
Comptes Rendus

Mathématique

Gang Yu

A Note on Barker Sequences and the L1-norm of Littlewood Polynomials

Volume 361 (2023), p. 609-616

Published online: 2 March 2023

https://doi.org/10.5802/crmath.428

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.428
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2023, Vol. 361, p. 609-616
https://doi.org/10.5802/crmath.428

Number theory / Théorie des nombres

A Note on Barker Sequences and the L1-norm

of Littlewood Polynomials

Gang Yua

a Department of Mathematical Sciences, Kent State University, East Summit Street,
Kent, OH 45458, USA

E-mail: gyu@kent.edu

Abstract. In this note, we investigate the L1-norms of Barker polynomials and, more generally, Littlewood
polynomials over the unit circle, and give improvements to some existing results.

Mathematical subject classification (2010). 11B83, 11C08, 30C10.

Manuscript received 17 August 2022, revised 21 September 2022, accepted 22 September 2022.

1. Introduction

For a sequence of complex numbers a0 , a1 , . . . , an−1 , define its aperiodic autocorrelation sequence
{c j } by

c j =
n−1− j∑

l=0
al+ j al

for 0 ≤ j < n, and c− j := c j .
In 1953, Barker [2] asked to determine the ±1 sequences {ak } satisfying c j ∈ {0,−1} for all j ̸= 0.

This condition was later relaxed in the followup researches, and now we call a0, a1, . . . , an−1 ∈ {±1}
a generalized Barker sequence (or simply a Barker sequence) of length n if c j ∈ {0,±1} for all j ̸= 0.

Ignoring the trivial case n = 1, one can assume a0 = a1 = 1 in a Barker sequence because
negating every or every other term of a0, a1, . . . , an−1 ∈ {±1} does not change the value of |c j |.
Under this normalization, the Barker sequences of length ≤ 13 are given in the following table. In
fact, these are the only 8 Barker sequences that have been found so far.

n = 2 ++ n = 3 ++−
n = 4 +++− n = 4 ++−+
n = 5 +++−+ n = 7 +++−−+−
n = 11 +++−−−+−−+− n = 13 +++++−−++−+−+

(1)

In 1961, Turyn and Storer [16] proved that if the length n of a Barker sequence is odd, then
n ≤ 13. (See also [14] for an alternative proof.) Thus all odd length Barker sequences are included
in table (1). The even length case, on the other hand, is significantly harder. So far, with the efforts
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of many researchers, a lot of properties of Barker sequences of even length have been proved (cf.
Borwein and Mossinghoff [3] for more references). Moreover, some computational results have
been carried out since the 1990’s (c.f. [4, 6, 8–10, 13]). In particular, it is shown in [9] that there is
no Barker sequence of length 13 < n ≤ 4×1033.

Although the even case is unsettled, it is generally believed that there are no more Barker
sequences than those given in Table (1). This is the so-called strong Barker sequence conjecture. A
weaker form of this conjecture, the weak Barker sequence conjecture, asserts that there are finitely
many Barker sequences.

Barker sequences are closely related to the L1-norm of Littlewood polynomials. A degree n −1
Littlewood polynomial is a polynomial P (x) = s0 + s1x + s2x2 +·· ·+ sn−1xn−1 with s j = ±1 for all
j ≤ n −1. Here the Lp -norm of a polynomial refers to its Lp norm on the unit circle. In this note,
just for convenience, we abuse the terminology and call the trigonometric polynomial

f (α) = f
Sn

(α) = P (e2πiα) =
n−1∑
j=0

s j e( jα), where e(t ) = exp(2πi t ), (2)

the polynomial corresponding to the complex sequence Sn = {s0, s1, . . . , sn−1} and, in particular,
a Barker Polynomial if Sn is a Barker sequence. The Lp -norm of f is then accordingly defined by

∥ f ∥p :=
(∫ 1

0
| f (α)|p dα

) 1
p

.

There are numerous questions and conjectures concerning the Lp -norms of Littlewood poly-
nomials. In particular, a conjecture attributed to Newman is as follows.

Conjecture. There is a constant c < 1 such that ∥ f ∥1 ≤ c
p

n for every Littlewood polynomial f of
degree n −1.

This conjecture has a lot of implications. For example, it yields a conjecture of Erdös on the
maximum values of Littlewood polynomials, and the Turyn–Golay conjecture on the bounded-
ness of the merit factor of any binary sequence. It is also closely related to Littlewood’s flatness
conjecture (which was solved by Körner [7] for unimodular polynomials and, most recently, by
Balister et al. [1] for Littlewood polynomials). Although Newman’s conjecture is generally believed
to be true, it seems to be very difficult to prove at the moment.

The Barker sequence conjectures are related to some much weaker forms of Newman’s con-
jecture. According to Turyn [15], if f is a Barker polynomial of degree n −1, then ∥ f ∥1 >p

n −1.
Thus even an upper bound as weak as ∥ f ∥1 ≲

p
n −1.1 for Littlewood polynomial of degree n −1

would at least settle the weak Barker sequence conjecture. It is unfortunate that the hitherto
best upper bound for ∥ f ∥1 is not sufficient for this purpose. For any degree n − 1 Littlewood
polynomial f , Newman [11] proved that ∥ f ∥2

1 < n − 0.03; Habsieger [5] improved the bound to
∥ f ∥2

1 < n − (3−2
p

2)+0.18n−1 and ∥ f ∥2
1 < n −0.175+o(1). Unaware of Habsieger’s result1, Bor-

wein and Mossinghoff [3] improved Newman’s bound to ∥ f ∥2
1 < n −0.09.

In this note, we shall first improve Turyn’s bound for L1-norm of Barker polynomials.

Theorem 1. Suppose n > 13 is an integer, and f (α) is a Barker polynomial of degree n −1. Then

n − 1

2

(
1+ 1

(
p

2+1)2

)
< ∥ f ∥2

1 ≤ n − 1

4
+ 1

64n
. (3)

1At the meeting of New Horizons in Additive Combinatorics(CRM, Montreal, October 2014), unaware of [5], the author
reported a bound that is essentially the same as the first result in [5]. He thanks Professor Habsieger for bringing [5] to his
attention.
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Note that 1
2

(
1+ 1

(
p

2+1)2

)= 0.5857. . . . Moreover, we have

∥ f ∥2
1 > n −λ(θ)+O(n−1) (4)

where

θ = sup
t>0

sin2 t

t
= 0.72461135. . .

and

λ(θ) = 1

2

(
1

(
p

1+θ+1)2
+ 1

(
p

1−θ+1)2

)
= 0.3084981. . . .

Our proof of Theorem 1 is quite simple and elementary. If f is a Barker polynomial of odd
degree n−1, then c j = 0 for all even j ̸= 0. This implies that | f (α)|2+| f (α+1/2)|2 = 2n for any real
α, and thus the sizes of | f (α)| and | f (α+1/2)| are mutually constrained. When bounding integrals
involving | f (α)|, we can gain some improvement by pairing up | f (α)| and | f (α+1/2)|. The same
idea applies to bounding the L1-norm of Littlewood polynomials of odd degrees.

Theorem 2. Suppose n is an even positive integer, and f is a Littlewood polynomial of degree n−1.
Then

∥ f ∥2
1 ≤ n − 1

4(1+γ)
= n −0.21588. . . , (5)

where γ= 0.1580. . . is the only positive root of the polynomial 64x3 +112x2 +25x −7.

If a degree n − 1 Littlewood polynomial had L1-norm close enough to
p

n, then the sum of
|c j |’s (including c0) would tend to be close to 2n. In particular, when n ≡ 3 (mod 4), we would
have c j =−1 for most even −n < j < n. This observation enables us to better bound ∥ f ∥∞ in such
special case. Hence, while the approach used in Theorems 1 and 2 does not apply to Littlewood
polynomials of even degrees, we are able to improve the existing upper bound for the L1-norm in
the case n ≡ 3 (mod 4).

Theorem 3. Suppose n ≡ 3 (mod 4) is a positive integer. Then for any Littlewood polynomial f of
degree n −1, we have

∥ f ∥2
1 ≤ n −λ+o(1) (6)

where

λ= 1(√
2+2

√
4−2

p
2−2

p
2+1

)2
= 0.2151. . . .

We can make the bound in Theorem 3 uniform in n, but we shall not do so just to avoid
complicated calculations. Our primary purpose is to present our approach in this particular case.

2. Some Lemmas and Proof of Theorem 1

Before proving Theorem 1, we record two results about Barker sequences.

Lemma 4. Suppose a0, a1, . . . , an−1 is a {±1} sequence, and let {ck } denote the aperiodic autocorre-
lations. Then for every 1 ≤ j ≤ n −1,

c j + cn− j ≡ n (mod 4). (7)

If in addition n is even and {a j } is a Barker sequence, then n = 4m2 for some integer m.

Proof. This is from [15, Theorem 2.1]. One can also refer to [3, Theorem 2.1]. □
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Lemma 5. Suppose f is a Barker polynomial of degree n −1. Then∣∣| f (α)|2 −n
∣∣

n
≤ θ+O(n−1), (8)

where

θ = sup
t>0

sin2 t

t
= 0.7246113537. . . .

Proof. This essentially belongs to Saffari [12], with an oversight corrected in [3, Theorem 3.1]. □

Now we prove Theorem 1. Suppose n is even, and f is a Barker polynomial of degree n−1. First
we note that c j = 0 for all non-zero even j . Thus, for any α ∈R,

| f (α)|2 +| f (α+1/2)|2 = 2c0 = 2n. (9)

From ∫ 1

0
(| f (α)|−p

n)2dα= 2n −2
p

n∥ f ∥1,

we get

∥ f ∥1 =
p

n − 1

2
p

n

∫ 1

0
(| f (α)|−p

n)2dα.

By the periodicity of f , we then have

∥ f ∥1 =
p

n − 1

4
p

n

∫ 1

0

[
(| f (α)|−p

n)2 + (| f (α+1/2)|−p
n)2]dα

=p
n − 1

4
p

n

∫ 1

0
(| f (α)|2 −n)2 [

(| f (α)|+p
n)−2 + (| f (α+1/2)|+p

n)−2]dα (10)

where the last step follows from (9). Writing x = x(α) = | f (α)|2
n , we get

(| f (α)|+p
n)−2 + (| f (α+1/2)|+p

n)−2 = ((
p

x +1)−2 + (
p

2−x +1)−2)

n
= g (x(α))

n
, say.

From ∫ 1

0

(| f (α)|2 −n
)2dα= n

and (10), then we have
p

n − max{g (x)}

4
p

n
≤ ∥ f ∥1 ≤

p
n − min{g (x)}

4
p

n
. (11)

On [0,2], g (x) is convex, symmetric about x = 1, and with only one critical number x = 1. Hence,
trivially, we have

max{g (x(α))} ≤ g (0), and min{g (x(α))} ≥ g (1).

Taking this into (11) and squaring all sides, we get (3).
From Lemma 5, we have 1−θ+O(n−1) ≤ x ≤ 1+θ+O(n−1). By applying this to (11), we have

the lower bound (4).

3. Proof of Theorem 2

Let

O := ∑
j odd

|c j |, and E := ∑
j even

j ̸=0

|c j |.
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When n is even, c j has the same parity as j . Thus O ≥ n. First, we have

∥ f ∥2
1 = ∥ f ∥2

2 −
∫ 1

0
(| f (α)|−∥ f ∥1)2dα

= n −
∫ 1

0

(| f (α)|2 −∥ f ∥2
1)2

(| f (α)|+∥ f ∥1)2 dα

≤ n −
∫ 1

0 (| f (α)|2 −∥ f ∥2
1)2dα

(∥ f ∥∞+∥ f ∥1)2

≤ n −
∑

j ̸=0 c2
j

(∥ f ∥∞+∥ f ∥1)2 . (12)

A trivial bound

∥ f ∥∞ ≤
√

n + ∑
j ̸=0

|c j | =
p

n +O +E

together with (12) gives

∥ f ∥2
1 ≤ n −

∑
j ̸=0 c2

j

(
p

n +O +E +p
n)2

≤ n − O +2E

(
p

n +O +E +p
n)2

(13)

where the last inequality in (13) follows from the fact |c j |2 ≥ 2|c j | for even j . On the other hand,
from the periodicity of f (α) we have

∥ f ∥2
1 = ∥ f ∥2

2 − 1

2

(∫ 1

0
(| f (α)|−∥ f ∥1)2dα+

∫ 1

0

(∣∣∣∣ f
(
α+ 1

2

)∣∣∣∣−∥ f ∥1

)2

dα

)
≤ n − 1

4

∫ 1

0

(
| f (α)|−

∣∣∣ f
(
α+ 1

2

)∣∣∣)2

dα

≤ n −
∫ 1

0

(| f (α)|2 − ∣∣ f
(
α+ 1

2

)∣∣2)2dα

4sup
{(| f (α)|+ ∣∣ f

(
α+ 1

2

)∣∣)2
} . (14)

Note that ∫ 1

0

(
| f (α)|2 −

∣∣∣∣ f
(
α+ 1

2

)∣∣∣∣2)2

dα≥ 4O, (15)

and (
| f (α)|+

∣∣∣ f
(
α+ 1

2

)∣∣∣)2

≤ 2

(
| f (α)|2 +

∣∣∣ f
(
α+ 1

2

)∣∣∣2
)
≤ 4(n +E). (16)

Thus from (14)–(16), and the fact that O ≥ n, we get another bound for ∥ f ∥2
1,

∥ f ∥2
1 ≤ n − O

4(n +E)
≤ n − n

4(n +E)
. (17)

Next we prove (5) by using (13) and (17) in accordance with the size of E .

Case 1. E ≥ 2n. Note that the function

g (x) := x

(1+p
1+x)2

is increasing on [0,∞), so if O +E ≥ 3n, then from (13) we have

∥ f ∥2
1 ≤ n − O +E

(
p

n +O +E +p
n)2

≤ n − 3n

(
p

3n +n +p
n)2

= n − 1

3
(18)

which is admissible.
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Case 2. E ≤ 2n. Let

g1(O,E) = n − O +2E

(
p

n +O +E +p
n)2

.

When E ≤ 2n, we have

∂g1(O,E)

∂O
= E − (n +p

n(n +O +E))p
n +O +E(

p
n +O +E +p

n)3
< 0.

Thus from (13), we have

∥ f ∥2
1 ≤ n − n +2E

(
p

2n +E +p
n)2

. (19)

Let E = xn, and

g2(x) = n − 1+2x

(
p

2+x +1)2
, g3(x) = n − 1

4(1+x)
.

Note that on [0,2], g2(x) is decreasing and g3(x) is increasing, and they intersect at x = γ =
0.15802. . . where γ is the only positive root of 64x3 +112x2 +25x −7. Hence from this and (17),
(19), we get

∥ f ∥2
1 ≤ n − 1

4(1+γ)
= n −0.21588. . . . □

4. Proof of Theorem 3

Let
O := ∑

j odd
|c j |, and e := ∑

j even
j ̸=0

|c j |− (n −1).

Since n is odd, we note that c j is even when j is odd, and odd when j is even. In particular, we
have e ≥ 0, 4 |O, 4 | e and, moreover,∑

j even
j ̸=0

|c j |2 =
∑

|c j |=1
|c j |+3

∑
|c j |=3

|c j |+5
∑

|c j |=5
|c j |+ · · · ≥ 4e +n −1. (20)

From this, and an argument similar to (12), we get

∥ f ∥2
1 ≤ n − 2O +4e +n −1

(∥ f ∥∞+p
n)2

≤ n − 2O +2e +n

(∥ f ∥∞+p
n)2

+O(n−1). (21)

We note that, trivially, ∥ f ∥∞ ≤p
2n +O +e.

If O +e ≥ n
5 , then

∥ f ∥2
1 ≤ n − 2O +2e +n

(
p

2n +O +e +p
n)2

+O(n−1) ≤ n − 7/5

(
p

11/5+1)2
+O(n−1)

= n − 7

16+2
p

55
+O(n−1) ≤ n −0.22+O(n−1), (22)

which is admissible.
We suppose O+e ≤ n

5 henceforth. Note that there are at most e
2 even non-zero j ’s with |c j | ̸= 1,

also there are at most O
2 odd j ’s such that c j ̸= 0. Thus, from

c j + cn− j ≡ n ≡−1 (mod 4),

we conclude that there are at least n−1− O
2 even non-zero j ’s satisfying c j ≡−1 (mod 4), among

which at least n −1− O+e
2 even j ’s satisfy c j =−1.

For a positive integer K ≥ n−1
2 , let

hK (α) := ∑
0≤| j |≤K

(
1− | j |

K

)
e( jα) = 1

K

∣∣∣∣ K∑
j=1

e( jα)

∣∣∣∣2

.
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Then for any number δ> 0, we have

| f (α)|2 ≤ | f (α)|2 +δhK (2α) = ∑
−2K<n<2K

b j e( jα), (23)

where

b j =
{

c j , if j is odd

c j +δ
(
1− | j |

2K

)
, if j is even.

Hence

| f (α)|2 ≤ ∑
−2K< j<2K

|b j | =O + ∑
−K< j<K

∣∣∣c2 j +δ
(
1− | j |

K

)∣∣∣. (24)

We suppose δ> 1 and
O +e

4
< (1−δ−1)K < n −1

2
. (25)

The purpose of introducing δhK (2α) in (23) is to reduce the contribution from |c2 j | for most
negative c2 j . We observe that the largest value of the last sum in (24) occurs when we have
c2 j =−1 for (1−δ−1)K < | j | ≤ n−1

2 and, other than the 2[(1−δ−1)K ]−O+e
2 such j ∈ [−(1−δ−1)K , (1−

δ−1)K ], it holds that c2 j > 0 for all other j in the range. With this observation, we get from (24) that

| f (α)|2 ≤ 2n +O +e +δK −4
(
(1−δ−1)K − O +e

4

)
−4δ

∑
(1−δ−1)K< j≤ n−1

2

(1− j /K ). (26)

For convenience, we let O +e = ϵn, K = κn. Then (26) gives

| f (α)|2 ≤ g (ϵ;δ,κ)n +O(1), (27)

where

g (ϵ;δ,κ) = 2+2ϵ+δκ−δ(1−2(1−δ−1)κ)
(
1+δ−1 − 1

2κ

)
−4(1−δ−1)κ,

with (25) and the other conditions on the variable ϵ and parameters δ, κ translated into

0 ≤ ϵ≤ 1

5
, κ> 1

2
, δ> 1, and

ϵ

4
≤ (1−δ−1)κ< 1

2
. (28)

Now by (21), we have

∥ f ∥2
1 ≤ n − 1+2ϵ

(
√

g (ϵ;δ,κ)+1)2
+O(n−1). (29)

It turns out that the optimal choices for δ and κ are

κ= κ0 = 2−1/2, and δ= δ0 =
√

1+2−1/2.

It is easy to check that all conditions in (28) are satisfied under these choices and 0 ≤ ϵ ≤ 1
5 .

Moreover, the function 1+2ϵ
(
p

g (ϵ;δ0,κ0)+1)2
is strictly increasing on [0,1/5]. Hence from (29) we have

∥ f ∥2
1 ≤ n − 1

(
√

g (0;δ0,κ0)+1)2
+O(n−1) = n − 1(√

2+2
√

4−2
p

2−2
p

2+1
)2

+O(n−1)

and thus the theorem is proved. □
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