Comptes Rendus

Mathématique

Xavier Lamy, Andrew Lorent and Guanying Peng
On optimal regularity estimates for finite-entropy solutions of scalar conservation laws

Volume 361 (2023), p. 599-608
Published online: 2 March 2023
https://doi.org/10.5802/crmath. 427

Ge EY This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

On optimal regularity estimates for finite-entropy solutions of scalar conservation laws

Xavier Lamy ${ }^{*,}$, , Andrew Lorent ${ }^{b}$ and Guanying Peng ${ }^{c}$

${ }^{a}$ Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPSIMT, F-31062 Toulouse Cedex 9, France.
${ }^{b}$ Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
${ }^{c}$ Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
E-mails: xavier.lamy@math.univ-toulouse.fr (X. Lamy), lorentaw@uc.edu (A. Lorent), gpeng@wpi.edu (G. Peng)

Abstract

We consider finite-entropy solutions of scalar conservation laws $u_{t}+a(u)_{x}=0$, that is, bounded weak solutions whose entropy productions are locally finite Radon measures. Under the assumptions that the flux function a is strictly convex (with possibly degenerate convexity) and $a^{\prime \prime}$ forms a doubling measure, we obtain a characterization of finite-entropy solutions in terms of an optimal regularity estimate involving a cost function first used by Golse and Perthame. 2020 Mathematics Subject Classification. 35L65. Funding. X. L. received support from ANR project ANR-18-CE40-0023. A. L. gratefully acknowledges the support of the Simons foundation, collaboration grant \#426900. G. P. was supported in part by NSF grant DMS-2206291.

Manuscript received 12 August 2022, accepted 21 September 2022.

1. Introduction

For any strictly convex C^{1} flux function $a: \mathbb{R} \rightarrow \mathbb{R}$ we consider bounded weak solutions $u:[0, T] \times$ $\mathbb{R} \rightarrow \mathbb{R}$ of the scalar conservation law

$$
\begin{equation*}
u_{t}+[a(u)]_{x}=0 \text { in } \mathscr{D}^{\prime}((0, T) \times \mathbb{R}) \tag{1}
\end{equation*}
$$

It is well known that, on the one hand, smooth initial data evolving according to (1) may develop singularities in finite time, but on the other hand, there can be infinitely many weak solutions

[^0]corresponding to a single initial datum. One way to restore well-posedness is the concept of entropy solution [8]. For any convex or C^{2} function $\eta: \mathbb{R} \rightarrow \mathbb{R}$, called entropy, and entropy flux $q: \mathbb{R} \rightarrow \mathbb{R}$ such that $q^{\prime}=\eta^{\prime} a^{\prime}$, the associated entropy production is the distribution
$$
\mu_{\eta}=[\eta(u)]_{t}+[q(u)]_{x}
$$

Entropy solutions are bounded weak solutions such that μ_{η} is a nonpositive measure for all convex entropies η, and for any bounded initial datum u_{0} there exists a unique entropy solution defined for all positive times [8].

Here we are interested in the larger class of solutions with finite entropy production:

$$
\begin{equation*}
\mu_{\eta} \in \mathscr{M}_{l o c}([0, T] \times \mathbb{R}) \quad \text { for all } C^{2} \text { entropies } \eta \tag{2}
\end{equation*}
$$

This property does not ensure uniqueness of the initial value problem, but arises naturally in the study of some stochastic processes [3,13,14], where large deviation principles are open for want of a better understanding of finite-entropy solutions (despite major recent progress in [11, 12]).

In [3, Proposition 2.3] (see [10, Appendix B] for a more detailed proof in a slightly different context) it is shown that (2) implies the existence of a locally finite Radon measure $m \in$ $\mathscr{M}_{l o c}([0, T] \times \mathbb{R} \times \mathbb{R})$ such that

$$
\begin{equation*}
\mu_{\eta}=\int \eta^{\prime \prime}(v) m(\cdot, \cdot, \mathrm{~d} v) \tag{3}
\end{equation*}
$$

for all convex or C^{2} entropy η. Then [7, Theorem 4.1] implies that u satisfies the regularity estimate

$$
\begin{align*}
\sup _{|h| \leq \epsilon} \frac{1}{|h|} \int_{0}^{T} \int_{-R}^{R} \chi(t, x)^{2} \Delta(u(t, x), u(t, & x+h)) \mathrm{d} x \mathrm{~d} t \\
& \leq C(\chi)(1+|m|([0, T] \times[-R-\epsilon, R+\epsilon] \times[\inf u, \sup u])) \tag{4}
\end{align*}
$$

for any smooth cut-off function χ with support in $[0, T] \times[-R, R]$, some constant $C(\chi)>0$, and the regularity cost Δ is given by

$$
\begin{align*}
\Delta\left(u_{1}, u_{2}\right) & =\frac{1}{2} \int_{u_{1}}^{u_{2}} \int_{u_{1}}^{u_{2}}\left|a^{\prime}(v)-a^{\prime}(w)\right| \mathrm{d} v \mathrm{~d} w \\
& =\int_{\left[u_{1}, u_{2}\right]}\left(u_{2}-s\right)\left(s-u_{1}\right) a^{\prime \prime}(\mathrm{d} s) \tag{5}
\end{align*}
$$

The last equality is obtained by writing $\left|a^{\prime}(\nu)-a^{\prime}(w)\right|=\int_{\left[u_{1}, u_{2}\right]}\left(\mathbf{1}_{\nu<s<w}+\mathbf{1}_{w<s<v}\right) a^{\prime \prime}(\mathrm{d} s)$ and applying Fubini's theorem. Note that $\left[u_{1}, u_{2}\right]=\left[u_{2}, u_{1}\right]=\left\{t u_{1}+(1-t) u_{2}\right\}_{t \in[0,1]}$ and the integrand $\left(u_{2}-s\right)\left(s-u_{1}\right)$ is positive inside that segment, regardless of whether $u_{1} \leq u_{2}$ or $u_{2} \leq u_{1}$.

Remark 1. The explicit statement of [7, Theorem 4.1] is actually a corollary of (4), but its proof does contain (4), which corresponds to (4.10) in the proof of [7, Theorem 4.1]. The quantity Δ is defined in [7, Lemma 4.3] by the formula

$$
\begin{aligned}
\Delta\left(u_{1}, u_{2}\right) & =\iint \mathbf{1}_{v>w}\left(a^{\prime}(v)-a^{\prime}(w)\right)\left(\mathscr{M}_{u_{1}}(v)-\mathscr{M}_{u_{2}}(v)\right)\left(\mathscr{M}_{u_{1}}(w)-\mathscr{M}_{u_{2}}(w)\right) \mathrm{d} v \mathrm{~d} w \\
\mathscr{M}_{u}(v) & =\mathbf{1}_{0 \leq \nu \leq u}-\mathbf{1}_{u \leq v<0}
\end{aligned}
$$

To see that this coincides with (5), first note that both expressions are symmetric so it suffices to consider $u_{1}<u_{2}$. In the proof of [7, Lemma 4.3] it is shown that

$$
\Delta\left(u_{1}, u_{2}\right)=\int_{u_{1}}^{u_{2}} \int_{w}^{u_{2}}\left|a^{\prime}(v)-a^{\prime}(w)\right| \mathrm{d} v \mathrm{~d} w
$$

which implies (5) by writing $a^{\prime}(v)-a^{\prime}(w)=\int_{[\nu, w]} a^{\prime \prime}(\mathrm{d} s)$ and applying Fubini's theorem.

For instance, if $a(\nu)=|\nu|^{\beta+1}$ for some $\beta \geq 1$, then the regularity cost Δ admits the lower bound $\Delta\left(u_{1}, u_{2}\right) \gtrsim\left|u_{1}-u_{2}\right|^{\beta+2}$. Hence in that case (4) implies a local $B_{p, \infty}^{1 / p}$ bound for $p=\beta+2$, in the x direction, that is, $(t, x) \mapsto|u(t, x+h)-u(t, x)| /|h|^{1 / p}$ is locally bounded in L^{p}, uniformly with respect to h. In fact the same regularity is valid also in the t direction [7]. This local $B_{p, \infty}^{1 / p}$ estimate is optimal in Besov regularity scales [5], but for $\beta>1$ it is strictly weaker than (4) in regions where u stays away from the degenerate value $u=0$. Loosely speaking, the regularity cost Δ takes into account that equation (1) regularizes more around values of u where a is more convex. Therefore one can hope (as similar estimates in our recent work [9] for a generalized eikonal equation) that (4) is optimal in the sense that a converse estimate is valid:

- If the left-hand side of (4) is finite, does it imply that all entropy productions are finite (2)?
- Moreover, are the entropy productions (2) controlled by the left-hand side of (4)?

The second question can be answered rather easily if a is C^{2}, thanks to the recent rectifiability result of [12]: under the a priori knowledge that all entropy productions are finite, they are concentrated on a 1-rectifiable jump set and can be explicitly computed in terms of the traces of u along that jump set. Elementary algebraic manipulation and a covering argument then provide the following estimate.

Theorem 2. Assume that $a \in C^{2}(\mathbb{R})$ is strictly convex. Let $u \in L^{\infty}([0, T] \times \mathbb{R})$ be a weak solution of (1) such that u has finite entropy production (2). Then for any open set $U \subset[0, T] \times \mathbb{R}$ we have the estimate

$$
\begin{equation*}
\left|\mu_{\eta}\right|(U) \leq C_{0} \cdot \sup _{I}\left|\eta^{\prime \prime}\right| \cdot \lim \sup _{\epsilon \rightarrow 0} \sup _{|h|<\epsilon} \frac{1}{|h|} \iint_{U} \Delta(u(t, x), u(t, x+h)) \mathrm{d} x \mathrm{~d} t, \tag{6}
\end{equation*}
$$

for some absolute constant $C_{0}>0$, where $I=[\inf u, \sup u]$.
Note that the a priori estimate (6) directly implies an estimate on $|m|(U \times \mathbb{R})=|m|(U \times I)$ for the measure m satisfying (3). In light of Theorem 2 , it is natural to reformulate the first question as follows: does finiteness of the right-hand side of (6) imply finiteness of the left-hand side, that is, finite entropy production (2)? We provide a positive answer under a doubling assumption on the nonnegative measure $a^{\prime \prime}$.

Theorem 3. Assume that $a \in C^{1}(\mathbb{R})$ is strictly convex and that the nonnegative measure $a^{\prime \prime}$ is locally doubling, and let $u \in L^{\infty}([0, T] \times \mathbb{R})$ be a weak solution of (1). Assume that

$$
\begin{equation*}
\limsup _{\epsilon \rightarrow 0} \sup _{|h|<\epsilon} \frac{1}{|h|} \int_{0}^{T} \int_{-R}^{R} \Delta(u(t, x), u(t, x+h)) \mathrm{d} x \mathrm{~d} t<\infty \tag{7}
\end{equation*}
$$

for all $R>0$, then u has finite entropy production (2).
Theorem 3 provides a full converse to the estimate (4) proved in [7], under the assumption that $a^{\prime \prime}$ is locally doubling (this is satisfied in particular if a is analytic, see e.g. [9, Lemma 25]). The proof of Theorem 3 also provides the estimate (6) even when a is not C^{2}, but with a constant depending on the doubling property of $a^{\prime \prime}$. More precisely, in the proof of Theorem 3 we obtain
for some absolute constant C_{0} and slightly different regularity cost $\widehat{\Delta}$ (22), and then check that $\widehat{\Delta} \leq C \Delta$ for some $C>0$ depending on the doubling constant of $a^{\prime \prime}$ on I.

In the case of a uniformly convex flux function, $0<c \leq a^{\prime \prime} \leq C$, the condition (7) is equivalent to local $B_{3, \infty}^{1 / 3}$ regularity in the x direction, and Theorem 3 could be obtained by adapting the commutator estimates in [4, Proposition 2]. However, in the case $a(v)=|v|^{\beta+1}$ for some $\beta>1$, the statement of Theorem 3 would not be valid with (7) replaced by a local $B_{p, \infty}^{1 / p}$ bound for
$p=\beta+2>3$. Indeed, for a solution taking values for instance in [1,2] where a is uniformly convex, $B_{3, \infty}^{1 / 3}$ regularity (in the x direction) would be needed to ensure (2) (see the examples in [5]).

It is also interesting to remark that, if the limit (7) is zero, then all entropy productions vanish. In our particular context this provides a very precise regularity threshold for Onsagertype statements in the spirit of [2], and a generalization of [4, Theorem 2] where $a(v)=v^{2} / 2$ is considered.

The proof of Theorem 3 relies, as in $[2,4]$, on good estimates of the commutator $[a(u)]_{\epsilon}-a\left(u_{\epsilon}\right)$, where the subscript ϵ denotes regularization at scale ϵ. However, if the convexity of a degenerates (e.g. $a(v)=|v|^{\beta+1}$ for some $\beta>1$), our regularity requirement (7) is strictly weaker than the local $B_{3, \infty}^{1 / 3}$ regularity that is needed in order to directly use (as done e.g. in [6, Proposition 3.10]) the estimates of [4, Theorem 2]. As noted in [2] these estimates are valid for any C^{2} function a and not related to its convexity. Here we take instead full advantage of the convexity of a in order to obtain finer bounds in terms of the regularity cost Δ. We do this by adapting ideas of [9], where a result analogous to Theorem 3 has been established for a class of generalized eikonal equations with degenerate convexity.

We do not know whether Theorem 3 is valid without the requirement that the nonnegative measure $a^{\prime \prime}$ is doubling, even though the a priori estimate of Theorem 2 suggests that this requirement is superfluous. In the next two sections we give the proofs of Theorems 2 and 3, respectively.

2. Proof of Theorem 2

Let u be a bounded weak solution to (1) with finite entropy production (2). The proof of [12, Theorem 1], where $a(v)=v^{2} / 2$ is considered, actually uses only the facts that:

- u solves a kinetic formulation [12, (3)], which is a consequence of finite entropy production,
- the flux function a is C^{2} (to construct a Lagrangian representation [11, Theorem 1.2]),
- and a^{\prime} is an increasing function (see [12, Proposition 6] and Step 2 of [12, Theorem 10]).

Hence it applies in our setting: there exists an \mathscr{H}^{1}-rectifiable set J_{u} such that all entropy productions μ_{η} are absolutely continuous with respect to $\mathscr{H}_{\mathrm{L}_{u}}^{1}$. More precisely, u has strong traces on both sides of J_{u} and for any entropy η we have

$$
\mu_{\eta}=\left(\left(\eta\left(u^{+}\right)-\eta\left(u^{-}\right)\right) v_{t}+\left(q\left(u^{+}\right)-q\left(u^{-}\right)\right) v_{x}\right) \mathscr{H}_{\mathrm{LJ}_{u}}^{1},
$$

where $v=\left(v_{t}, v_{x}\right)$ is the unit normal to J_{u} and $u^{ \pm}$are the traces. The equation (1) also provides the Rankine-Hugoniot condition

$$
\left(u^{+}-u^{-}\right) v_{t}+\left(a\left(u^{+}\right)-a\left(u^{-}\right)\right) v_{x}=0 \quad \text { a.e. on } J_{u}
$$

so μ_{η} can be rewritten as

$$
\begin{align*}
\mu_{\eta} & =c_{\eta}\left(u^{+}, u^{-}\right) v_{x} \mathscr{H}_{\mathrm{L}_{u}}^{1} \\
c_{\eta}\left(u^{+}, u^{-}\right) & =q\left(u^{+}\right)-q\left(u^{-}\right)-\frac{a\left(u^{+}\right)-a\left(u^{-}\right)}{u^{+}-u^{-}}\left(\eta\left(u^{+}\right)-\eta\left(u^{-}\right)\right) . \tag{8}
\end{align*}
$$

The crucial fact here is that the entropy cost c_{η} is controlled by Δ.
Lemma 4. For any $\eta \in C^{2}(\mathbb{R})$ and $u^{ \pm} \in \mathbb{R}$ we have

$$
\left|c_{\eta}\left(u^{+}, u^{-}\right)\right| \leq \frac{1}{2}\left(\sup _{\left[u^{-}, u^{+}\right]}\left|\eta^{\prime \prime}\right|\right) \Delta\left(u^{+}, u^{-}\right)
$$

Proof of Lemma 4. Since both sides of the estimate are symmetric in (u^{+}, u^{-}) we may assume $u^{-}<u^{+}$. Using $q^{\prime}=\eta^{\prime} a^{\prime}$ and Fubini's theorem we have the identities

$$
\begin{align*}
c_{\eta}\left(u^{+}, u^{-}\right) & =\int_{u^{-}}^{u^{+}} \eta^{\prime}(t)\left(a^{\prime}(t)-\frac{a\left(u^{+}\right)-a\left(u^{-}\right)}{u^{+}-u^{-}}\right) \mathrm{d} t \\
& =\frac{1}{u^{+}-u^{-}} \int_{u^{-}}^{u^{+}} \eta^{\prime}(t) \int_{u^{-}}^{u^{+}}\left(a^{\prime}(t)-a^{\prime}(s)\right) \mathrm{d} s \mathrm{~d} t \\
& =\frac{1}{u^{+}-u^{-}} \int_{\left[u^{-}, u^{+}\right]} w_{\eta}(\tau) a^{\prime \prime}(\mathrm{d} \tau), \tag{9}
\end{align*}
$$

where

$$
\begin{aligned}
w_{\eta}(\tau) & =\int_{u^{-}}^{u^{+}} \eta^{\prime}(t) \int_{u^{-}}^{u^{+}}\left(\mathbf{1}_{s<\tau<t}-\mathbf{1}_{t<\tau<s}\right) \mathrm{d} s \mathrm{~d} t \\
& =\int_{u^{-}}^{u^{+}} \eta^{\prime}(t)\left(\mathbf{1}_{t>\tau}\left(\tau-u^{-}\right)-\mathbf{1}_{t<\tau}\left(u^{+}-\tau\right)\right) \mathrm{d} t .
\end{aligned}
$$

Since the second factor in the integrand has zero average on $\left[u^{-}, u^{+}\right]$we deduce

$$
\begin{aligned}
\left|w_{\eta}(\tau)\right| & =\left|\int_{u^{-}}^{u^{+}}\left(\eta^{\prime}(t)-\eta^{\prime}(\tau)\right)\left(\mathbf{1}_{t>\tau}\left(\tau-u^{-}\right)-\mathbf{1}_{t<\tau}\left(u^{+}-\tau\right)\right) \mathrm{d} t\right| \\
& \leq\left(\sup _{\left[u^{-}, u^{+}\right\rceil}\left|\eta^{\prime \prime}\right|\right) \int_{u^{-}}^{u^{+}}|t-\tau|\left(\mathbf{1}_{t>\tau}\left(\tau-u^{-}\right)+\mathbf{1}_{t<\tau}\left(u^{+}-\tau\right)\right) \mathrm{d} t \\
& =\left(\sup _{\left[u^{-}, u^{+}\right\rfloor}\left|\eta^{\prime \prime}\right|\right) \frac{1}{2}\left(u^{+}-u^{-}\right)\left(\tau-u^{-}\right)\left(u^{+}-\tau\right) .
\end{aligned}
$$

The last equality is obtained by directly calculating the integral. Plugging this into (9) we deduce

$$
\left|c_{\eta}\left(u^{+}, u^{-}\right)\right| \leq \frac{1}{2}\left(\sup _{\left[u^{-}, u^{+}\right]}\left|\eta^{\prime \prime}\right|\right) \int_{\left[u^{-}, u^{+}\right]}\left(\tau-u^{-}\right)\left(u^{+}-\tau\right) a^{\prime \prime}(\mathrm{d} \tau),
$$

and we recognize the definition (5) of $\Delta\left(u^{+}, u^{-}\right)$in the right-hand side.
Theorem 2 follows from Lemma 4 and the rectifiability of J_{u} in (8) by a covering argument similar to [9, Lemma 32]. We assume without loss of generality that $\sup _{I}\left|\eta^{\prime \prime}\right| \leq 1$ and $U \subset \subset$ $[0, T] \times \mathbb{R}$. For general open $U \subset[0, T] \times \mathbb{R}$ we may approximate it by open sets $U_{k} \subset \subset[0, T] \times \mathbb{R}$. Thanks to (8) we have

$$
\begin{equation*}
\left|\mu_{\eta}\right|(U)=\int_{J_{u} \cap U}\left|c_{\eta}\left(u^{+}, u^{-}\right)\right|\left|v_{x}\right| \mathrm{d} \mathscr{H}^{1} . \tag{10}
\end{equation*}
$$

Further, for any $J^{\prime} \subset J_{u}$ such that $\mathscr{H}^{1}\left(J^{\prime}\right)<\infty$ we have, on the one hand, thanks to Lemma 4,

$$
\begin{equation*}
\int_{J^{\prime} \cap U}\left|c_{\eta}\left(u^{+}, u^{-}\right)\right|\left|v_{x}\right| \mathrm{d} \mathscr{H}^{1} \leq \frac{1}{2} \int_{J^{\prime} \cap U} \Delta\left(u^{+}, u^{-}\right)\left|v_{x}\right| \mathrm{d} \mathscr{H}^{1}, \tag{11}
\end{equation*}
$$

and, on the other hand, we will show

$$
\begin{equation*}
\int_{J^{\prime} \cap U} \Delta\left(u^{+}, u^{-}\right)\left|v_{x}\right| \mathrm{d} \mathscr{H}^{1} \leq C_{0} \limsup _{\epsilon \rightarrow 0} \sup _{|h|<\epsilon} \frac{1}{|h|} \iint_{U} \Delta(u(t, x), u(t, x+h)) \mathrm{d} x \mathrm{~d} t . \tag{12}
\end{equation*}
$$

The proof of (12) will follow as a consequence of the rectifiability of J_{u} and the trace properties of u. Applying (12) to $J_{\delta}^{\prime}=U \cap J_{u} \cap\left\{\left|c_{\eta}\left(u^{+}, u^{-}\right) v_{x}\right|>\delta\right\} \subset J_{u}$ and noting from (10) that $\mathscr{H}^{1}\left(J_{\delta}^{\prime}\right) \leq$ $\delta^{-1}\left|\mu_{\eta}\right|(U)<\infty$, we deduce, thanks to (11),

$$
\int_{J_{\delta}^{\prime} \cap U}\left|c_{\eta}\left(u^{+}, u^{-}\right)\right|\left|v_{x}\right| \mathrm{d} \mathscr{H}^{1} \leq C_{0} \limsup _{\epsilon \rightarrow 0} \sup _{|h|<\epsilon} \frac{1}{|h|} \iint_{U} \Delta(u(t, x), u(t, x+h)) \mathrm{d} x \mathrm{~d} t .
$$

Letting $\delta \rightarrow 0$, the left-hand side converges to (10), and this proves the a priori estimate (6).

To conclude the proof of Theorem 2 it remains to justify (12). The elementary building block is that (12) is valid if u is a pure jump: for constant values $u^{ \pm} \in \mathbb{R}$ and a unit vector v, let $\psi^{u^{ \pm}, v}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ denote the pure jump from u^{-}to u^{+}across a line with unit normal v, namely

$$
\psi^{u^{ \pm}, v}(t, x)=u^{-} \mathbf{1}_{(t, x) \cdot v<0}+u^{+} \mathbf{1}_{(t, x) \cdot v>0}
$$

then for any $r \geq|h|>0$ we claim

$$
\begin{equation*}
\int_{J_{\psi^{u^{ \pm}, v} \cap} \cap B_{r}} \Delta\left(u^{+}, u^{-}\right)\left|v_{x}\right| \mathrm{d} \not \mathscr{C}^{1} \leq \frac{2}{|h|} \iint_{B_{r}} \Delta\left(\psi^{u^{ \pm}, v}(t, x+h), \psi^{u^{ \pm}, v}(t, x)\right) \mathrm{d} x \mathrm{~d} t . \tag{13}
\end{equation*}
$$

To check (13), simply use that the left-hand side is equal to $2 r\left|v_{x}\right| \Delta\left(u^{+}, u^{-}\right)$, that $\Delta \geq 0$ and that the integrand in the right-hand side is equal to $\Delta\left(u^{+}, u^{-}\right)$in a region of two-dimensional measure $\geq r\left|h v_{x}\right|$ (the intersection of B_{r} with a straight band of width $\left|h v_{x}\right|$).

We deduce (12) from (13) via a covering argument similar to [9, Lemma 32], making use of the rectifiability of J^{\prime}, the trace properties of u and the Lipschitz quality of Δ. We provide the details for the reader's convenience.

Let $\delta \in(0,1)$. There exists $\epsilon_{0}>0$ and a subset $\widetilde{J} \subset J^{\prime}$ with $\mathscr{H}^{1}\left(J^{\prime} \cap U \backslash \widetilde{J}\right)<\delta$ and $\widetilde{J}+B_{\epsilon_{0}} \subset U$, such that for any $\left(t_{0}, x_{0}\right) \in \widetilde{J}$ and $0<r<\epsilon_{0}$, denoting $u_{0}^{ \pm}=u^{ \pm}\left(t_{0}, x_{0}\right)$ and $v_{0}=v\left(t_{0}, x_{0}\right)$, we have

$$
\begin{align*}
& f_{B_{r}\left(t_{0}, x_{0}\right) \cap J^{\prime}}\left(\left|u^{ \pm}-u_{0}^{ \pm}\right|+\left|v-v_{0}\right|\right) \mathrm{d} \not \mathscr{C}^{1}<\delta \\
& \qquad \mathscr{H}^{1}\left(B_{r}\left(t_{0}, x_{0}\right) \cap J^{\prime}\right)-2 r \mid<\delta r \\
& \text { and } \quad \frac{1}{\pi r^{2}} \iint_{B_{r}\left(t_{0}, x_{0}\right)}\left|u-\psi_{t_{0}, x_{0}}^{u_{0}^{ \pm}, v_{0}}\right| \mathrm{d} x \mathrm{~d} t<\delta \tag{14}
\end{align*}
$$

where $\psi_{t_{0}, x_{0}}^{u_{0}^{ \pm}, v_{0}}(t, x)=\psi^{u_{0}^{ \pm}, v_{0}}\left(t-t_{0}, x-x_{0}\right)$ is the pure jump centered at $\left(t_{0}, x_{0}\right)$. Let $\epsilon \in\left(0, \epsilon_{0} / 2\right)$. By Besicovitch's covering theorem [1, Theorem 2.18] there exists an absolute constant $Q \in \mathbb{N}$ and families $\mathscr{B}_{1}, \mathscr{B}_{2}, \ldots, \mathscr{B}_{Q}$ of pairwise disjoint balls in the set $\left\{B_{\epsilon}(t, x):(t, x) \in \widetilde{J}\right\}$ such that

$$
\widetilde{J} \subset \bigcup_{k=1}^{Q} \bigcup_{B \in \mathscr{B}_{k}} B .
$$

We fix $k \in\{1, \ldots, Q\}$ and denote $\mathscr{B}_{k}=\left\{B_{\epsilon}\left(t_{j}, x_{j}\right)\right\}_{j=1, \ldots, p}$ for some $\left(t_{j}, x_{j}\right) \in \widetilde{J}$. We also write $u_{j}^{ \pm}=u^{ \pm}\left(t_{j}, x_{j}\right)$ and $v_{j}=v\left(t_{j}, x_{j}\right)$.

Note that Δ is Lipschitz on $I \times I$, with Lipschitz constant $L \lesssim|I| a^{\prime \prime}(I)$ thanks to its definition (5). Using the first two properties (14) of \widetilde{J}, we find

$$
\begin{aligned}
\int_{J^{\prime} \cap B_{\epsilon}\left(t_{j}, x_{j}\right)} \Delta\left(u^{+}, u^{-}\right)\left|v_{x}\right| \mathrm{d} \not \mathscr{C}^{1} \leq & L \int_{J^{\prime} \cap B_{\epsilon}\left(t_{j}, x_{j}\right)}\left(\left|u^{+}-u_{j}^{+}\right|+\left|u^{-}-u_{j}^{-}\right|\right)\left|v_{x}\right| \mathrm{d} \not \mathscr{C}^{1} \\
& +\Delta\left(u_{j}^{+}, u_{j}^{-}\right) \int_{J^{\prime} \cap B_{\epsilon}\left(t_{j}, x_{j}\right)}\left|v_{x}-v_{j, x}\right| \mathrm{d} \mathscr{H}^{1} \\
& +\Delta\left(u_{j}^{+}, u_{j}^{-}\right)\left|v_{j, x}\right| \mathscr{H}^{1}\left(J^{\prime} \cap B_{\epsilon}\left(t_{j}, x_{j}\right)\right) \\
\leq & 4 \epsilon \Delta\left(u_{j}^{+}, u_{j}^{-}\right)\left|v_{j, x}\right|+C \delta \epsilon
\end{aligned}
$$

for some constant $C=C\left(|I|, a^{\prime \prime}(I)\right)$ depending on $|I|$ and $a^{\prime \prime}(I)$. Applying the elementary estimate (13) for pure jumps with $r=h=\epsilon$, we deduce

$$
\int_{J^{\prime} \cap B_{\epsilon}\left(t_{j}, x_{j}\right)} \Delta\left(u^{+}, u^{-}\right)\left|v_{x}\right| \mathrm{d} \mathscr{H}^{1} \leq \frac{4}{\epsilon} \iint_{B_{\epsilon}\left(t_{j}, x_{j}\right)} \Delta\left(\psi_{t_{j}, x_{j}}^{u_{j}^{ \pm}, v_{j}}(t, x+\epsilon), \psi_{t_{j}, x_{j}}^{u_{j}^{ \pm}, v_{j}}(t, x)\right) \mathrm{d} x \mathrm{~d} t+C \delta \epsilon
$$

And using the last property (14) of \widetilde{J} we infer

$$
\int_{J^{\prime} \cap B_{\epsilon}\left(t_{j}, x_{j}\right)} \Delta\left(u^{+}, u^{-}\right)\left|v_{x}\right| \mathrm{d} \mathscr{C}^{1} \leq \frac{4}{\epsilon} \iint_{B_{\epsilon}\left(t_{j}, x_{j}\right)} \Delta(u(t, x+\epsilon), u(t, x)) \mathrm{d} x \mathrm{~d} t+(20 \pi L+C) \delta \epsilon
$$

Summing over $j=1, \ldots, p$ and over the families $\mathscr{B}_{1}, \ldots, \mathscr{B}_{Q}$ we obtain

$$
\int_{\tilde{J}} \Delta\left(u^{+}, u^{-}\right)\left|v_{x}\right| \mathrm{d} \not \mathscr{C}^{1} \leq 4 Q \frac{1}{\epsilon} \iint_{U} \Delta(u(t, x+\epsilon), u(t, x)) \mathrm{d} x \mathrm{~d} t+Q(20 \pi L+C) \delta p \epsilon .
$$

Noting from the properties (14) of \widetilde{J} that

$$
\mathscr{H}^{1}\left(J^{\prime} \cap U\right) \geq \sum_{j=1}^{p} \mathscr{H}^{1}\left(B_{\epsilon}\left(t_{j}, x_{j}\right) \cap J_{u}\right) \geq p \epsilon,
$$

this implies

$$
\int_{\tilde{I}} \Delta\left(u^{+}, u^{-}\right)\left|v_{x}\right| \mathrm{d} \mathscr{H}^{1} \leq 4 Q \frac{1}{\epsilon} \iint_{U} \Delta(u(t, x+\epsilon), u(t, x)) \mathrm{d} x \mathrm{~d} t+Q(20 \pi L+C) \delta \mathscr{H}^{1}\left(J^{\prime} \cap U\right) .
$$

Taking the limits $\epsilon \rightarrow 0$ and then $\delta \rightarrow 0$, we obtain (12).

3. Proof of Theorem 3

We fix an entropy $\eta \in C^{2}(\mathbb{R})$ and an entropy flux q with $q^{\prime}=\eta^{\prime} a^{\prime}$. The start of the proof is as in [4, Theorem 2], we recall the argument for the reader's convenience.

We denote by a subscript ϵ convolution at scale ϵ in the x variable:

$$
u_{\epsilon}(t, x)=\int u(t, z) \rho_{\epsilon}(x-z) \mathrm{d} z,
$$

where $\rho_{\epsilon}(x)=\epsilon^{-1} \rho(x / \epsilon)$ for some smooth kernel $\rho \geq 0$ with $\operatorname{supp} \rho \subset[-1,1]$ and $\int \rho=1$. We let

$$
\mu_{\eta}^{\epsilon}=\left[\eta\left(u_{\epsilon}\right)\right]_{t}+\left[q\left(u_{\epsilon}\right)\right]_{x},
$$

and prove Theorem 3 by appropriately estimating μ_{η}^{ϵ}. The regularized function u_{ϵ} is pointwise differentiable with respect to t and satisfies

$$
u_{\varepsilon, t}=-[a(u)]_{\epsilon, x},
$$

so we have

$$
\begin{aligned}
\mu_{\eta}^{\epsilon} & =\eta^{\prime}\left(u_{\epsilon}\right) u_{\epsilon, t}+q^{\prime}\left(u_{\epsilon}\right) u_{\epsilon, x} \\
& =-\eta^{\prime}\left(u_{\epsilon}\right)[a(u)]_{\epsilon, x}+\eta^{\prime}\left(u_{\epsilon}\right)\left[a\left(u_{\epsilon}\right)\right]_{x} \\
& =\eta^{\prime}\left(u_{\epsilon}\right)\left[a\left(u_{\epsilon}\right)-[a(u)]_{\epsilon}\right]_{x} \\
& =\left[\eta^{\prime}\left(u_{\epsilon}\right)\left(a\left(u_{\epsilon}\right)-[a(u)]_{\epsilon}\right)\right]_{x}-\eta^{\prime \prime}\left(u_{\epsilon}\right) u_{\epsilon, x}\left(a\left(u_{\epsilon}\right)-[a(u)]_{\epsilon}\right) .
\end{aligned}
$$

Testing this with a function $\psi \in C_{c}^{\infty}((0, T) \times \mathbb{R})$ we obtain

$$
\begin{align*}
\left\langle\mu_{\eta}^{\epsilon}, \psi\right\rangle= & -\iint \eta^{\prime}\left(u_{\epsilon}\right)\left(a\left(u_{\epsilon}\right)-[a(u)]_{\epsilon}\right) \psi_{x} \mathrm{~d} x \mathrm{~d} t \\
& +\iint \eta^{\prime \prime}\left(u_{\epsilon}\right) u_{\epsilon, x}\left([a(u)]_{\epsilon}-a\left(u_{\epsilon}\right)\right) \psi \mathrm{d} x \mathrm{~d} t . \tag{15}
\end{align*}
$$

We have the convergences $u_{\epsilon} \rightarrow u$ and $[a(u)]_{\epsilon} \rightarrow a(u)$ a.e. and u_{ϵ} is uniformly bounded, so by dominated convergence the left-hand side of (15) converges to $\left\langle\mu_{\eta}, \psi\right\rangle$, and the first integral in the right-hand side of (15) converges to 0 . Hence we deduce

$$
\begin{equation*}
\left\langle\mu_{\eta}, \psi\right\rangle \leq\|\psi\|_{\infty} \sup _{I}\left|\eta^{\prime \prime}\right| \cdot \limsup \sin _{\epsilon \rightarrow 0} \iint_{\operatorname{supp} \psi}\left|u_{\epsilon, x}\right|\left([a(u)]_{\epsilon}-a\left(u_{\epsilon}\right)\right) \mathrm{d} x \mathrm{~d} t . \tag{16}
\end{equation*}
$$

Here recall that $I=[\inf u, \sup u]$, and note that

$$
\begin{equation*}
[a(u)]_{\epsilon}-a\left(u_{\epsilon}\right) \geq 0, \tag{17}
\end{equation*}
$$

by convexity of a thanks to Jensen's inequality. Therefore it all boils down to estimating the righthand side of (16), and this is where our proof needs to depart from [4].

We start by writing

$$
\begin{aligned}
& {[a(u)]_{\epsilon}(t, x)-a(u(t, x))=\int(a(u(t, z))-a(u(t, x))) \rho_{\epsilon}(x-z) \mathrm{d} z} \\
& \quad=\int\left(\int_{u(t, x)}^{u(t, z)} a^{\prime}(\tau) \mathrm{d} \tau\right) \rho_{\epsilon}(x-z) \mathrm{d} z \\
& \quad=\int\left(\int_{u(t, x)}^{u(t, z)}\left(a^{\prime}(\tau)-a^{\prime}(u(t, x))\right) \mathrm{d} \tau\right) \rho_{\epsilon}(x-z) \mathrm{d} z+a^{\prime}(u(t, x)) \int(u(t, z)-u(t, x)) \rho_{\epsilon}(x-z) \mathrm{d} z \\
& \quad=\int\left(\int_{u(t, x)}^{u(t, z)}\left(a^{\prime}(\tau)-a^{\prime}(u(t, x))\right) \mathrm{d} \tau\right) \rho_{\epsilon}(x-z) \mathrm{d} z+a^{\prime}(u(t, x))\left(u_{\epsilon}(t, x)-u(t, x)\right),
\end{aligned}
$$

hence

$$
\begin{align*}
{[a(u)]_{\epsilon}(t, x)-a\left(u_{\epsilon}(t, x)\right)=} & {[a(u)]_{\epsilon}(t, x)-a(u(t, x))+a(u(t, x))-a\left(u_{\epsilon}(t, x)\right) } \\
=\int & \left(\int_{u(t, x)}^{u(t, z)}\left(a^{\prime}(\tau)-a^{\prime}(u(t, x))\right) \mathrm{d} \tau\right) \rho_{\epsilon}(x-z) \mathrm{d} z \\
& +a(u(t, x))-a\left(u_{\epsilon}(t, x)\right)+a^{\prime}(u(t, x))\left(u_{\epsilon}(t, x)-u(t, x)\right) \tag{18}
\end{align*}
$$

By convexity of a, we have

$$
a(u(t, x))-a\left(u_{\epsilon}(t, x)\right)+a^{\prime}(u(t, x))\left(u_{\epsilon}(t, x)-u(t, x)\right) \leq 0
$$

and applying this to (18) we deduce

$$
\begin{equation*}
[a(u)]_{\epsilon}(t, x)-a\left(u_{\epsilon}(t, x)\right) \leq \int\left(\int_{u(t, x)}^{u(t, z)}\left(a^{\prime}(\tau)-a^{\prime}(u(t, x))\right) \mathrm{d} \tau\right) \rho_{\epsilon}(x-z) \mathrm{d} z \tag{19}
\end{equation*}
$$

To estimate this further, we define, for all $v \in \mathbb{R}$ and $r \geq 0$,

$$
\mathscr{G}_{\nu}(r)=\int_{\nu-r}^{v+r} \int_{v-r}^{\nu+r}\left|a^{\prime}(\sigma)-a^{\prime}(\tau)\right| \mathrm{d} \sigma \mathrm{~d} \tau
$$

which satisfies

$$
\begin{equation*}
\mathscr{G}_{\nu}^{\prime}(r)=2 \int_{\nu-r}^{\nu+r}\left(\left|a^{\prime}(\nu+r)-a^{\prime}(\tau)\right|+\left|a^{\prime}(\nu-r)-a^{\prime}(\tau)\right|\right) \mathrm{d} \tau \tag{20}
\end{equation*}
$$

As a^{\prime} is strictly increasing, so is $\mathscr{G}_{\nu}^{\prime}$, and thus \mathscr{G}_{ν} is strictly convex. Further, denoting by $g(x, z, t)=$ $|u(t, z)-u(t, x)|$, we have

$$
\int_{u(t, x)}^{u(t, z)}\left|a^{\prime}(\tau)-a^{\prime}(u(t, x))\right| \mathrm{d} \tau \leq \frac{1}{2} \mathscr{G}_{u(t, x)}^{\prime}(g(x, z, t)),
$$

and thus from (19), and recalling also (17), we infer

$$
0 \leq[a(u)]_{\epsilon}(t, x)-a\left(u_{\epsilon}((t, x)) \leq \frac{1}{2} \int_{B_{\epsilon}} \mathscr{G}_{u(t, x)}^{\prime}(g(x, z, t)) \rho_{\epsilon}(x-z) \mathrm{d} z\right.
$$

Moreover we have

$$
\left|u_{\epsilon, x}(t, x)\right| \lesssim \epsilon^{-1} f_{[x-\epsilon, x+\epsilon]}|u(t, z)-u(t, x)| \mathrm{d} z=\epsilon^{-1} f_{[x-\epsilon, x+\epsilon]} g(x, z, t) \mathrm{d} z
$$

Multiplying the last two estimates, we obtain

$$
\begin{align*}
\epsilon\left([a(u)]_{\epsilon}\right. & \left.(t, x)-a\left(u_{\epsilon}(t, x)\right)\right)\left|u_{\epsilon, x}(t, x)\right| \\
& \lesssim f_{[x-\epsilon, x+\epsilon]} f_{[x-\epsilon, x+\epsilon]} \mathscr{G}_{u(t, x)}^{\prime}(g(x, z, t)) g(x, y, t) \mathrm{d} y \mathrm{~d} z \\
& \leq f_{[x-\epsilon, x+\epsilon]} \mathscr{H}_{u(t, x)}\left(\mathscr{G}_{u(t, x)}^{\prime}(g(x, z, t))\right) \mathrm{d} z+f_{[x-\epsilon, x+\epsilon]} \mathscr{G}_{u(t, x)}(g(x, y, t)) \mathrm{d} y \tag{21}
\end{align*}
$$

where $\mathscr{H}_{\nu}(p)=\sup _{r \in \mathbb{R}}\left\{p r-\mathscr{G}_{\nu}(r)\right\}$ is the Legendre transform of \mathscr{G}_{ν}. Using $\mathscr{H}_{\nu}(p)=p r^{*}-\mathscr{G}_{\nu}\left(r^{*}\right)$ where r^{*} is characterized by $\mathscr{G}_{\nu}^{\prime}\left(r^{*}\right)=p$, we find that

$$
\begin{aligned}
\mathscr{H}_{v}\left(\mathscr{G}_{v}^{\prime}(r)\right) & =r \mathscr{G}_{v}^{\prime}(r)-\mathscr{G}_{v}(r) \\
& \leq r \mathscr{G}_{v}^{\prime}(r) \leq 8 r^{2} a^{\prime \prime}([v-r, v+r]) .
\end{aligned}
$$

The last inequality follows from writing $a^{\prime}(\nu+r)-a^{\prime}(\tau)=a^{\prime \prime}([\tau, v+r])$ and $a^{\prime}(\tau)-a^{\prime}(\nu-r)=$ $a^{\prime \prime}([\nu-r, \tau])$ in the explicit expression (20) of \mathscr{G}_{v}^{\prime}, and applying Fubini's theorem. Similarly we have

$$
\mathscr{G}_{\nu}(r) \leq 4 r^{2} a^{\prime \prime}([\nu-r, v+r]),
$$

and plugging these bounds for $\mathscr{H}_{\nu}\left(\mathscr{G}_{v}^{\prime}(r)\right)$ and $\mathscr{G}_{\nu}(r)$ into (21) gives

$$
\begin{aligned}
\left([a(u)]_{\epsilon}(t, x)-a\left(u_{\epsilon}(t, x)\right)\right) & \left|u_{\epsilon, x}(t, x)\right| \\
& \lesssim \frac{1}{\epsilon} f_{[x-\epsilon, x+\epsilon]} g(x, z, t)^{2} a^{\prime \prime}([u(t, x)-g(x, z, t), u(t, x)+g(x, z, t)]) \mathrm{d} z,
\end{aligned}
$$

where we recall that $g(x, z, t)=|u(t, z)-u(t, x)|$. This implies

$$
\begin{aligned}
\left([a(u)]_{\epsilon}(t, x)-a\left(u_{\epsilon}(t, x)\right)\right)\left|u_{\epsilon, x}(t, x)\right| & \lesssim \frac{1}{\epsilon} f_{[x-\epsilon, x+\epsilon]} \widehat{\Delta}(u(t, x), u(t, z)) \mathrm{d} z \\
& =\frac{1}{\epsilon} f_{[-\epsilon, \epsilon]} \widehat{\Delta}(u(t, x), u(t, x+h)) \mathrm{d} h,
\end{aligned}
$$

where

$$
\begin{equation*}
\widehat{\Delta}\left(u_{1}, u_{2}\right)=\left|u_{1}-u_{2}\right|^{2} a^{\prime \prime}\left(\left[\min \left(u_{1}, u_{2}\right)-\left|u_{1}-u_{2}\right|, \max \left(u_{1}, u_{2}\right)+\left|u_{1}-u_{2}\right|\right]\right) . \tag{22}
\end{equation*}
$$

Integrating, we deduce

$$
\iint_{\operatorname{supp} \psi}\left|u_{\epsilon, x}\right|\left([a(u)]_{\epsilon}-a\left(u_{\epsilon}\right)\right) \mathrm{d} x \mathrm{~d} t \lesssim \frac{1}{\epsilon} \sup _{|h|<\epsilon} \iint_{\text {supp } \psi} \widehat{\Delta}(u(t, x), u(t, x+h)) \mathrm{d} x \mathrm{~d} t .
$$

Plugging this estimate into the bound (16) for $\left\langle\mu_{\eta}, \psi\right\rangle$, we find

$$
\left\langle\mu_{\eta}, \psi\right\rangle \lesssim\|\psi\|_{\infty} \sup _{I}\left|\eta^{\prime \prime}\right| \cdot \limsup _{\epsilon \rightarrow 0} \sup _{|h|<\epsilon} \frac{1}{|h|} \iint_{\operatorname{supp} \psi} \widehat{\Delta}(u(t, x), u(t, x+h)) \mathrm{d} x \mathrm{~d} t .
$$

This is valid for any test function ψ and implies in particular that μ_{η} is a locally finite Radon measure if the lim sup in the right-hand side is finite. It remains to show that, under the doubling assumption on $a^{\prime \prime}$, this limsup is controlled by (7), thus concluding the proof of Theorem 3.

Specifically, we claim

$$
\begin{equation*}
\Delta\left(u_{1}, u_{2}\right) \geq C \widehat{\Delta}\left(u_{1}, u_{2}\right) \quad \forall u_{1}, u_{2} \in I, \tag{23}
\end{equation*}
$$

for some constant C depending on the doubling constant of $a^{\prime \prime}$. To prove (23) we may assume $u_{1}<u_{2}$. Letting $u_{0}=\left(u_{1}+u_{2}\right) / 2$ and $r=\left|u_{1}-u_{2}\right|$, and recalling the explicit expression (5) of Δ, we have

$$
\Delta\left(u_{1}, u_{2}\right)=\int_{\left[u_{1}, u_{2}\right]}\left(s-u_{1}\right)\left(u_{2}-s\right) a^{\prime \prime}(\mathrm{d} s) \geq \frac{r^{2}}{9} \int_{\left[u_{0}-r / 6, u_{0}+r / 6\right]} a^{\prime \prime}(\mathrm{d} s) .
$$

Thanks to the doubling property of $a^{\prime \prime}$ we deduce the lower bound

$$
\Delta\left(u_{1}, u_{2}\right) \geq C r^{2} a^{\prime \prime}\left(\left[u_{0}-2 r, u_{0}+2 r\right]\right),
$$

which implies (23) thanks to the explicit expression (22) of $\widehat{\Delta}$, since $\left[u_{0}-2 r, u_{0}+2 r\right]$ contains $\left[\min \left(u_{1}, u_{2}\right)-r, \max \left(u_{1}, u_{2}\right)+r\right]$.

References

[1] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Clarendon Press, 2000.
[2] C. Bardos, P. Gwiazda, A. Świerczewska-Gwiazda, E. S. Titi, E. Wiedemann, "On the extension of Onsager's conjecture for general conservation laws", J. Nonlinear Sci. 29 (2019), no. 2, p. 501-510.
[3] G. Bellettini, L. Bertini, M. Mariani, M. Novaga, "Г-entropy cost for scalar conservation laws", Arch. Ration. Mech. Anal. 195 (2010), no. 1, p. 261-309.
[4] C. De Lellis, R. Ignat, "A regularizing property of the $2 D$-eikonal equation", Commun. Partial Differ. Equations 40 (2015), no. 8, p. 1543-1557.
[5] C. De Lellis, M. Westdickenberg, "On the optimality of velocity averaging lemmas", Ann. Inst. Henri Poincaré, Anal. Non Linéaire 20 (2003), no. 6, p. 1075-1085.
[6] F. Ghiraldin, X. Lamy, "Optimal Besov differentiability for entropy solutions of the eikonal equation", Commun. Pure Appl. Math. 73 (2020), no. 2, p. 317-349.
[7] F. Golse, B. Perthame, "Optimal regularizing effect for scalar conservation laws", Rev. Mat. Iberoam. 29 (2013), no. 4, p. 1477-1504.
[8] S. N. Kružkov, "First order quasilinear equations with several independent variables", Mat. Sb., N. Ser. 81 (123) (1970), p. 228-255.
[9] X. Lamy, A. Lorent, G. Peng, "On a generalized Aviles-Giga functional: compactness, zero-energy states, regularity estimates and energy bounds", Commun. Partial Differ. Equations 47 (2022), no. 11, p. 2270-2309.
[10] A. Lorent, G. Peng, "Factorization for entropy production of the Eikonal equation and regularity", https://arxiv.org/ abs/2104.01467, 2021.
[11] E. Marconi, "On the structure of weak solutions to scalar conservation laws with finite entropy production", Calc. Var. Partial Differ. Equ. 61 (2022), no. 1, p. 30.
[12] _, "The rectifiability of the entropy defect measure for Burgers equation", J. Funct. Anal. 283 (2022), no. 6, p. 109568.
[13] M. Mariani, "Large deviations principles for stochastic scalar conservation laws", Probab. Theory Relat. Fields 147 (2010), no. 3-4, p. 607-648.
[14] S. R. S. Varadhan, "Large deviations for the asymmetric simple exclusion process", in Stochastic analysis on large scale interacting systems, Advanced Studies in Pure Mathematics, vol. 39, Mathematical Society of Japan, 2004, p. 1-27.

[^0]: * Corresponding author.

