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Abstract. We use the canonical bundle formula for parabolic fibrations to give an inductive approach to the
generalized abundance conjecture using nef reduction. In particular, we observe that generalized abundance
holds for a klt pair (X ,B) if the nef dimension n(KX +B +L) = 2 and KX +B ≥ 0 or n(KX +B +L) = 3 and
κ(KX +B) > 0.
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1. Introduction

In [10], Lazić and Peternell propose the following

Conjecture 1 (Generalized Abundance). Let (X ,B) be a klt pair with KX +B pseudoeffective. If
L is a nef divisor on X such that KX +B +L is also nef, then KX +B +L ≡ M for some semiample
Q-divisor M.

They show that this conjecture holds in case dim X = 2 and for dim X = 3 if κ(KX +B) > 0
(see [10, Corollary C, D]). The main purpose of this article is to prove the following result.

Theorem 2. Let (X ,B) be an n-dimensional klt pair with KX +B ≥ 0 and let L ∈ Pic X be nef such
that KX +B +L is nef with nef dimension n(KX +B +L) = d.
Assume termination of klt flips [7, Conjecture 5-1-13] in dimension d, abundance conjecture [8,
Conjecture 3.12] in dimension ≤ d, semiampleness conjecture [10, page 2] in dimension ≤ d and
generalized non-vanishing conjecture [10, page 2] in dimension ≤ d −1.
Then KX +B +L ≡ M for some semiample divisor M.

Note that the phrase “Conjecture (∗) holds in dimension d (resp. ≤ d)” above means that (∗)
holds for all klt pairs (X ,B) such that dim X = d (resp. ≤ d).

In case L = 0, such a theorem has been proved by [1]. The main ingredients of our proof are the
canonical bundle formula for parabolic fibrations [5] and Nakayama-Zariski decomposition [12].
We have the following corollary

∗Corresponding author.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.420
mailto:pchaudhu@umd.edu
https://comptes-rendus.academie-sciences.fr/mathematique/


418 Priyankur Chaudhuri

Corollary 3. Generalized abundance holds (in any dimension) in the following two cases:

(1) n(KX +B +L) = 2 and KX +B ≥ 0, or
(2) n(KX +B +L) = 3 and κ(KX +B) > 0.

Note that any divisor of nef dimension 1 is already numerically equivalent to a semiample
divisor by [4, 2.4.4]. Thus generalized abundance also holds in this case.

2. Preliminaries

Definition 4 (Singularities of pairs). Let (X ,B) be a sub-pair consisting of a normal variety X and
a Q-divisor B on X such that KX +B is Q-Cartier. It is called sub-klt if there exists a log resolution
Y

µ−→ X of (X ,B) such that letting BY be defined by KY +BY =µ∗(KX +B), all coefficients of BY are
< 1 and sub-lc if all coefficients of BY are ≤ 1. If B ≥ 0, we drop the prefix sub.

Definition 5 (Nef reduction and nef dimension [4]). Let X be a normal projective variety and
let L ∈ Pic X be nef. Then there exists a dominant rational map φ : X 99K Y with connected fibers
which is proper and regular over an open subset of Y (i.e. there exists V ⊂ Y nonempty open such φ

restricts to a proper morphism φ|φ−1(V ) :φ−1(V ) →V ) where Y is also normal projective such that

(1) If F ⊂ X is a general compact fiber of φ with dimF = dim X −dimY , then L|F ≡ 0.
(2) If x ∈ X is a very general point and C ⊂ X a curve passing x such that dim(φ(C )) > 0, then

(L ·C ) > 0.

φ is called the nef reduction map of L and dimY the nef dimension n(L) of L.

Remark 6. Note that if φ : X 99K Y is proper and regular over an open subset of Y , then there
exists a resolution φ̂ : X̂ → Y of φ such that the exceptional divisor E x(X̂ /X ) is φ̂-vertical. For
example, X̂ can be chosen to be the closure of the graph of φ.

Notation 7. For a pseudoeffective divisor D on a smooth projective variety X , Pσ(D) and Nσ(D)
will denote the positive and negative parts of the Nakayama-Zariski decomposition of D (see [12,
Chapter 3] for details). κ(D) will denote the Iitaka dimension and ν(D) the numerical dimension
(see [6, Definition 2.10]) of D .

3. Inductive approach to generalized abundance

Proof of Theorem 2. We will follow some ideas of [1, Theorem 5.1] and [6, Lemma 4.4]. Let Φ be
the nef reduction map of KX +B +L. Let X̂ be the normalization of the closure of the graph of Φ.
We have an induced commutative diagram:

X̂

X Y

β
φ

Φ

Note that since Φ is proper and regular over an open subset of Y , E x(β) is φ-vertical. We will
make base changes that preserve this property. Let F ⊂ X̂ be a general fiber of φ. Then(

K X̂ +B X̂ +L X̂

)∣∣
F ≡ 0. (1)

Here L X̂ := β∗L and B X̂ is defined by K X̂ +B X̂ = β∗(KX +B). Now since K X̂ +B X̂ ≥ 0, we have
KF +BF ≥ 0 which implies KF +BF ∼Q 0. Indeed, suppose that KF +BF > 0. Then there exists a
curve C ⊂ F such that ((KF +BF )·C ) > 0. Then ((KF +BF +LF )·C ) > 0. This contradicts (1). We also
conclude that L X̂ |F ≡ 0.
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By [10, Lemma 3.1], there exists σ : Y
′ → Y birational from a smooth projective variety Y

′
such

that letting X
′

denote the normalization of the main component of X̂ ×Y Y
′ → Y

′
andφ

′
: X

′ → Y
′

the induced morphism, there exists a nefQ-Cartier divisor LY ′ on Y
′

such that LX ′ ≡φ
′∗(LY ′ ). For

a divisor D , let D+ and D− denote its positive and negative parts respectively. Letting F
′

denote a
general fiber of φ

′
, note that (B−

X ′ )|F ′ ∼ 0. Thus(
KX ′ +BX ′

)∣∣
F ′ ∼

(
KX ′ +B+

X ′
)∣∣∣

F ′ ∼ 0.

Then by [5, Section 4], there exists a birational morphism Ỹ → Y
′
, X̃ birational to the main

component of X
′ ×Y ′ Ỹ where X̃ and Ỹ are both smooth projective such that letting φ̃ : X̃ → Ỹ

denote the induced morphism, there exists aQ-divisor∆ on X̃ such that φ̃ : (X̃ ,B+
X̃
+∆) → Ỹ is a klt

trivial fibration ([9, Definition 2.1]) where∆+ is exceptional over Ỹ and X
′

and φ̃∗OX̃ (bl∆−c) ∼=OỸ
for all l ∈N.

X̃ X
′

X̂ X

Ỹ Y
′

Y

π

φ̃ φ
′

β

φ

By [6, Lemma 2.15], the last condition implies that the vertical part (∆−)v is φ̃-degenerate (see [6,
Definition 2.14]). Letting BỸ and MỸ denote the induced discriminant and moduli divisors on Ỹ ,
we have

K X̃ +B+
X̃
+∆+−∆− ∼Q φ̃∗ (

KỸ +BỸ +MỸ

)
.

Since (∆−)v is φ̃-degenerate, it follows from the definition of BỸ that BỸ ≥ 0. Since K X̃ +B+
X̃
=

π∗(KX ′ +B+
X ′ )+E , where E ≥ 0 is π-exceptional, if F̃ ⊂ X̃ is a general fiber of φ̃,(

K X̃ +B+
X̃

)∣∣∣
F̃
= E |F̃ .

Note that E |F̃ is an exceptional divisor for the induced birational morphism π|F̃ : F̃ → F
′
.

Indeed, assume otherwise. Then there exists U
′ ⊂ Y

′
open such that letting V

′
:=φ

′−1(U
′
), codim

(π(E) ∩V
′
) ≤ 1. But then E can’t be π-exceptional which is a contradiction. We conclude that

κ((K X̃ +B+
X̃

)|F̃ ) = ν((K X̃ +B+
X̃

)|F̃ ) = 0. Thus we can run a relative (K X̃ +B+
X̃

)-MMP with ample scaling

over Ỹ to get

X̃ X̃m

Ỹ

ψ

φ̃

φ̃m

such that letting K X̃m
+B+

X̃m
= ψ∗(K X̃ +B+

X̃
) and ∆X̃m

:= ψ∗∆, we have (K X̃m
+B+

X̃m
)|F̃m

∼Q 0, F̃m

being the general fiber of φ̃m (see the first paragraph of the proof of [6, Lemma 4.4] for details).
Consider the induced klt-trivial fibration

φ̃m :
(

X̃m ,B X̃m
+∆+

X̃m
−∆−

X̃m

)
→ Ỹ .

Note: the fact that φ̃m is klt-trivial can be shown by choosing a smooth resolution of indetermi-

nacy X̃
p←−W

q−→ X̃m of ψ and using the fact that p∗(K X̃ +B+
X̃

) = q∗(K X̃m
+B+

X̃m
)+E where E ≥ 0 is

q-exceptional. By [2, Lemma 2.6], φ̃m and φ̃ induce the same discriminant and moduli divisors
on Ỹ . In the case of φ̃m , (∆−

X̃m
)|F̃m

∼Q 0, thus by [3, Theorem 3.3], MỸ is b-nef and b-good. Hence,
by the arguments in the proof of [3, Theorem 4.1], we can write

K X̃ +B+
X̃
+∆+−∆− ∼Q φ̃∗ (

KỸ +∆Ỹ

)
.
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where (Ỹ ,∆Ỹ ) is klt. We write this as

K X̃ +B+
X̃
+∆+− (∆−)h ∼Q φ̃∗ (

KỸ +∆Ỹ

)+ (∆−)v (2)

where h and v denote the horizontal and vertical parts with respect to φ̃ respectively. As observed
above, (K X̃ + B+

X̃
)|F̃ is π|F̃ -exceptional and (K X̃ + B+

X̃
)|F̃ ∼Q (∆−)h |F̃ . Thus (∆−)h |F̃ = Nσ((K X̃ +

B+
X̃

)|F̃ )(= (K X̃ +B+
X̃

)|F̃ ). Now it follows from the definition of Nσ that

Nσ

((
K X̃ +B+

X̃

)∣∣∣F̃

)
≤ Nσ

(
K X̃ +B+

X̃

)∣∣∣
F̃

. (3)

Since F̃ is a general fiber and (∆−)h has no vertical components, it follows that

(∆−)h ≤ Nσ

(
K X̃ +B+

X̃

)
(4)

Note that Pσ(K X̃ +B+
X̃

) is effective. Indeed, let µ : X̃ → X be the induced birational morphism.
Then we have K X̃ +B+

X̃
=µ∗(KX +B)+B−

X̃
where B−

X̃
is effective and µ-exceptional. Thus

κ
(
K X̃ +B+

X̃

)
= κ

(
µ∗(KX +B)

)= κ(KX +B) ≥ 0.

Then κ(Pσ(K X̃ +B+
X̃

)) = κ(K X̃ +B+
X̃

) ≥ 0 by [6, Lemma 2.9]. It follows that K X̃ +B+
X̃
− (∆−)h ≥ 0.

By [12, Lemma 1.8], (4) implies that Nσ(K X̃ + B+
X̃
− (∆−)h) = Nσ(K X̃ + B+

X̃
) − (∆−)h and thus

Pσ(K X̃ + B+
X̃
− (∆−)h) = Pσ(K X̃ + B+

X̃
). Now we take Pσ in (2). Since κ(D) = κ(Pσ(D)) for any

pseudoeffective divisor D ([6, Lemma 2.9]), the fact that ∆+ and B−
X̃

are exceptional over X , the

φ̃-degeneracy of (∆−)v and [6, Lemma 2.16] imply that

κ(KX +B) = κ
(
KỸ +∆Ỹ

)
(5)

Then (2) gives
K X̃ +B+

X̃
+L X̃ +∆+− (∆−)h ≡ φ̃∗ (

KỸ +∆Ỹ +LỸ

)+ (∆−)v (6)

where ∆+ is exceptional over X
′

and Ỹ and (∆−)v is φ̃-degenerate. Since L X̃ |F̃ ≡ 0, as observed
above, we have

Nσ

((
K X̃ +B+

X̃
+L X̃

)∣∣∣F̃

)
= Nσ

((
K X̃ +B+

X̃

)∣∣∣F̃

)
≥ (∆−)h |F̃ implying (∆−)h ≤ Nσ

(
K X̃ +B+

X̃
+L X̃

)
and exactly as before, we conclude that

Pσ

(
K X̃ +B+

X̃
+L X̃ +∆+− (∆−)h

)
= Pσ

(
K X̃ +B+

X̃
+L X̃ +∆+

)
.

But the latter equals

Pσ

(
µ∗ (KX +B +L)+B−

X̃
+∆+

)
= Pσ

(
µ∗(KX +B +L)

)=µ∗ (KX +B +L)

since ∆+ and B−
X̃

are exceptional over X and KX +B +L is nef. Now taking Pσ in (6) and using [6,
Lemma 2.16], we get

µ∗ (KX +B +L) = Pσ

(
φ̃∗ (

KỸ +∆Ỹ +LỸ

))
.

By [10, Theorem 5.3], there exists a smooth projective Y and w : Y → Ỹ birational such that
Pσ(w∗(KỸ +∆Ỹ + LỸ )) is numerically equivalent to a semiample divisor. Letting X denote a
desingularization of the main component of X̃ ×Ỹ Y and v : X → X̃ , φ : X → Y the induced
morphisms, we have

φ
∗

Pσ

(
w∗ (

KỸ +∆Ỹ +LỸ

))= Pσ

(
φ
∗

w∗ (
KỸ +∆Ỹ +LỸ

))(
sincePσ

(
w∗ (

KỸ +∆Ỹ +LY

))
is nef; see [10, Lemma 2.5]

)
= Pσ

(
v∗φ̃∗ (

KỸ +∆Ỹ +LỸ

))= v∗Pσ

(
φ̃∗ (

KỸ +∆Ỹ +LỸ

))(
since Pσ

(
φ̃∗ (

KỸ +∆Ỹ +LỸ

))
is nef

)= v∗µ∗(KX +B +L)

(∗)

is numerically equivalent to a semiample divisor. Thus KX +B +L is numerically equivalent to a
semiample divisor. �



Priyankur Chaudhuri 421

Remark 8. The above result can also be proved by using the MMP instead of the canonical
bundle formula. See for example the proof of [11, Theorem 3.5].

Proof of Corollary 3.

(1) If n(KX +B +L) = 2, then dim Ỹ = 2 and KỸ +∆Ỹ ≥ 0 by (5). Termination of flips for three-
fold pairs and abundance for surface and threefold pairs are classical. Semiampleness
and generalized non-vanishing conjectures hold for surface pairs by [10, Corollary C,
page 4]. Thus the case n(KX +B +L) = 2 i.e. when dim Ỹ = 2 is immediate.

(2) If n(KX +B +L) = 3, then dim Ỹ = 3 and by (5), κ(KỸ +∆Ỹ ) > 0. Then by [10, Remark 5.4],
Pσ(w∗(KỸ +∆Ỹ +LỸ )) is numerically equivalent to a semiample divisor for some bira-
tional morphism w : Y → Ỹ from a smooth projective variety Y . Then so is KX +B +L by
(∗) above. �
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