

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Chenyan Wang and Huoxiong Wu

A note on singular oscillatory integrals with certain rational phases

Volume 361 (2023), p. 363-370

https://doi.org/10.5802/crmath.418

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1778-3569

Harmonic analysis / Analyse harmonique

A note on singular oscillatory integrals with certain rational phases

Chenyan Wang^a and Huoxiong Wu^{*, a}

^a School of Mathematical Sciences, Xiamen University, Xiamen 361005, China *E-mails*: chenyanwangxmu@163.com (C. Wang), huoxwu@xmu.edu.cn (H. Wu)

Abstract. Let Ω be homogeneous of degree zero with mean value zero, *P* and *Q* real polynomials on \mathbb{R}^n with Q(0) = 0 and $\Omega \in B_{q,0}^{0}(S^{n-1})$ for some q > 1. This note extends and improves a classical result of Stein and Wainger (*Ann. Math. Stud.* **112**, pp. 307-355, (1986)) to the following general form

$$\left| \text{p. v.} \int_{\mathbb{R}^n} e^{i(P(x)+1/Q(x))} \frac{\Omega(x/|x|)}{|x|^n} dx \right| \le B,$$

where *B* depend only on $\|\Omega\|_{B^{0,0}_{a}(S^{n-1})}$, *n* and the degrees of *P* and *Q*, but not on their coefficients.

2020 Mathematics Subject Classification. 42B15, 42B20, 42A50, 42A45. **Funding.** Supported by the NNSF of China (Nos. 12171399, 11871101). *Manuscript received 23 February 2022, accepted 1 September 2022.*

1. Introduction

Let *P* be a polynomial on \mathbb{R}^n of degree at most *d* with real coefficients and *K* be a homogeneous function of degree -n on \mathbb{R}^n , that is,

$$K(x) = \frac{\Omega(x/|x|)}{|x|^n},$$

where Ω is an integrable function on the unit sphere S^{n-1} and satisfies $\int_{S^{n-1}} \Omega d\sigma = 0$.

In [8] Stein showed that if $\Omega \in L^{\infty}(S^{n-1})$, then

$$\left| \text{p. v.} \int_{\mathbb{R}^n} e^{iP(x)} K(x) dx \right| \le C_{d,n,K},\tag{1}$$

where $C_{d,n,K}$ is independent of the coefficients of *P*. The corresponding one-dimensional estimation was obtained by Stein and Wainger in [9], see also [7] for the sharp bound. Subsequently, Papadimitrakis and Parissis [6], Al-Qassem et al. [1] successively extended the estimate (1) to the cases of that $\Omega \in LlogL(S^{n-1})$ and $H^1(S^{n-1})$, the Hardy space defined on S^{n-1} . It is natural to ask the following question.

Question. Can one extend the estimate (1) to phases which are general rational functions?

^{*} Corresponding author.

In 2003, Folch-Gabayet and Wright [3] showed that for general rational phases, the estimate (1) is not true. Meanwhile, they considered the rational phases of the form P(x)+1/Q(x), where P and Q are real polynomials with Q(0) = 0, and for $\Omega \in L\log L(S^{n-1})$, obtained the following estimate:

$$\left| \mathbf{p. v.} \int_{\mathbb{R}^n} e^{i(P(x)+1/Q(x))} K(x) dx \right| \le A,$$
(2)

where *A* depends on $\|\Omega\|_{L\log L(S^{n-1})}$, *n* and the degrees of *P* and *Q*, but not otherwise on the coefficients of *P* and *Q*. It is well known that

$$L^{\infty}(S^{n-1}) \underset{\neq}{\subseteq} \bigcup_{r>1} L^{r}(S^{n-1}) \underset{\neq}{\subseteq} L \log L(S^{n-1}).$$

Therefore, the estimate (2) essentially improved and generalized the corresponding results in [6, 8, 9].

On the other hand, to study the mapping properties of singular integrals with rough kernels on $L^p(\mathbb{R}^n)$, Jiang and Lu introduced the following block spaces $B_q^{0,\nu}(S^{n-1})$ for $\nu > -1$ and q > 1 (see [5] for the details of block spaces).

Definition 1 ([5]). A q-block on S^{n-1} is an L^q -function b $(1 < q \le \infty)$ that satisfies

$$\operatorname{supp}(b) \subseteq Q,$$
 (i)

$$\|b\|_{L^q(S^{n-1})} \le |Q|^{1/q-1},\tag{ii}$$

where $Q = S^{n-1} \cap \{y \in \mathbb{R}^n : |y - \zeta| < \rho \text{ for some } \zeta \in S^{n-1} \text{ and } \rho \in (0,1]\}.$

Definition 2 ([5]). For v > -1 and q > 1, the block spaces $B_q^{0,v}$ on S^{n-1} are defined by

$$B_{q}^{0,\nu}(S^{n-1}) = \left\{ \Omega \in L^{1}(S^{n-1}) : \Omega(y') = \sum_{s} \lambda_{s} b_{s}(y'), M_{q}^{0,\nu}(\{\lambda_{s}\}) < \infty \right\}$$

where each λ_s is a complex number, each b_s is a q-block supported in Q_s ,

$$M_{q}^{0,\nu}(\{\lambda_{s}\}) = \sum_{s} |\lambda_{s}| \left\{ 1 + \left(\log^{+} \frac{1}{|Q_{s}|} \right)^{1+\nu} \right\}$$

and

$$\|\Omega\|_{B^{0,\nu}_q(S^{n-1})} = \inf \left\{ M^{0,\nu}_q(\{\lambda_s\}) : \Omega(x') = \sum_s \lambda_s b_s(x') \right\}.$$

It is easy to check that

$$B_q^{0,v_1}(S^{n-1}) \subseteq B_q^{0,v_2}(S^{n-1}), \quad \forall \ v_1 > v_2 > -1.$$

Moreover, it follows from [4, 10] that for any q > 1,

$$\bigcup_{r>1} L^r \left(S^{n-1} \right) \underset{\neq}{\subseteq} B^{0,\nu}_q \left(S^{n-1} \right) \subset H^1 \left(S^{n-1} \right) + L \left(\log^+ L \right)^{1+\nu} \left(S^{n-1} \right), \quad \forall \ \nu > -1,$$

and $B_q^{0,\nu}(S^{n-1}) \nsubseteq L\log^+ L(S^{n-1})$ for any $\nu \in (-1,0)$, in particular,

$$\bigcup_{r>1} L^r \left(S^{n-1} \right) \subsetneqq B_q^{0,0} \left(S^{n-1} \right), L \log^+ L \left(S^{n-1} \right) \subsetneqq H^1 \left(S^{n-1} \right),$$

but the relationship between $B_q^{0,0}(S^{n-1})$ and $L\log^+ L(S^{n-1})$ remains open. Therefore, it is interesting to establish the estimate (2) under the assumption of that $\Omega \in B_q^{0,0}(S^{n-1})$, and more generally $\Omega \in H^1(S^{n-1})$.

In this paper, we will establish the estimate (2) provided that $\Omega \in B_q^{0,0}(S^{n-1})$. As for the case of that $\Omega \in H^1(S^{n-1})$, which is more interesting, it is still open. Our results can be formulated as follows.

Theorem 3. Suppose that $K(x) = \Omega(x)/|x|^n$, where $\Omega \in B_q^{0,0}(S^{n-1})$ is homogeneous of degree zero with mean value zero and q > 1, P and Q are real polynomials with Q(0) = 0. Then

$$\left| p. v. \int_{\mathbb{R}^n} e^{i(P(x)+1/Q(x))} K(x) dx \right| \le B,$$
(3)

where B depends on $\|\Omega\|_{B^{0,0}_q(S^{n-1})}$, n and the degrees of P and Q, but not otherwise on the coefficients of P and Q.

Remark 4. Employing the arguments in [3, Proposition 1.4], the following result shows that the requirement Q(0) = 0 in Theorem 3 is most likely not necessary.

Theorem 5. With K and P as in Theorem 3, but now $Q(x) = a + v \cdot x$, where $a \in \mathbb{R}$ and $v \in \mathbb{R}^n$

$$\left| p.\nu. \int_{\mathbb{R}^n} e^{i(P(x)+1/Q(x))} K(x) dx \right| \le B,$$
(4)

where B depends on $\|\Omega\|_{B^{0,0}_{a}(S^{n-1})}$, n and the degree of P but not otherwise on the coefficients of P.

As an immediate consequence of Theorems 3 and 5, we have the following result.

Corollary 6. With K and Q as in Theorem 3 or 5, but now $P : \mathbb{R}^n \to \mathbb{R}^m$ being a polynomial mapping, convolution with the distribution

$$L(\phi) = p.v. \int_{\mathbb{R}^n} \phi(P(x)) e^{i/Q(x)} K(x) dx, \qquad \phi \in \mathscr{S}(\mathbb{R}^m),$$

is bounded on $L^2(\mathbb{R}^m)$.

Employing the arguments in proving [3, Theorem 1.1], the main ingredient of the proof of Theorem 3 or 5 in the current paper is to establish the following integral estimate, which has an independent interest.

Proposition 7. Let $\Omega \in B_q^{0,0}(S^{n-1})$ for some q > 1, $P(x) = \sum_{|\alpha|=d} c_{\alpha} x^{\alpha}$ be a homogeneous polynomial of degree d on \mathbb{R}^n . Write $m_P = \sum_{|\alpha|=d} |c_{\alpha}|$. Then

$$\int_{S^{n-1}} |\Omega(\omega)| \cdot \left| \log\left(\frac{|P(\omega)|}{m_P}\right) \right| d\sigma(\omega) \lesssim C_d \|\Omega\|_{B^{0,0}_q(S^{n-1})}.$$
(5)

The rest of this paper is organized as follows. In Section 2 we will give some auxiliary lemmas. The proofs of our main results will be given in Section 3. We remark that some ideas in our arguments are taken from [3].

Finally, we make some conventions on notation. Throughout this paper, we denote by *C* a positive constant which is independent of the main parameters, but it may vary from line to line. Let *A*, *B* be complex-valued quantities. We use $A \leq B$ or A = O(B) to denote the estimate $|A| \leq C|B|$. We use $A \sim B$ to denote the estimate $A \leq B \leq A$. For $1 \leq \gamma \leq \infty$, γ' is the conjugate index of γ , and $1/\gamma + 1/\gamma' = 1$.

2. Preliminaries

In this section, we recall and establish some auxiliary lemmas, which will be used in our arguments later.

Lemma 8 ([3]). For any polynomial $Q(r) = \sum_{j=1}^{d} b_k r^k$ on \mathbb{R}^+ , there is a finite collection $\{G_j\}_{j=1}^{M}$ of disjoint intervals, called "gaps", of \mathbb{R}^+ with M = O(1) such that

- (1) The complement $\mathbb{R}^+ \setminus \bigcup_{j=1}^M \{G_j\}$ is the union of M-1 disjoint "dyadic" intervals, that is, the ratio of the endpoints of such intervals is ~ 1.
- (2) For each G_j , there is a $k = k_j$, $1 \le k_j \le d$, such that for $r \in G_j$,

$$|Q(r)| \sim \left| b_{k_j} \right| r^{k_j}$$
 and $|Q'(r)| \sim \left| b_{k_j} \right| r^{k_j - 1}$

Also if L_i and R_i denote the left and right endpoints of G_i respectively, then

(i) *if* $R_j < \infty$, *then* $R_j = C_d[|b_l|/|b_m|]^{1/m-l}$ *for some* $1 \le l < m \le d$ *and* (ii) *if* $L_j > 0$, *then* $L_j = C_d[|b_r|/|b_s|]^{1/s-r}$ *for some* $1 \le r < s \le d$.

Lemma 9 ([8]). Suppose ϕ is real-valued and smooth on (a, b), and that $|\phi^{(k)}| \ge \lambda > 0$ for all $t \in (a, b)$. Then

$$\left|\int_{a}^{b} e^{i\phi(t)} dt\right| \le C_k \lambda^{-1/k}$$

when either $k \ge 2$, or k = 1 and $\phi'(t)$ is monotonic.

Lemma 10. Let $\gamma > 1, \Omega \in L^{\gamma}(S^{n-1})$ and $P(x) = \sum_{|\alpha|=d} c_{\alpha} x^{\alpha}$ be a homogeneous polynomial of degree d on \mathbb{R}^n . Write $m_P = \sum_{|\alpha|=d} |c_{\alpha}|$. Then

$$\int_{S^{n-1}} |\Omega(\omega)| \cdot \left| \log\left(\frac{|P(\omega)|}{m_P}\right) \right| d\sigma(\omega) \lesssim C_d \gamma' \|\Omega\|_{L^{\gamma}(S^{n-1})}.$$
(6)

Proof. We may assume $m_P = 1$. By the Hölder inequality,

$$\int_{S^{n-1}} |\Omega(\omega)| \cdot \left| \log \left(|P(\omega)| \right) \right| d\sigma(\omega) \le \|\Omega\|_{L^{\gamma}(S^{n-1})} \left(\int_{S^{n-1}} \left| \log \left(|P(\omega)| \right) \right|^{\gamma'} d\sigma(\omega) \right)^{1/\gamma}$$

And

$$\begin{split} \left(\int_{S^{n-1}} \left| \log \left(|P(\omega)| \right) \right|^{\gamma'} d\sigma(\omega) \right)^{1/\gamma'} &\lesssim \left(\int_{1/2}^{1} r^{n-1} \int_{S^{n-1}} \left| \log \left(|P(\omega)| \right) \right|^{\gamma'} d\sigma(\omega) dr \right)^{1/\gamma'} \\ &\lesssim \left(\sum_{k \geqslant 0} \left(k\gamma' \right)^{\gamma'} \int_{1/2}^{1} r^{n-1} dr \int_{\left\{ \omega \in S^{n-1} : r^d |P(\omega)| \leqslant 2^{-k\gamma'} \right\}} d\sigma(\omega) \right)^{1/\gamma'} \\ &\leqslant \gamma' \left(\sum_{k \geqslant 0} k^{\gamma'} \int_{\left\{ \frac{1}{2} \leqslant |x| \leqslant 1 : 2^{-k\gamma'-1} \leqslant |P(x)| \leqslant 2^{-k\gamma'} \right\}} dx \right)^{1/\gamma'} \\ &\leqslant \gamma' \left(\sum_{k \geqslant 0} k^{\gamma'} \left| \left\{ \frac{1}{2} \leqslant |x| \leqslant 1 : |P(x)| \leqslant 2^{-k\gamma'} \right\} \right| \right)^{1/\gamma'}, \end{split}$$

which reduces matters to obtaining uniform sublevel set estimates for *P* under the normalisation $m_P = 1$. Using the fact that all norms are equivalent on the space of polynomials of degree at most *d*, we can find a derivative ∂^{α} , $0 \le |\alpha| \le d$, such that $1 \le |\partial^{\alpha} P(x)| \text{ on } |x| \le 1$. If $\alpha = 0$, then the above sublevel sets are empty for large *k* and so we may assume $\alpha > 0$. In this case, using the mean value theorem, one can show that $|\{|x| \le 1 : |P(x)| \le 2^{-k\gamma'}\}| \le 2^{-k\gamma'}||\alpha|$ (see e.g. [2]). Thus

$$\begin{split} \left(\sum_{k\geq 1} k^{\gamma'} \left| \left\{ \frac{1}{2} \leqslant |x| \leqslant 1 : |P(x)| \leqslant 2^{-k\gamma'} \right\} \right| \right)^{1/\gamma'} & \leq \left(\sum_{k\geq 1} k^{\gamma'} 2^{-k\gamma'/|\alpha|} \right)^{1/\gamma'} \\ & \leq \sum_{k\geq 1} k 2^{-k/d} \lesssim C_d. \end{split}$$

This implies the desired conclusion and completes the proof of Lemma 10.

3. Proofs of Main Results

In this section, we present the proofs of Proposition 7 and Theorem 3.

Proof of Proposition 7. Since $\Omega \in B_q^{0,0}(S^{n-1})$, we know by Definition 2 that there is a decomposition: $\Omega(x') = \sum_s \lambda_s b_s(x')$, where each b_s is a *q*-block, supported in Q_s and

$$\sum_{s} |\lambda_{s}| \left(1 + \log^{+} \frac{1}{|Q_{s}|} \right) < \infty.$$

Therefore,

$$\begin{split} \int_{S^{n-1}} |\Omega(\omega)| \cdot \left| \log\left(\frac{|P(\omega)|}{m_P}\right) \right| d\sigma(\omega) &\leq \sum_{s} |\lambda_s| \int_{S^{n-1}} |b_s(\omega)| \cdot \left| \log\left(\frac{|P(\omega)|}{m_P}\right) \right| d\sigma(\omega) \\ &\leq \left(\sum_{|Q_s| \geq e^{-q'}} + \sum_{|Q_s| < e^{-q'}} \right) |\lambda_s| \int_{S^{n-1}} |b_s(\omega)| \cdot \left| \log\left(\frac{|P(\omega)|}{m_P}\right) \right| d\sigma(\omega) \\ &=: I + II. \end{split}$$

Recall that for each b_s , $\operatorname{supp}(b_s) \subset Q_s$ and $||b_s||_{L^q(S^{n-1})} \leq |Q_s|^{1/q-1} = |Q_s|^{-1/q'}$. If $|Q_s| \geq e^{-q'}$, we take $\gamma = q$ and obtain

$$\gamma' \|b_s\|_{L^{\gamma}(S^{n-1})} \le q' \|b_s\|_{L^q(S^{n-1})} \le q' |Q_s|^{-1/q'} \lesssim 1;$$

if $|Q_s| < e^{-q'}$, we take $\gamma = \log |Q_s|/(1 + \log |Q_s|)$, then $1 < \gamma < q$, $\gamma' = \log(1/|Q_s|)$ and

$$\gamma' \|b_s\|_{L^{\gamma}(S^{n-1})} \le \log \frac{1}{|Q_s|} \|b_s\|_{L^q(S^{n-1})} |Q_s|^{1/\gamma - 1/q} \le \log \frac{1}{|Q_s|} |Q_s|^{-1/\gamma'} \lesssim \log \frac{1}{|Q_s|} \|Q_s\|^{-1/\gamma'} \le \log \frac{1}{|Q_s$$

These, combining with Lemma 10, lead to

$$I \leq C_d \sum_{|Q_s| \geq e^{-q'}} |\lambda_s| q' \|b_s\|_{L^q(S^{n-1})} \lesssim C_d \sum_{|Q_s| \geq e^{-q'}} |\lambda_s|,$$

and for $\gamma = \log |Q_s| / (1 + \log |Q_s|)$,

$$II \le C_d \sum_{|Q_s| < e^{-q'}} |\lambda_s| \gamma' \|b_s\|_{L^{\gamma}(S^{n-1})} \lesssim C_d \sum_{|Q_s| > e^{-q'}} |\lambda_s| \log \frac{1}{|Q_s|}.$$

Consequently,

$$\int_{S^{n-1}} |\Omega(\omega)| \cdot \left| \log \left(\frac{|P(\omega)|}{m_P} \right) \right| d\sigma(\omega) \lesssim C_d \sum_{s} |\lambda_s| \left(1 + \log \frac{1}{|Q_s|} \right),$$

which completes the proof of Proposition 7.

Proof of Theorem 3. The arguments are completely similar to those in proving [3, Theorem 1.1]. The only difference is replacing [3, Lemma 2.2] by Proposition 7 in the current setting. For completeness, we present the details as follows.

We may assume P(0) = 0. Using polar coordinates write the integral in (3) as

$$I = \int_{S^{n-1}} \Omega(\omega) \int_0^\infty e^{i[P_\omega(r) + 1/Q_\omega(r)]} \frac{1}{r} dr d\sigma(\omega)$$

where $Q(x) = Q_{\omega}(r) = \sum_{j=1}^{d'} q_j(\omega) r^j$, $P(x) = P_{\omega}(r) = \sum_{k=1}^{d} p_j(\omega) r^k$ and p_j , q_k are homogeneous polynomials of degree *j* and *k*. Using Lemma 8, we may write $I = \sum I_{j,k} + O(1)$, where

$$I_{j,k} = \int_{S^{n-1}} \Omega(\omega) \int_{G_j \cap F_k} e^{i[P_{\omega}(r) + 1/Q_{\omega}(r)]} \frac{1}{r} dr d\sigma(\omega)$$

Here $\{G_j\}$ and $\{F_k\}$ are the "gaps" of $Q_{\omega}(r)$ and $P_{\omega}(r)$, respectively. Note that although the inner integral of $I_{j,k}$ depends on ω in a complicated way, we know the form of the endpoints of G_j and F_k as given by Lemma 8 and so it is at least measurable as a function of ω . It suffices to bound each $I_{j,k}$ separately.

We have $|Q_{\omega}(r)| \sim |q_{j_l}(\omega)|r^{j_l}$ and $|Q'_{\omega}(r)| \sim |q_{j_l}(\omega)|r^{j_{l-1}}$ on G_j , for some $1 \leq j_l \leq d'$, and $|P_{\omega}(r)| \sim |p_{k_m}(\omega)|r^{k_m}$ and $|P'_{\omega}(r)| \sim |p_{k_m}(\omega)|r^{k_m-1}$ on F_k , for some $1 \leq k_m \leq d$.

 \square

Therefore away from where $r^{j_l+k_m} \sim (|p_{k_m}(\omega)| \cdot |q_{j_l}(\omega)|)^{-1}$ the size of the phase $\phi_{\omega}(r) = P_{\omega}(r) + 1/Q_{\omega}(r)$ and its derivative is understood. In fact, on $R_{j,k} = G_j \cap F_k \cap [C(|p_{k_m}(\omega)| \cdot |q_{j_l}(\omega)|)^{-1/(k_m+j_l)},\infty)$ (for *C* large enough), we have

$$|\phi_{\omega}(r)| \sim |p_{k_m}(\omega)| r^{k_m}$$
 and $|\phi'_{\omega}(r)| \sim |p_{k_m}(\omega)| r^{k_m-1}$.

An application of van der Corput's Lemma 9 shows

$$\left|\int_{\{r\in R_{j,k}:r\geq\Theta\}}e^{i\phi_{\omega}(r)}\frac{1}{r}dr\right|=O(1)$$

where $\Theta = |p_{k_m}(\omega)|^{1/k_m}$. Since we are applying Lemma 9 with k = 1, we need to first split the integration of the above integral into O(1) intervals, where $\phi'_{\omega}(r)$ is monotone. In the complementary interval, $r < \Theta$, due to the size of $\phi_{\omega}(r)$ on $R_{j,k}$, we see that

$$\left| \int_{\{r \in R_{j,k} : r < \Theta\}} \left[e^{i\phi_{\omega}(r)} \frac{1}{r} - 1 \right] dr \right| = O(1).$$

Therefore for the part of $I_{i,k}$ over $R_{i,k}$,

$$\int_{S^{n-1}} \Omega(\omega) \int_{R_{j,k}} e^{i\phi_{\omega}(r)} \frac{1}{r} dr d\sigma(\omega) = \int_{S^{n-1}} \Omega(\omega) \int_{\{r \in R_{j,k}: r < \Theta\}} \frac{dr}{r} d\sigma(\omega) + O(1)$$

Similarly for $L_{j,k} = G_j \cap F_k \cap (-\infty, \delta(|p_{k_m}(\omega)| \cdot |q_{j_l}(\omega)|)^{-1/(k_m+j_l)}]$ (for δ small enough), we have

$$\int_{S^{n-1}} \Omega(\omega) \int_{L_{j,k}} e^{i\phi_{\omega}(r)} \frac{1}{r} dr d\sigma(\omega) = \int_{S^{n-1}} \Omega(\omega) \int_{\{r \in L_{j,k} : r \ge \Lambda\}} \frac{dr}{r} d\sigma(\omega) + O(1),$$

where $\Lambda = |q_{j_l}(\omega)|^{1/j_l}$. Therefore

$$I_{j,k} = \int_{S^{n-1}} \Omega(\omega) \int_{G_j \cap F_k} e^{i[P_{\omega}(r) + 1/Q_{\omega}(r)]} \frac{1}{r} dr d\sigma(\omega)$$

$$= \int_{S^{n-1}} \Omega(\omega) \int_{\{r \in R_{j,k} : r \le \Theta\}} \frac{dr}{r} d\sigma(\omega)$$

$$+ \int_{S^{n-1}} \Omega(\omega) \int_{\{r \in L_{j,k} : r \ge \Lambda\}} \frac{dr}{r} d\sigma(\omega) + O(1)$$
(7)

and these two last integrals can be shown to be O(1) by repeatedly applying Proposition 7.

In fact, by the structures of $R_{i,k}$ and L_{ik} , the integrals in (7):

$$\int_{S^{n-1}} \Omega(\omega) \int_{\{r \in R_{j,k} : r \le \Theta\}} \frac{dr}{r} d\sigma(\omega), \quad \text{and} \quad \int_{S^{n-1}} \Omega(\omega) \int_{\{r \in L_{j,k} : r \ge \Lambda\}} \frac{dr}{r} d\sigma(\omega)$$

can be written in the form

$$\int_{S^{n-1}} \Omega(\omega) \int_{E(\omega)} \frac{dr}{r} d\sigma(\omega)$$

where $E(\omega)$ is the intersection of O(1) intervals of the form $[a(\omega), \infty)$ or $(-\infty, a(\omega)]$ with

$$\begin{aligned} a(\omega) \in \left\{ \left(\left| p_{k_1}(\omega) \right| / \left| p_{k_2}(\omega) \right| \right)^{1/(k_2 - k_1)}, \left(\left| q_{j_1}(\omega) \right| / \left| q_{j_2}(\omega) \right| \right)^{1/(j_2 - j_1)}, \\ \left| p_k(\omega) \right|^{-1/k}, \left| q_j(\omega) \right|^{-1/j}, \left(\left| p_k(\omega) \right| \cdot \left| q_j(\omega) \right| \right)^{-1/(j+k)} \right\}. \end{aligned}$$

Without loss of the generality, we may say that $E(\omega)$ is the intersection of M half infinite intervals such as $[a(\omega), \infty)$ or $(-\infty, a(\omega)]$. Let us write $E(\omega) = [a(\omega), \infty) \cap E'(\omega)$, where $a(\omega)$, say, is $(|p_{k_1}(\omega)|/|p_{k_2}(\omega)|)^{1/(k_2-k_1)}$ and $E'(\omega)$ is the intersection of M-1 half infinite intervals as in $E(\omega)$. We can then use Proposition 7 to write

$$\left|\int_{S^{n-1}} \Omega(\omega) \int_{E(\omega)} \frac{dr}{r} d\sigma(\omega)\right| \leq \left|\int_{S^{n-1}} \Omega(\omega) \int_{[A_1,\infty) \cap E'(\omega)} \frac{dr}{r} d\sigma(\omega)\right| + O(1),$$

where $A_1 = (m_{p_{k_1}}/m_{p_{k_2}})^{1/(k_2-k_1)}$, which is independent of ω . Indeed,

$$\begin{split} \left| \int_{S^{n-1}} \Omega(\omega) \int_{[a(\omega),\infty) \cap E'(\omega)} \frac{dr}{r} d\sigma(\omega) \right| &\leq \left| \int_{S^{n-1}} \Omega(\omega) \int_{[A_1,\infty) \cap E'(\omega)} \frac{dr}{r} d\sigma(\omega) \right| \\ &+ \left| \int_{S^{n-1}} \Omega(\omega) \int_{[A_1,a(\omega)] \cap E'(\omega)} \frac{dr}{r} d\sigma(\omega) \right|, \end{split}$$

and for the second integral, by Lemma 9 and Proposition 7, we have

$$\begin{split} \left| \int_{S^{n-1}} \Omega(\omega) \int_{[A_1, a(\omega)] \cap E'(\omega)} \frac{dr}{r} d\sigma(\omega) \right| \\ &\leq \left| \int_{S^{n-1}} \Omega(\omega) \int_{[A_1, a(\omega)]} \frac{dr}{r} d\sigma(\omega) \right| \\ &\leq \frac{1}{|k_2 - k_1|} \left[\int_{S^{n-1}} |\Omega(\omega)| \left| \log \left(\frac{|p_{k_1}(\omega)|}{m_{p_{k_1}}} \right) \right| d\sigma(\omega) + \int_{S^{n-1}} |\Omega(\omega)| \left| \log \left(\frac{|p_{k_2}(\omega)|}{m_{p_{k_2}}} \right) \right| d\sigma(\omega) \right] \\ &\lesssim O(1). \end{split}$$

For the other forms of $a(\omega)$, the argument is similar.

Similarly, we have

$$\left|\int_{S^{n-1}} \Omega(\omega) \int_{[A_1,\infty) \cap E'(\omega)} \frac{dr}{r} d\sigma(\omega)\right| \leq \left|\int_{S^{n-1}} \Omega(\omega) \int_{[A_1,\infty) \cap [A_2,\infty) \cap E''(\omega)} \frac{dr}{r} d\sigma(\omega)\right| + O(1),$$

or

$$\int_{S^{n-1}} \Omega(\omega) \int_{[A_1,\infty) \cap E'(\omega)} \frac{dr}{r} d\sigma(\omega) \bigg| \le \left| \int_{S^{n-1}} \Omega(\omega) \int_{[A_1,\infty) \cap (-\infty,A_2] \cap E''(\omega)} \frac{dr}{r} d\sigma(\omega) \right| + O(1),$$

where A_2 is independent of ω , and $E''(\omega)$ is the intersection of M - 2 half infinite intervals as in $E(\omega)$. Continuing this process, after M iterations, we obtain that

$$\int_{S^{n-1}} \Omega(\omega) \int_{E(\omega)} \frac{dr}{r} d\sigma(\omega) \leq \left| \int_{S^{n-1}} \Omega(\omega) \int_E \frac{dr}{r} d\sigma(\omega) \right| + O(1),$$

where *E* is the intersection of *M* intervals of the form $[A, \infty)$ or $(-\infty, A]$, where *A* is independent of ω . Therefore, by the mean value zero of Ω on S^{n-1} , we have

$$\int_{S^{n-1}} \Omega(\omega) \int_E \frac{dr}{r} d\sigma(\omega) = 0.$$

This implies that

$$\int_{S^{n-1}} \Omega(\omega) \int_{E(\omega)} \frac{dr}{r} d\sigma(\omega) \bigg| \le \left| \int_{S^{n-1}} \Omega(\omega) \int_E \frac{dr}{r} d\sigma(\omega) \right| + O(1) = O(1),$$
the proof of Theorem 3

and completes the proof of Theorem 3.

Proof of Theorem 5. By replacing [3, Lemma 2.2] by Proposition 7, the proof is similar to the proof of [3, Proposition 1.4]. We omit the details here.

References

- H. M. Al-Qassem, L. C. Cheng, A. Fukui, Y. Pan, "Weighted Estimates for Oscillatory Singular Integrals", J. Funct. Spaces Appl. 2013 (2013), article no. 543748 (3 pages).
- [2] A. Carbery, M. Christ, J. Wright, "Multidimensional van der Corput and sublevel set estimates", J. Am. Math. Soc. 12 (1999), no. 4, p. 981-1015.
- [3] M. Folch-Gabayet, J. Wright, "An estimation for a family of oscillatory integrals", Stud. Math. 154 (2003), no. 1, p. 89-97.
- [4] M. Keitoku, E. Sato, "Block spaces on the unit sphere in \mathbb{R}^n ", *Proc. Am. Math. Soc.* **119** (1993), no. 2, p. 453-455.
- [5] S. Lu, M. H. Taibleson, G. Weiss, Spaces Generated by Blocks, Publishing House of Beijing Normal University, 1989.
- [6] M. Papadimitrakis, I. R. Parissis, "Singular oscillatory integrals on \mathbb{R}^n ", *Math. Z.* **266** (2010), no. 1, p. 169-179.

- [7] I. R. Parissis, "A sharp bound for the Stein–Wainger oscillatory integral", Proc. Am. Math. Soc. 136 (2008), no. 3, p. 963-972.
- [8] E. M. Stein, "Oscillation integrals in Fourier analysis", in *Beijing Lectures in Harmonic Analysis (Beijing, 1984)*, Annals of Mathematics Studies, vol. 112, Princeton University Press, 1986, p. 307-355.
- [9] E. M. Stein, S. Wainger, "The estimation of an integral arising in multiplier transformations", *Stud. Math.* 35 (1970), p. 101-104.
- [10] X. Ye, X. Zhu, "A note on certain block spaces on the unit sphere", Acta Math. Sin., Engl. Ser. 22 (2006), no. 6, p. 1843-1846.