omega(\omega) \int_{\left[A_{1}, \infty\right) \cap E^{\prime}(\omega)} \frac{d r}{r} d \sigma(\omega)\right| \leq\left|\int_{S^{n-1}} \Omega(\omega) \int_{\left[A_{1}, \infty\right) \cap\left[A_{2}, \infty\right) \cap E^{\prime \prime}(\omega)} \frac{d r}{r} d \sigma(\omega)\right|+O(1)
$$

or

$$
\left|\int_{S^{n-1}} \Omega(\omega) \int_{\left[A_{1}, \infty\right) \cap E^{\prime}(\omega)} \frac{d r}{r} d \sigma(\omega)\right| \leq\left|\int_{S^{n-1}} \Omega(\omega) \int_{\left[A_{1}, \infty\right) \cap\left(-\infty, A_{2}\right] \cap E^{\prime \prime}(\omega)} \frac{d r}{r} d \sigma(\omega)\right|+O(1)
$$

where A_{2} is independent of ω, and $E^{\prime \prime}(\omega)$ is the intersection of $M-2$ half infinite intervals as in $E(\omega)$. Continuing this process, after M iterations, we obtain that

$$
\left|\int_{S^{n-1}} \Omega(\omega) \int_{E(\omega)} \frac{d r}{r} d \sigma(\omega)\right| \leq\left|\int_{S^{n-1}} \Omega(\omega) \int_{E} \frac{d r}{r} d \sigma(\omega)\right|+O(1)
$$

where E is the intersection of M intervals of the form $[A, \infty)$ or $(-\infty, A]$, where A is independent of ω. Therefore, by the mean value zero of Ω on S^{n-1}, we have

$$
\int_{S^{n-1}} \Omega(\omega) \int_{E} \frac{d r}{r} d \sigma(\omega)=0
$$

This implies that

$$
\left|\int_{S^{n-1}} \Omega(\omega) \int_{E(\omega)} \frac{d r}{r} d \sigma(\omega)\right| \leq\left|\int_{S^{n-1}} \Omega(\omega) \int_{E} \frac{d r}{r} d \sigma(\omega)\right|+O(1)=O(1)
$$

and completes the proof of Theorem 3.
Proof of Theorem 5. By replacing [3, Lemma 2.2] by Proposition 7, the proof is similar to the proof of [3, Proposition 1.4]. We omit the details here.

References

[1] H. M. Al-Qassem, L. C. Cheng, A. Fukui, Y. Pan, "Weighted Estimates for Oscillatory Singular Integrals", J. Funct. Spaces Appl. 2013 (2013), article no. 543748 (3 pages).
[2] A. Carbery, M. Christ, J. Wright, "Multidimensional van der Corput and sublevel set estimates", J. Am. Math. Soc. 12 (1999), no. 4, p. 981-1015.
[3] M. Folch-Gabayet, J. Wright, "An estimation for a family of oscillatory integrals", Stud. Math. 154 (2003), no. 1, p. 8997.
[4] M. Keitoku, E. Sato, "Block spaces on the unit sphere in $\mathbb{R}^{n ", ~ P r o c . ~ A m . ~ M a t h . ~ S o c . ~} 119$ (1993), no. 2, p. 453-455.
[5] S. Lu, M. H. Taibleson, G. Weiss, Spaces Generated by Blocks, Publishing House of Beijing Normal University, 1989.
[6] M. Papadimitrakis, I. R. Parissis, "Singular oscillatory integrals on $\mathbb{R}^{n "}$, Math. Z. 266 (2010), no. 1, p. 169-179.
[7] I. R. Parissis, "A sharp bound for the Stein-Wainger oscillatory integral", Proc. Am. Math. Soc. 136 (2008), no. 3, p. 963972.
[8] E. M. Stein, "Oscillation integrals in Fourier analysis", in Beijing Lectures in Harmonic Analysis (Beijing, 1984), Annals of Mathematics Studies, vol. 112, Princeton University Press, 1986, p. 307-355.
[9] E. M. Stein, S. Wainger, "The estimation of an integral arising in multiplier transformations", Stud. Math. 35 (1970), p. 101-104.
[10] X. Ye, X. Zhu, "A note on certain block spaces on the unit sphere", Acta Math. Sin., Engl. Ser. 22 (2006), no. 6, p. 18431846.

[^0]: * Corresponding author.

