

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Priyankur Chaudhuri

An inductive approach to generalized abundance using nef reduction

Volume 361 (2023), p. 417-421

https://doi.org/10.5802/crmath.420

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1778-3569

Algebra / Algèbre

An inductive approach to generalized abundance using nef reduction

Priyankur Chaudhuri*, a

^a Department of Mathematics, University of Maryland, College Park, MD 20742, USA *E-mail:* pchaudhu@umd.edu

Abstract. We use the canonical bundle formula for parabolic fibrations to give an inductive approach to the generalized abundance conjecture using nef reduction. In particular, we observe that generalized abundance holds for a klt pair (*X*, *B*) if the nef dimension $n(K_X + B + L) = 2$ and $K_X + B \ge 0$ or $n(K_X + B + L) = 3$ and $\kappa(K_X + B) > 0$.

Manuscript received 4 November 2021, revised 25 January 2022 and 19 May 2022, accepted 7 September 2022.

1. Introduction

In [10], Lazić and Peternell propose the following

Conjecture 1 (Generalized Abundance). Let (X, B) be a klt pair with $K_X + B$ pseudoeffective. If L is a nef divisor on X such that $K_X + B + L$ is also nef, then $K_X + B + L \equiv M$ for some semiample \mathbb{Q} -divisor M.

They show that this conjecture holds in case dim X = 2 and for dim X = 3 if $\kappa(K_X + B) > 0$ (see [10, Corollary C, D]). The main purpose of this article is to prove the following result.

Theorem 2. Let (X, B) be an *n*-dimensional klt pair with $K_X + B \ge 0$ and let $L \in \text{Pic } X$ be nef such that $K_X + B + L$ is nef with nef dimension $n(K_X + B + L) = d$.

Assume termination of klt flips [7, Conjecture 5-1-13] in dimension d, abundance conjecture [8, Conjecture 3.12] in dimension $\leq d$, semiampleness conjecture [10, page 2] in dimension $\leq d$ and generalized non-vanishing conjecture [10, page 2] in dimension $\leq d - 1$. Then $K_X + B + L \equiv M$ for some semiample divisor M.

Note that the phrase "Conjecture (*) holds in dimension d (resp. $\leq d$)" above means that (*) holds for all klt pairs (*X*, *B*) such that dim *X* = d (resp. $\leq d$).

In case L = 0, such a theorem has been proved by [1]. The main ingredients of our proof are the canonical bundle formula for parabolic fibrations [5] and Nakayama-Zariski decomposition [12]. We have the following corollary

^{*} Corresponding author.

Corollary 3. Generalized abundance holds (in any dimension) in the following two cases:

- (1) $n(K_X + B + L) = 2$ and $K_X + B \ge 0$, or
- (2) $n(K_X + B + L) = 3$ and $\kappa(K_X + B) > 0$.

Note that any divisor of nef dimension 1 is already numerically equivalent to a semiample divisor by [4, 2.4.4]. Thus generalized abundance also holds in this case.

2. Preliminaries

Definition 4 (Singularities of pairs). Let (X, B) be a sub-pair consisting of a normal variety X and a \mathbb{Q} -divisor B on X such that $K_X + B$ is \mathbb{Q} -Cartier. It is called sub-klt if there exists a log resolution $Y \xrightarrow{\mu} X$ of (X, B) such that letting B_Y be defined by $K_Y + B_Y = \mu^*(K_X + B)$, all coefficients of B_Y are < 1 and sub-lc if all coefficients of B_Y are ≤ 1 . If $B \geq 0$, we drop the prefix sub.

Definition 5 (Nef reduction and nef dimension [4]). Let *X* be a normal projective variety and let $L \in \text{Pic } X$ be nef. Then there exists a dominant rational map $\phi : X \dashrightarrow Y$ with connected fibers which is proper and regular over an open subset of *Y* (i.e. there exists $V \subset Y$ nonempty open such ϕ restricts to a proper morphism $\phi|_{\phi^{-1}(V)} : \phi^{-1}(V) \to V$) where *Y* is also normal projective such that

- (1) If $F \subset X$ is a general compact fiber of ϕ with dim $F = \dim X \dim Y$, then $L|_F \equiv 0$.
- (2) If $x \in X$ is a very general point and $C \subset X$ a curve passing x such that $\dim(\phi(C)) > 0$, then $(L \cdot C) > 0$.

 ϕ is called the **nef reduction map** of L and dim Y the **nef dimension** n(L) of L.

Remark 6. Note that if $\phi : X \to Y$ is proper and regular over an open subset of *Y*, then there exists a resolution $\hat{\phi} : \hat{X} \to Y$ of ϕ such that the exceptional divisor $E_X(\hat{X}/X)$ is $\hat{\phi}$ -vertical. For example, \hat{X} can be chosen to be the closure of the graph of ϕ .

Notation 7. For a pseudoeffective divisor *D* on a smooth projective variety *X*, $P_{\sigma}(D)$ and $N_{\sigma}(D)$ will denote the positive and negative parts of the Nakayama-Zariski decomposition of *D* (see [12, Chapter 3] for details). $\kappa(D)$ will denote the Iitaka dimension and v(D) the numerical dimension (see [6, Definition 2.10]) of *D*.

3. Inductive approach to generalized abundance

Proof of Theorem 2. We will follow some ideas of [1, Theorem 5.1] and [6, Lemma 4.4]. Let Φ be the nef reduction map of $K_X + B + L$. Let \hat{X} be the normalization of the closure of the graph of Φ . We have an induced commutative diagram:

$$\begin{array}{c} \widehat{X} \\ \downarrow^{\beta} \searrow^{\phi} \\ X \xrightarrow{\Phi} Y \end{array}$$

Note that since Φ is proper and regular over an open subset of *Y*, $Ex(\beta)$ is ϕ -vertical. We will make base changes that preserve this property. Let $F \subset \hat{X}$ be a general fiber of ϕ . Then

$$\left(K_{\hat{X}} + B_{\hat{X}} + L_{\hat{X}}\right)\Big|_{F} \equiv 0.$$
(1)

Here $L_{\hat{X}} := \beta^* L$ and $B_{\hat{X}}$ is defined by $K_{\hat{X}} + B_{\hat{X}} = \beta^* (K_X + B)$. Now since $K_{\hat{X}} + B_{\hat{X}} \ge 0$, we have $K_F + B_F \ge 0$ which implies $K_F + B_F \sim_{\mathbb{Q}} 0$. Indeed, suppose that $K_F + B_F > 0$. Then there exists a curve $C \subset F$ such that $((K_F + B_F) \cdot C) > 0$. Then $((K_F + B_F + L_F) \cdot C) > 0$. This contradicts (1). We also conclude that $L_{\hat{X}}|_F \equiv 0$.

By [10, Lemma 3.1], there exists $\sigma: Y' \to Y$ birational from a smooth projective variety Y' such that letting X' denote the normalization of the main component of $\hat{X} \times_Y Y' \to Y'$ and $\phi': X' \to Y'$ the induced morphism, there exists a nef \mathbb{Q} -Cartier divisor $L_{Y'}$ on Y' such that $L_{X'} \equiv \phi'^*(L_{Y'})$. For a divisor D, let D^+ and D^- denote its positive and negative parts respectively. Letting F' denote a general fiber of ϕ' , note that $(B_{Y'})|_{F'} \sim 0$. Thus

$$(K_{X'} + B_{X'})|_{F'} \sim (K_{X'} + B_{X'}^+)|_{F'} \sim 0.$$

Then by [5, Section 4], there exists a birational morphism $\tilde{Y} \to Y'$, \tilde{X} birational to the main component of $X' \times_{Y'} \tilde{Y}$ where \tilde{X} and \tilde{Y} are both smooth projective such that letting $\tilde{\phi} : \tilde{X} \to \tilde{Y}$ denote the induced morphism, there exists a \mathbb{Q} -divisor Δ on \tilde{X} such that $\tilde{\phi} : (\tilde{X}, B_{\tilde{X}}^+ + \Delta) \to \tilde{Y}$ is a klt trivial fibration ([9, Definition 2.1]) where Δ^+ is exceptional over \tilde{Y} and X' and $\tilde{\phi}_* \mathcal{O}_{\tilde{X}}(\lfloor l\Delta^- \rfloor) \cong \mathcal{O}_{\tilde{Y}}$ for all $l \in \mathbb{N}$.

$$\begin{array}{cccc} \widetilde{X} & \xrightarrow{\pi} & X' & \longrightarrow & \widehat{X} & \xrightarrow{\beta} & X \\ & & & \downarrow \phi' & & \downarrow \phi \\ \widetilde{Y} & \longrightarrow & Y' & \longrightarrow & Y \end{array}$$

By [6, Lemma 2.15], the last condition implies that the vertical part $(\Delta^{-})^{\nu}$ is $\tilde{\phi}$ -degenerate (see [6, Definition 2.14]). Letting $B_{\tilde{Y}}$ and $M_{\tilde{Y}}$ denote the induced discriminant and moduli divisors on \tilde{Y} , we have

$$K_{\widetilde{X}} + B_{\widetilde{Y}}^{+} + \Delta^{+} - \Delta^{-} \sim_{\mathbb{Q}} \widetilde{\phi}^{*} \left(K_{\widetilde{Y}} + B_{\widetilde{Y}} + M_{\widetilde{Y}} \right)$$

Since $(\Delta^-)^v$ is $\tilde{\phi}$ -degenerate, it follows from the definition of $B_{\widetilde{Y}}$ that $B_{\widetilde{Y}} \ge 0$. Since $K_{\widetilde{X}} + B_{\widetilde{X}}^+ = \pi^*(K_{X'} + B_{Y'}^+) + E$, where $E \ge 0$ is π -exceptional, if $\widetilde{F} \subset \widetilde{X}$ is a general fiber of $\tilde{\phi}$,

$$\left(K_{\widetilde{X}}+B_{\widetilde{X}}^{+}\right)\Big|_{\widetilde{F}}=E|_{\widetilde{F}}.$$

Note that $E|_{\widetilde{F}}$ is an exceptional divisor for the induced birational morphism $\pi|_{\widetilde{F}} : \widetilde{F} \to F'$. Indeed, assume otherwise. Then there exists $U' \subset Y'$ open such that letting $V' := \phi'^{-1}(U')$, codim $(\pi(E) \cap V') \leq 1$. But then *E* can't be π -exceptional which is a contradiction. We conclude that $\kappa((K_{\widetilde{X}} + B_{\widetilde{X}}^+)|_{\widetilde{F}}) = \nu((K_{\widetilde{X}} + B_{\widetilde{X}}^+)|_{\widetilde{F}}) = 0$. Thus we can run a relative $(K_{\widetilde{X}} + B_{\widetilde{X}}^+)$ -MMP with ample scaling over \widetilde{Y} to get

$$\begin{array}{ccc} \widetilde{X} & \stackrel{\psi}{\longrightarrow} & \widetilde{X}_m \\ & \downarrow \widetilde{\phi} & \swarrow \\ & \widetilde{Y} & \swarrow & \phi_m \end{array}$$

such that letting $K_{\widetilde{X}_m} + B_{\widetilde{X}_m}^+ = \psi_*(K_{\widetilde{X}} + B_{\widetilde{X}}^+)$ and $\Delta_{\widetilde{X}_m} := \psi_*\Delta$, we have $(K_{\widetilde{X}_m} + B_{\widetilde{X}_m}^+)|_{\widetilde{F}_m} \sim_{\mathbb{Q}} 0$, \widetilde{F}_m being the general fiber of ϕ_m (see the first paragraph of the proof of [6, Lemma 4.4] for details). Consider the induced klt-trivial fibration

$$\widetilde{\phi}_m: \left(\widetilde{X}_m, B_{\widetilde{X}_m} + \Delta_{\widetilde{X}_m}^+ - \Delta_{\widetilde{X}_m}^-\right) \to \widetilde{Y}.$$

Note: the fact that $\tilde{\phi}_m$ is klt-trivial can be shown by choosing a smooth resolution of indeterminacy $\tilde{X} \stackrel{p}{\leftarrow} W \stackrel{q}{\rightarrow} \tilde{X}_m$ of ψ and using the fact that $p^*(K_{\tilde{X}} + B_{\tilde{X}}^+) = q^*(K_{\tilde{X}_m} + B_{\tilde{X}_m}^+) + E$ where $E \ge 0$ is *q*-exceptional. By [2, Lemma 2.6], $\tilde{\phi}_m$ and $\tilde{\phi}$ induce the same discriminant and moduli divisors on \tilde{Y} . In the case of $\tilde{\phi}_m$, $(\Delta_{\tilde{X}_m}^-)|_{\tilde{F}_m} \sim_{\mathbb{Q}} 0$, thus by [3, Theorem 3.3], $M_{\tilde{Y}}$ is b-nef and b-good. Hence, by the arguments in the proof of [3, Theorem 4.1], we can write

$$K_{\widetilde{X}} + B_{\widetilde{X}}^{+} + \Delta^{+} - \Delta^{-} \sim_{\mathbb{Q}} \widetilde{\phi}^{*} \left(K_{\widetilde{Y}} + \Delta_{\widetilde{Y}} \right).$$

where $(\tilde{Y}, \Delta_{\tilde{Y}})$ is klt. We write this as

$$K_{\widetilde{X}} + B_{\widetilde{X}}^{+} + \Delta^{+} - (\Delta^{-})^{h} \sim_{\mathbb{Q}} \widetilde{\phi}^{*} \left(K_{\widetilde{Y}} + \Delta_{\widetilde{Y}} \right) + (\Delta^{-})^{\nu}$$

$$\tag{2}$$

where h and v denote the horizontal and vertical parts with respect to $\widetilde{\phi}$ respectively. As observed above, $(K_{\widetilde{X}} + B_{\widetilde{X}}^{+})|_{\widetilde{F}}$ is $\pi|_{\widetilde{F}}$ -exceptional and $(K_{\widetilde{X}} + B_{\widetilde{X}}^{+})|_{\widetilde{F}} \sim_{\mathbb{Q}} (\Delta^{-})^{h}|_{\widetilde{F}}$. Thus $(\Delta^{-})^{h}|_{\widetilde{F}} = N_{\sigma}((K_{\widetilde{X}} + B_{\widetilde{X}}^{+})|_{\widetilde{F}}) (= (K_{\widetilde{X}} + B_{\widetilde{X}}^{+})|_{\widetilde{F}})$. Now it follows from the definition of N_{σ} that

$$N_{\sigma}\left(\left(K_{\widetilde{X}} + B_{\widetilde{X}}^{+}\right)\Big|_{\widetilde{F}}\right) \le N_{\sigma}\left(K_{\widetilde{X}} + B_{\widetilde{X}}^{+}\right)\Big|_{\widetilde{F}}.$$
(3)

Since \widetilde{F} is a general fiber and $(\Delta^{-})^{h}$ has no vertical components, it follows that

$$(\Delta^{-})^{h} \le N_{\sigma} \left(K_{\widetilde{X}} + B_{\widetilde{X}}^{+} \right) \tag{4}$$

Note that $P_{\sigma}(K_{\widetilde{X}} + B_{\widetilde{X}}^+)$ is effective. Indeed, let $\mu : \widetilde{X} \to X$ be the induced birational morphism. Then we have $K_{\widetilde{X}} + B_{\widetilde{X}}^+ = \mu^*(K_X + B) + B_{\widetilde{X}}^-$ where $B_{\widetilde{X}}^-$ is effective and μ -exceptional. Thus

$$\kappa\left(K_{\widetilde{X}}+B_{\widetilde{X}}^{+}\right)=\kappa\left(\mu^{*}(K_{X}+B)\right)=\kappa(K_{X}+B)\geq0.$$

Then $\kappa(P_{\sigma}(K_{\widetilde{X}} + B_{\widetilde{X}}^+)) = \kappa(K_{\widetilde{X}} + B_{\widetilde{X}}^+) \ge 0$ by [6, Lemma 2.9]. It follows that $K_{\widetilde{X}} + B_{\widetilde{X}}^+ - (\Delta^-)^h \ge 0$. By [12, Lemma 1.8], (4) implies that $N_{\sigma}(K_{\widetilde{X}} + B_{\widetilde{X}}^+ - (\Delta^-)^h) = N_{\sigma}(K_{\widetilde{X}} + B_{\widetilde{X}}^+) - (\Delta^-)^h$ and thus $P_{\sigma}(K_{\widetilde{X}} + B_{\widetilde{X}}^+ - (\Delta^-)^h) = P_{\sigma}(K_{\widetilde{X}} + B_{\widetilde{X}}^+)$. Now we take P_{σ} in (2). Since $\kappa(D) = \kappa(P_{\sigma}(D))$ for any pseudoeffective divisor D ([6, Lemma 2.9]), the fact that Δ^+ and $B_{\widetilde{X}}^-$ are exceptional over X, the $\widetilde{\phi}$ -degeneracy of $(\Delta^-)^{\nu}$ and [6, Lemma 2.16] imply that

$$\kappa(K_X + B) = \kappa \left(K_{\widetilde{Y}} + \Delta_{\widetilde{Y}} \right) \tag{5}$$

Then (2) gives

$$K_{\widetilde{X}} + B_{\widetilde{X}}^{+} + L_{\widetilde{X}} + \Delta^{+} - (\Delta^{-})^{h} \equiv \widetilde{\phi}^{*} \left(K_{\widetilde{Y}} + \Delta_{\widetilde{Y}} + L_{\widetilde{Y}} \right) + (\Delta^{-})^{\nu}$$

$$\tag{6}$$

where Δ^+ is exceptional over X' and \tilde{Y} and $(\Delta^-)^{\nu}$ is $\tilde{\phi}$ -degenerate. Since $L_{\tilde{X}}|_{\tilde{F}} \equiv 0$, as observed above, we have

$$N_{\sigma}\left(\left(K_{\widetilde{X}} + B_{\widetilde{X}}^{+} + L_{\widetilde{X}}\right)\Big|_{\widetilde{F}}\right) = N_{\sigma}\left(\left(K_{\widetilde{X}} + B_{\widetilde{X}}^{+}\right)\Big|_{\widetilde{F}}\right) \ge (\Delta^{-})^{h}|_{\widetilde{F}} \text{ implying } (\Delta^{-})^{h} \le N_{\sigma}\left(K_{\widetilde{X}} + B_{\widetilde{X}}^{+} + L_{\widetilde{X}}\right)$$

and exactly as before, we conclude that

$$P_{\sigma}\left(K_{\widetilde{X}}+B_{\widetilde{X}}^{+}+L_{\widetilde{X}}+\Delta^{+}-(\Delta^{-})^{h}\right)=P_{\sigma}\left(K_{\widetilde{X}}+B_{\widetilde{X}}^{+}+L_{\widetilde{X}}+\Delta^{+}\right).$$

But the latter equals

$$\sigma\left(\mu^{*}(K_{X}+B+L)+B_{\tilde{X}}^{-}+\Delta^{+}\right)=P_{\sigma}\left(\mu^{*}(K_{X}+B+L)\right)=\mu^{*}(K_{X}+B+L)$$

since Δ^+ and $B_{\tilde{X}}^-$ are exceptional over X and $K_X + B + L$ is nef. Now taking P_σ in (6) and using [6, Lemma 2.16], we get

$$\mu^* (K_X + B + L) = P_\sigma \left(\widetilde{\phi}^* \left(K_{\widetilde{Y}} + \Delta_{\widetilde{Y}} + L_{\widetilde{Y}} \right) \right).$$

By [10, Theorem 5.3], there exists a smooth projective \overline{Y} and $w: \overline{Y} \to \widetilde{Y}$ birational such that $P_{\sigma}(w^*(K_{\widetilde{Y}} + \Delta_{\widetilde{Y}} + L_{\widetilde{Y}}))$ is numerically equivalent to a semiample divisor. Letting \overline{X} denote a desingularization of the main component of $\widetilde{X} \times_{\widetilde{Y}} \overline{Y}$ and $v: \overline{X} \to \widetilde{X}, \overline{\phi}: \overline{X} \to \overline{Y}$ the induced morphisms, we have

$$\begin{split} \overline{\phi}^* P_{\sigma} \left(w^* \left(K_{\widetilde{Y}} + \Delta_{\widetilde{Y}} + L_{\widetilde{Y}} \right) \right) &= P_{\sigma} \left(\overline{\phi}^* w^* \left(K_{\widetilde{Y}} + \Delta_{\widetilde{Y}} + L_{\widetilde{Y}} \right) \right) \\ \left(\text{since} \, P_{\sigma} \left(w^* \left(K_{\widetilde{Y}} + \Delta_{\widetilde{Y}} + L_{\widetilde{Y}} \right) \right) \text{ is nef; see [10, Lemma 2.5]} \right) \\ &= P_{\sigma} \left(v^* \widetilde{\phi}^* \left(K_{\widetilde{Y}} + \Delta_{\widetilde{Y}} + L_{\widetilde{Y}} \right) \right) = v^* P_{\sigma} \left(\widetilde{\phi}^* \left(K_{\widetilde{Y}} + \Delta_{\widetilde{Y}} + L_{\widetilde{Y}} \right) \right) \\ \left(\text{since} \, P_{\sigma} \left(\widetilde{\phi}^* \left(K_{\widetilde{Y}} + \Delta_{\widetilde{Y}} + L_{\widetilde{Y}} \right) \right) \text{ is nef} \right) = v^* \mu^* (K_X + B + L) \end{split}$$

is numerically equivalent to a semiample divisor. Thus $K_X + B + L$ is numerically equivalent to a semiample divisor.

Remark 8. The above result can also be proved by using the MMP instead of the canonical bundle formula. See for example the proof of [11, Theorem 3.5].

Proof of Corollary 3.

- (1) If $n(K_X + B + L) = 2$, then dim $\tilde{Y} = 2$ and $K_{\tilde{Y}} + \Delta_{\tilde{Y}} \ge 0$ by (5). Termination of flips for threefold pairs and abundance for surface and threefold pairs are classical. Semiampleness and generalized non-vanishing conjectures hold for surface pairs by [10, Corollary C, page 4]. Thus the case $n(K_X + B + L) = 2$ i.e. when dim $\tilde{Y} = 2$ is immediate.
- (2) If n(K_X + B + L) = 3, then dim Ỹ = 3 and by (5), κ(K_Ỹ + Δ_Ỹ) > 0. Then by [10, Remark 5.4], P_σ(w^{*}(K_Ỹ + Δ_Ỹ + L_Ỹ)) is numerically equivalent to a semiample divisor for some birational morphism w : Ȳ → Ỹ from a smooth projective variety Ȳ. Then so is K_X + B + L by (*) above.

Acknowledgements

I thank my advisor Patrick Brosnan for several helpful conversations on the contents of this note, Vladimir Lazić for his comments on a draft version, Brian Lehmann for answering a question and the referee whose comments improved the readability of this paper. An email conversation with Florin Ambro provided the impetus for this work.

References

- [1] F. Ambro, "The nef dimension of log minimal models", https://arxiv.org/abs/math/0411471, 2004.
- [2] _____, "Shokurov's Boundary property", J. Differ. Geom. 67 (2004), no. 2, p. 229-255.
- [3] _____, "The moduli *b*-divisor of an lc-trivial fibration", *Compos. Math.* 141 (2005), no. 2, p. 385-403.
- [4] T. Bauer, F. Campana, T. Eckl, S. Kebekus, T. Peternell, S. Rams, T. Szemberg, L. Wotzlaw, "A reduction map for nef line bundles", in *Complex geometry (Göttingen, 2000)*, Springer, 2002, p. 27-36.
- [5] O. Fujino, S. Mori, "A canonical bundle formula", J. Differ. Geom. 56 (2000), no. 1, p. 167-188.
- [6] Y. Gongyo, B. Lehmann, "Reduction maps and minimal model theory", Compos. Math. 149 (2013), no. 2, p. 295-308.
- [7] Y. Kawamata, K. Matsuda, K. Matsuki, "Introduction to the minimal model problem", in Algebraic geometry, Sendai, 1985, Advanced Studies in Pure Mathematics, vol. 10, North-Holland, 1987, p. 283-360.
- [8] J. Kollár, S. Mori, *Birational geometry of algebraic varieties*, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, 1998, with the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. ISBN: 0-521-63277-3.
- [9] V. Lazić, E. Floris, "A travel guide to the canonical bundle formula", in *Birational Geometry and Moduli Spaces*, Springer INdAM Series, vol. 39, Springer, 2020, p. 37-55.
- [10] V. Lazić, T. Peternell, "On Generalised Abundance, I", Publ. Res. Inst. Math. Sci. 56 (2020), no. 2, p. 353-389.
- [11] _____, "On Generalised Abundance, II", Peking Math. J. 3 (2020), no. 1, p. 1-46.
- [12] N. Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, 2004.