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1. Introduction

In his celebrated work [12], Connes extended differential calculus beyond the framework of
manifolds to include noncommutative spaces such as that of leaves of a foliation or the orbit
space of the action of a group on a manifold. For this, he began by considering Fredholm modules
over an algebra A which could in general be noncommutative. When A is commutative, such as
the space of smooth functions on a manifold M , examples of Fredholm modules over A may be
obtained by considering elliptic operators on M . More generally, by considering Schatten classes
inside the collection of bounded operators on a Hilbert space, Connes studied the notion of
p-summable Fredholm modules over A in [12]. The Fredholm modules over A lead to Chern
characters taking values in the cyclic cohomology of A. Moreover, these cohomology classes are
related by means of Connes’ periodicity operator.

In this paper, we study Fredholm modules over linear categories, along with their Chern
characters taking values in cyclic cohomology. Our idea is to have a counterpart of the algebraic
notion of modules over a category, a subject which has been highly developed in the literature
(see, for instance, [7, 17, 35, 36, 45, 46]). A small preadditive category is treated as a ring with
several objects, following an idea first advanced by Mitchell [39]. We note that there is also a well-
developed study of spaces in algebraic geometry over categories (see, for instance, [16, 17, 44]). It
is also important to mention here the work of Baez [2] with the category of Hilbert spaces as well
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as the recent work of Henriques [22], Henriques and Penneys [23] with fusion categories with
potential applications to physics.

Let C be a small linear category. Let SHilbZ/2Z be the category of Z/2Z-graded separable
Hilbert spaces and whose morphisms are bounded linear maps. We consider pairs (H ,F ), where
H is a linear functor

H : C −→ SHilbZ/2Z (1)

and F = {FX : H (X ) → H (X )}X∈Ob(C ) is a family of bounded and involutive linear operators
each of degree 1. When the elements of F satisfy certain commutator conditions with respect
to the operators {H ( f )} f ∈Mor (C ), we say that the pair (H ,F ) is a Fredholm module over the
category C . Following the methods of Connes [12], we construct Chern characters of these
Fredholm modules taking values in the cyclic cohomology of C and study how they are related by
means of the periodicity operator. We hope this is the first step towards a larger program which
mixes together the techniques in categorical algebra with those in differential geometry.

The paper consists of two parts. In the first part, we study cyclic cohomology. We work more
generally with a small linear category DH whose morphism spaces carry a well-behaved action
of a Hopf algebra H . In other words, DH is a small Hopf-module category (or H-category) in
the sense of Cibils and Solotar [10], with which we can get H-linear categorical generalizations
of several results in Hopf cyclic cohomology. We recall that in [13–15], Connes and Moscovici
introduced Hopf cyclic cohomology as a generalization of Lie algebra cohomology adapted to
noncommutative geometry. For an H-category DH , we describe the cocycles and coboundaries
that determine its Hopf cyclic cohomology groups by extending Connes’ original construction of
cyclic cohomology from [11] and [12] in terms of cycles and closed graded traces on differential
graded algebras. An important role in our paper is played by “semicategories,” which are cate-
gories that may not contain identity maps. This notion, introduced by Mitchell [40], is precisely
what we need in order to categorify non-unital algebras. We work with the Hopf cyclic cohomol-
ogy groups HC •

H (DH , M) having coefficients in M , where M is a stable anti-Yetter Drinfeld mod-
ule in the sense of [18].

Let k be a field. After collecting some preliminaries in Section 2, we begin in Section 3 by
considering the universal differential graded Hopf-module semicategory (or DGH-semicategory)
associated to the H-category DH . For a DGH-semicategory (SH , ∂̂H ) and n ≥ 0, we let an n-
dimensional closed graded (H , M)-trace on SH be a collection of maps

T̂ H := {
T̂ H

X : M ⊗Homn
SH

(X , X ) −→ k
}

X∈Ob(SH ) (2)

satisfying certain conditions (see Definition 12). A cycle over DH consists of a tuple
(SH , ∂̂H , M ,T̂ H ) along with an H-linear semifunctor ρ : DH → S 0

H . In Theorem 14, we pro-
vide a description of the cocycles Z •

H (DH , M) in Hopf cyclic cohomology in terms of characters of
cycles over DH . This result is an H-linear categorical version of Connes’ [12, Proposition 1, p. 98].
It also follows from Theorem 14 that there is a one-one correspondence between Z •

H (DH , M) and
the collection of n-dimensional closed graded (H , M)-traces on the universal DGH-semicategory
Ω(DH ) associated to DH .

In Sections 4 and 5, we provide a description of the space B•
H (DH , M) of cobound-

aries. Throughout, we take k = C. We consider families η of automorphisms η = {η(X ) ∈
AutDH (X )}X∈Ob(DH ) such that h(η(X )) = ϵ(h)η(X ) for all h ∈ H and X ∈ Ob(DH ). We show that
these families form a group, which we denote by UH (DH ). Further, we show that the inner auto-
morphism of DH induced by conjugating with an element η ∈UH (DH ) induces the identity func-
tor on HC •

H (DH , M). Using this, we obtain in Proposition 23 a set of sufficient conditions for the
Hopf cyclic cohomology of an H-category to be zero.

We say that a cycle (SH , ∂̂H , M ,T̂ H ) is vanishing if S 0
H is an H-category and S 0

H satisfies the
assumptions in Proposition 23. We describe the elements of B•

H (DH , M) in Theorem 28 as the
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characters of vanishing cycles over DH . Finally, in Theorem 30, we use categorified cycles and
vanishing cycles to construct a product in Hopf cyclic cohomologies

HC p
H (DH , M)⊗HC q

H (D′
H , M ′) −→ HC p+q

H (DH ⊗D′
H , M□H M ′) p, q ≥ 0 (3)

where DH and D′
H are H-linear categories and M and M ′ are stable anti-Yetter Drinfeld modules

over H satisfying certain conditions.
In the second part of the paper, we study Fredholm modules and Chern classes. For this, we

assume H =C= M and consider a small C-linear category C . Let p ≥ 1 be an integer. We will say
that a pair (H ,F ) over C as in (1) is a p-summable Fredholm module if it satisfies

[F , f ] := (
FY ◦H ( f )−H ( f )◦FX

) ∈Bp (H (X ),H (Y )) (4)

for any morphism f : X → Y in C (see Definition 31). Here, Bp (H (X ),H (Y )) is the p-th
Schatten class inside the space of bounded linear operators from H (X ) to H (Y ). We mention
here that in this paper, we will consider only even Fredholm modules. We hope to tackle the case
of odd Fredholm modules over linear categories in a future paper [4].

Let H•
λ

(C ) := HC •
C

(C ,C) denote the cyclic cohomology groups of C . Corresponding to a p-
summable Fredholm module (H ,F ) and any 2m ≥ p − 1, we construct a DG-semicategory
(Ω(H ,F )C ,∂′) along with a closed graded trace T̂rs = {Trs : Hom2m

Ω(H ,F )
(X , X ) → C}X∈Ob(C ) of

dimension 2m. Let C N•(C ) denote the cyclic nerve of C and C N •(C ) its linear dual. By taking
the character of the corresponding cycle over C , we obtain φ2m ∈ C N 2m(C ) which is given by
(see Theorem 34)

φ2m( f 0 ⊗ f 1 ⊗·· ·⊗ f 2m) := Trs
(
H ( f 0)[F , f 1][F , f 2] . . . [F , f 2m]

)
(5)

for any f 0⊗ f 1⊗·· ·⊗ f 2m ∈C N2m(C ). Then,φ2m lies in the space Z 2m
λ

(C ) of cocycles for the cyclic
cohomology of C . The Chern character ch2m(H ,F ) of the Fredholm module (H ,F ) will be the
class of φ2m in the cyclic cohomology H 2m

λ
(C ) of C .

We relate the Chern characters by means of the periodicity operator in Section 7. We know that
the action of the periodicity operator S : H•

λ
(C ) → H•+2

λ
(C ) is given by taking the product as in (3)

with a certain class in the cohomology H 2
λ

(C). If (H ,F ) is a p-summable Fredholm module over
C and 2m ≥ p −1, we show in Theorem 38 that

S(φ2m) =−(m +1)φ2m+2 in H 2m+2
λ (C ) (6)

Finally, in Section 8, we describe the homotopy invariance of the Chern character. For this, we
consider a family {(ρt ,Ft )}t∈[0,1] of p-summable Fredholm modules

{ρt : C −→ SHilbZ/2Z}t∈[0,1] Ft (X ) : ρt (X ) −→ ρt (X ) (7)

each having the same underlying Hilbert space and satisfying some conditions. Then, if the ρt

and Ft vary in a strongly C 1 manner with respect to t ∈ [0,1], we show in Theorem 45 that the
(p +2)-dimensional character chp+2(Ht ,Ft ) ∈ H p+2

λ
(C ) is independent of t ∈ [0,1].

Notation. Throughout the paper, H is a Hopf algebra over the field k of characteristic zero, with
comultiplication ∆, counit ε and bijective antipode S. We will use Sweedler’s notation for the
coproduct ∆(h) = h1 ⊗h2 and for a left H-coaction ρ : M → H ⊗ M , ρ(m) = m(−1) ⊗m(0) (with
the summation sign suppressed). The small cyclic category of Connes [11] will be denoted by Λ.
The Hochschild differential will always be denoted by b and the modified Hochschild differential
(with the last face operator missing) will be denoted by b′.

On any cocyclic module C , we will denote by τn the unsigned cyclic operator on C n(C ) and by
λn the signed cyclic operator (−1)nτn on C n(C ). The complex computing cyclic cohomology of
C will be denoted by C •

λ
(C ) := Ker(1−λ). Accordingly, the cyclic cocycles and cyclic coboundaries

will be denoted by Z •
λ

(C ) and B•
λ

(C ) respectively.
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2. Preliminaries on H-categories and Hopf cyclic cohomology

A small Hopf-module category may be treated as a “Hopf-module algebra with several objects.”
In this section, we will collect some preliminaries on Hopf-module categories and on Hopf cyclic
cohomology. We note that the Hopf cyclic cohomology introduced by Connes and Moscovici
([13–15]) has been developed extensively by a number of authors (see, for instance, [1, 3, 19–21,
26–28, 32, 33, 42]).

Definition 1 (see Cibils and Solotar [10]). Let H be a Hopf algebra over a field k. A k-linear
category DH is said to be a left H-module category if

(i) HomDH (X ,Y ) is a left H-module for all X ,Y ∈ Ob(DH )
(ii) h1X = ε(h)1X for all X ∈ Ob(DH ) and h ∈ H

(iii) the composition map is a morphism of H-modules, i.e., h(g f ) = (h1g )(h2 f ) for any h ∈ H,
f ∈ HomDH (X ,Y ) and g ∈ HomDH (Y , Z ).

A small left H-module category will be called a left H-category. We will denote by CatH the category
of all left H-categories with H-linear functors between them.

For more on Hopf-module categories, we refer the reader, for instance, to [5, 6, 24, 29]. Let DH

be a left H-category. We set

C Nn(DH ) :=⊕
HomDH (X1, X0)⊗HomDH (X2, X1)⊗·· ·⊗HomDH (X0, Xn) (8)

where the direct sum runs over all (X0, X1, . . . , Xn) ∈ Ob(DH )n+1. We observe that C Nn(DH ) carries
the structure of a left H-module with action determined by

h( f 0 ⊗·· ·⊗ f n) := h1 f 0 ⊗h2 f 1 ⊗·· ·⊗hn+1 f n (9)

for any f 0 ⊗·· ·⊗ f n ∈C Nn(DH ) and h ∈ H .

Lemma 2. Let M be a right H-module. For each n ≥ 0, M ⊗C Nn(DH ) is a right H-module with
action determined by

(m ⊗ f 0 ⊗·· ·⊗ f n)h := mh1 ⊗S(h2)( f 0 ⊗·· ·⊗ f n) = mh1 ⊗S(hn+2) f 0 ⊗·· ·⊗S(h2) f n (10)

for any m ∈ M, f 0 ⊗·· ·⊗ f n ∈C Nn(DH ) and h ∈ H.

We now recall the notion of a stable anti-Yetter–Drinfeld module (SAYD) module from [19,
Definition 2.1].

Definition 3. Let H be a Hopf algebra with a bijective antipode S. A k-vector space M is said to be
a right-left anti-Yetter–Drinfeld module over H if M is a right H-module and a left H-comodule
such that

ρ(mh) = (mh)(−1) ⊗ (mh)(0) = S(h3)m(−1)h1 ⊗m(0)h2 (11)

for all m ∈ M and h ∈ H, where ρ : M → H ⊗M , m 7→ m(−1) ⊗m(0) is the coaction. Moreover, M is
said to be stable if m(0)m(−1) = m.

We now take the Hopf cyclic cohomology HC •
H (DH , M) of an H-category DH with coefficients

in a SAYD module M (see also [29]). This generalizes the construction of the Hopf cyclic coho-
mology for H-module algebras with coefficients in an SAYD module (see [18] and also [37]). For
each n ≥ 0, we set

C n(DH , M) := Homk (M ⊗C Nn(DH ),k) C n
H (DH , M) := HomH (M ⊗C Nn(DH ),k) (12)
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where M ⊗C Nn(DH ) is considered as a right H-module with the action described in Lemma 2
and k is considered as a right H-module via the counit. It is clear from the definition in (12) and
the action described in (10) that an element in C n

H (DH , M) is a k-linear mapφ : M⊗C Nn(DH ) → k
satisfying

φ
(
mh1 ⊗S(h2)( f 0 ⊗·· ·⊗ f n)

)=φ(
mh1 ⊗S(hn+2) f 0 ⊗·· ·⊗S(h2) f n)

= ε(h)φ(m ⊗ f 0 ⊗·· ·⊗ f n)
(13)

We recall that a (co)simplicial module is said to be para-(co)cyclic if all the relations for a
(co)cyclic module are satisfied except τn+1

n = 1 (see, for instance [29]). The following may be
verified directly.

Proposition 4. Let DH be a left H-category and let M be a right-left SAYD module over H. Then,

(i) we have a para-cocyclic module C •(DH , M) := {C n(DH , M)}n≥0 with the following struc-
ture maps

(δiφ)(m ⊗ f 0 ⊗·· ·⊗ f n) =
{
φ(m ⊗ f 0 ⊗·· ·⊗ f i f i+1 ⊗·· ·⊗ f n) 0 ≤ i ≤ n −1

φ
(
m(0) ⊗

(
S−1(m(−1)) f n

)
f 0 ⊗·· ·⊗ f n−1

)
i = n

(σiψ)(m ⊗ f 0 ⊗·· ·⊗ f n) =
{
ψ(m ⊗ f 0 ⊗·· ·⊗ f i ⊗1Xi+1 ⊗ f i+1 ⊗·· ·⊗ f n) 0 ≤ i ≤ n −1

ψ(m ⊗ f 0 ⊗·· ·⊗ f n ⊗1X0 ) i = n

(τnϕ)(m ⊗ f 0 ⊗·· ·⊗ f n) =ϕ(
m(0) ⊗S−1(m(−1)) f n ⊗ f 0 ⊗·· ·⊗ f n−1)

for any φ ∈ C n−1(DH , M), ψ ∈ C n+1(DH , M), ϕ ∈ C n(DH , M), m ∈ M and f 0 ⊗ ·· · ⊗ f n ∈
HomDH (X1, X0)⊗HomDH (X2, X1)⊗·· ·⊗HomDH (X0, Xn).

(ii) By restricting to right H-linear morphisms C n
H (DH , M) = HomH (M ⊗C Nn(DH ),k), we

obtain a cocyclic module C •
H (DH , M) := {C n

H (DH , M)}n≥0.

The cohomology of the cocyclic module C •
H (DH , M) is referred to as the Hopf cyclic cohomol-

ogy of the H-category DH with coefficients in the SAYD module M . The corresponding cohomol-
ogy groups are denoted by HC •

H (DH , M).

Remark 5. As k containsQ, we recall that the cohomology of a cocyclic module C can be expresed
alternatively as the cohomology of the following complex (see, for instance [34, 2.5.9]):

C 0
λ

(C )
b // · · · b // C n

λ
(C )

b // C n+1
λ

(C )
b // · · · (14)

where C n
λ

(C ) = Ker(1−λ) ⊆ C n(C ), b = ∑n+1
i=0 (−1)iδi and λ = (−1)nτn . In particular, an element

φ ∈C n
H (DH , M) is a cyclic cocycle if and only if

b(φ) = 0 and (1−λ)(φ) = 0 (15)

In this paper, the cocycles and coboundaries of a cocyclic module will always refer to this complex.

Proposition 6. Let DH be a left H-category and let M be a right-left SAYD module. Then:

(i) We obtain a para-cyclic module C•(DH , M) := {Cn(DH , M) := M ⊗C Nn(DH )}n≥0 with the
following structure maps

di (m ⊗ f 0 ⊗·· ·⊗ f n) =
{

m ⊗ f 0 ⊗ f 1 ⊗·· ·⊗ f i f i+1 ⊗·· ·⊗ f n 0 ≤ i ≤ n −1

m(0) ⊗
(
S−1(m(−1)) f n

)
f 0 ⊗ f 1 ⊗·· ·⊗ f n−1 i = n

si (m ⊗ f 0 ⊗·· ·⊗ f n) =
{

m ⊗ f 0 ⊗ f 1 ⊗ . . . f i ⊗1Xi+1 ⊗ f i+1 ⊗·· ·⊗ f n 0 ≤ i ≤ n −1

m ⊗ f 0 ⊗ f 1 ⊗·· ·⊗ f n ⊗1X0 i = n

tn(m ⊗ f 0 ⊗·· ·⊗ f n) = m(0) ⊗S−1(m(−1)) f n ⊗ f 0 ⊗·· ·⊗ f n−1

for any m ∈ M and f 0 ⊗ f 1 ⊗ ·· · ⊗ f n ∈ HomDH (X1, X0) ⊗ HomDH (X2, X1) ⊗ ·· · ⊗
HomDH (X0, Xn).
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(ii) By passing to the tensor product over H, we obtain a cyclic module C H• (DH , M) :=
{C H

n (DH , M) = M ⊗H C Nn(DH )}n≥0.

The cyclic homology groups corresponding to the cyclic module C H• (DH , M) will be denoted
by HC H• (DH , M).

3. Traces, cocycles and DGH-semicategories

We continue with DH being a left H-category and M a right-left SAYD module over H . Our
purpose is to develop a formalism analogous to that of Connes [12] in order to interpret the
cocycles Z •

H (DH , M) of the complex C •
H (DH , M) and its coboundaries B•

H (DH , M) as characters
of differential graded semicategories. In this section, we will describe Z •

H (DH , M), for which we
will need the framework of DG-semicategories. Let us first recall the notion of a semicategory
introduced by Mitchell in [38] (for more on semicategories, see, for instance, [8]).

Definition 7 (see [38, Section 4]). A semicategory C consists of a collection Ob(C ) of objects to-
gether with a set of morphisms HomC (X ,Y ) for each X ,Y ∈ Ob(C ) and an associative composi-
tion. A semifunctor F : C → C ′ between semicategories assigns an object F (X ) ∈ Ob(C ′) to each
X ∈ Ob(C ) and a morphism F ( f ) ∈ HomC ′ (F (X ),F (Y )) to each f ∈ HomC (X ,Y ) and preserves
composition.

A left H-semicategory is a small k-linear semicategory SH such that

(i) HomSH (X ,Y ) is a left H-module for all X ,Y ∈ Ob(SH )
(ii) h(g f ) = (h1g )(h2 f ) for any h ∈ H, f ∈ HomSH (X ,Y ) and g ∈ HomSH (Y , Z ).

It is clear that any ordinary category may be treated as a semicategory. Conversely, to any
k-semicategory C , we can associate an ordinary k-category C̃ by setting Ob(C̃ ) = Ob(C ) and
adjoining unit morphisms as follows:

HomC̃ (X ,Y ) :=
{

HomC (X , X )
⊕

k if X = Y

HomC (X ,Y ) if X ̸= Y

A morphism in HomC̃ (X ,Y ) will be denoted by f̃ = f +µ, where f ∈ HomC (X ,Y ) and µ ∈ k.
It is understood that µ = 0 whenever X ̸= Y . Any semifunctor F : C → D where D is an ordinary
category may be extended to an ordinary functor F̃ : C̃ →D. If SH is a left H-semicategory, S̃ H

has a unique left H-category structure extending that of SH .

Definition 8. A differential graded semicategory (DG-semicategory) (S , ∂̂) is a k-linear semicate-
gory S such that

(i) Hom•
S

(X ,Y ) = (
Homn

S
(X ,Y ), ∂̂n

X Y

)
n≥0 is a cochain complex of k-spaces for each X ,Y ∈

Ob(S ).
(ii) the composition map Hom•

S
(Y , Z )⊗Hom•

S
(X ,Y ) → Hom•

S
(X , Z ) is a morphism of com-

plexes. Equivalently, we have

∂̂n
X Z (g f ) = ∂̂n−r

Y Z (g ) f + (−1)n−r g ∂̂r
X Y ( f ) (16)

for any f ∈ HomS (X ,Y )r and g ∈ HomS (Y , Z )n−r .

Whenever the meaning is clear from context, we will drop the subscript and simply write ∂̂• for the
differential on any Hom•

S
(X ,Y ).

A small DG-semicategory may be treated as a differential graded (but not necessarily unital)
k-algebra with several objects. The DG-semicategories may be treated in a manner similar to DG-
categories (see, for instance, [30,31]). For instance, there is an obvious notion of DG-semifunctor
between DG-semicategories. We also note that if S is a DG-semicategory, the morphisms in
degree 0 determine a semicategory S 0.
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We now construct a “universal DG-semicategory” associated to a given k-linear semicategory
C , similar to the construction of the universal differential graded algebra associated to a (not
necessarily unital) k-algebra (see, for instance, [12, p. 315]).

LetΩC be the semicategory with Ob(ΩC ) := Ob(C ) and HomΩC (X ,Y ) =⊕
n≥0 Homn

ΩC
(X ,Y ),

where

Homn
ΩC (X ,Y ) :=


HomC (X ,Y ) if n = 0⊕
(X1,...,Xn )
∈Ob(C )n

HomC̃ (X1,Y )⊗HomC (X2, X1)⊗·· ·⊗HomC (X , Xn) if n ≥ 1 (17)

Here the sum runs over the ordered tuples (X1, . . . , Xn) ∈ Ob(C )n . In particular, (ΩC )0 = C . For
n ≥ 1, an element of the form f̃ 0⊗ f 1⊗·· ·⊗ f n in Homn

ΩC
(X ,Y ) will be denoted by f̃ 0d f 1 . . .d f n =

( f 0 + µ)d f 1 . . .d f n and said to be homogeneous of degree n. By abuse of notation, we will
continue to use f̃ 0d f 1 . . .d f n = ( f 0 +µ)d f 1 . . .d f n to denote an element of Homn

ΩC
(X ,Y ) even

when n = 0. In that case, it will be understood that µ= 0.
The composition inΩC is determined by

f 0 ◦d f 1 ◦ · · · ◦d f n = f 0d f 1 . . .d f n (d f 0)◦ f 1 = d( f 0 f 1)− f 0(d f 1)

d f 1 ◦ · · · ◦d f n = d f 1 . . .d f n (18)

In particular, it follows that

(( f 0 +µ)d f 1 . . .d f i ) · ((g 0 +µ′)dg 1 . . .dg j )

= ( f 0 +µ)

(
d f 1 . . . .d f i−1d( f i g 0)dg 1 . . .dg j +

i−1∑
l=1

(−1)i−l d f 1 . . .d( f l f l+1) . . .d f i dg 0dg 1 . . .dg j

)
+ (−1)i ( f 0 +µ) f 1d f 2 . . .d f i dg 0dg 1 . . .dg j +µ′( f 0 +µ)d f 1 . . .d f i dg 1 . . .dg j (19)

For each X ,Y ∈ Ob(ΩC ), the differential ∂n
X Y : Homn

ΩC
(X ,Y ) → Homn+1

ΩC
(X ,Y ) is determined by

setting

∂n
X Y (( f 0 +µ)d f 1 . . .d f n) := d f 0d f 1 . . .d f n

It follows from definition that ∂n+1
X Y ◦∂n

X Y = 0. Therefore, Hom•
ΩC

(X ,Y ) := (
Homn

ΩC
(X ,Y ),∂n

X Y

)
n≥0

is a cochain complex for each X ,Y ∈ Ob(ΩC ). It may also be verified that the composition inΩC

is a morphism of complexes. Thus,ΩC is a DG-semicategory.

Proposition 9. Let C be a small k-linear semicategory. Then, the associated DG-semicategory
(ΩC ,∂) is universal in the following sense: given

(i) any DG-semicategory (S , ∂̂) and
(ii) a k-linear semifunctor ρ : C →S 0,

there exists a unique DG-semifunctor ρ̂ : (ΩC ,∂) → (S , ∂̂) such that the restriction of ρ̂ to the
semicategory C is identical to ρ : C →S 0.

Proof. We extend ρ to obtain a DG-semifunctor ρ̂ : (ΩC ,∂) → (S , ∂̂) as follows:

ρ̂(X ) := ρ(X )

ρ̂(( f 0 +µ)d f 1 . . .d f n) := ρ( f 0)◦ ∂̂0(ρ( f 1))◦ · · · ◦ ∂̂0(ρ( f n))+µ∂̂0(ρ( f 1))◦ · · · ◦ ∂̂0(ρ( f n))
(20)

for all X ∈ Ob(ΩC ) = Ob(C ) and ( f 0 +µ)d f 1 . . .d f n ∈ Homn
ΩC

(X ,Y ), n ≥ 1. Since each ρ( f i ) is a
morphism of degree 0 in S , it follows from (16) and (19) that

ρ̂((( f 0 +µ)d f 1 . . .d f n)◦ (( f n+1 +µ′)d f n+2 . . .d f m))

= ρ̂(( f 0 +µ)d f 1 . . .d f n)◦ ρ̂(( f n+1 +µ′)d f n+2 . . .d f m) (21)
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It is also clear by construction that ρ̂|C = ρ. Moreover, we have

∂̂n (
ρ̂(( f 0 +µ)d f 1 . . .d f n)

)= ∂̂n (
ρ( f 0)∂̂0(ρ( f 1)) . . . ∂̂0(ρ( f n))

)+µ∂̂n (
∂̂0(ρ( f 1)) . . . ∂̂0(ρ( f n))

)
= ∂̂0

(ρ( f 0))∂̂
0

(ρ( f 1)) . . . ∂̂
0

(ρ( f n))+ρ( f 0)∂̂
n

(
∂̂

0
(ρ( f 1)) . . . ∂̂

0
(ρ( f n))

)
= ∂̂0(ρ( f 0))∂̂0(ρ( f 1)) . . . ∂̂0(ρ( f n)) = ρ̂ (

∂n(( f 0 +µ)d f 1 . . .d f n)
)

The uniqueness of ρ̂ is also clear from (18) and (19). □

Definition 10. A left DGH-semicategory is a left H-semicategory SH equipped with a DG-
semicategory (SH , ∂̂H ) structure such that for all n ≥ 0:

(i) Homn
SH

(X ,Y ) is a left H-module for X ,Y ∈ Ob(SH ).

(ii) ∂̂n
H : Homn

SH
(X ,Y ) → Homn+1

SH
(X ,Y ) is H-linear for X ,Y ∈ Ob(SH ).

We can similarly define the notion of a DGH-semifunctor between DGH-semicategories. If
(SH , ∂̂H ) is a left DGH-semicategory, we note that S 0

H is a left H-semicategory.

Proposition 11. Let DH be a left H-semicategory. Then, the universal DG-semicategory
(Ω(DH ),∂H ) associated to DH is a left DGH-semicategory with the H-action determined by

h
(
( f 0 +µ)d f 1 . . .d f n)

:= (h1 f 0 +µε(h1))d(h2 f 1) . . .d(hn+1 f n) (22)

for all h ∈ H and ( f 0 +µ)d f 1 . . .d f n ∈ HomΩ(DH )(X ,Y ).

Proof. This is immediate from the definitions in (19) and (22). □

Definition 12. Let (SH , ∂̂H ) be a left DGH-semicategory and M be a right-left SAYD module over
H. A closed graded (H , M)-trace of dimension n on SH is a collection of k-linear maps

T̂ H := {T̂ H
X : M ⊗Homn

SH
(X , X ) −→ k}X∈Ob(SH )

such that

T̂ H
X

(
mh1 ⊗S(h2) f

)= ε(h)T̂ H
X (m ⊗ f ) (23)

T̂ H
X

(
m ⊗ ∂̂n−1

H ( f ′)
)= 0 (24)

T̂ H
X

(
m ⊗ g ′g ) = (−1)i j T̂ H

Y

(
m(0) ⊗

(
S−1(m(−1))g

)
g ′) (25)

for all h ∈ H, m ∈ M, f ∈ Homn
SH

(X , X ), f ′ ∈ Homn−1
SH

(X , X ), g ∈ Homi
SH

(X ,Y ), g ′ ∈ Hom j
SH

(Y , X )
and i + j = n.

Definition 13. An n-dimensional SH -cycle with coefficients in a SAYD module M is a tuple
(SH , ∂̂H , M ,T̂ H ) such that

(i) (SH , ∂̂H ) is a left DGH-semicategory.
(ii) T̂ H is a closed graded (H , M)-trace of dimension n on SH .

Let DH be a left H-category. By an n-dimensional cycle over DH , we mean a tuple
(SH , ∂̂H , M ,T̂ H ,ρ) such that

(a) (SH , ∂̂H , M ,T̂ H ) is an n-dimensional SH -cycle with coefficients in a SAYD module M.
(b) ρ : DH →S 0

H is an H-linear semifunctor.

We fix a left H-category DH . Given an n-dimensional cycle (SH , ∂̂H , M ,T̂ H ,ρ) over DH , we
define its character φ ∈C n

H (DH , M) by setting

φ : M ⊗C Nn(DH ) −→ k φ(m ⊗ f 0 ⊗·· ·⊗ f n) := T̂ H
X0

(
m ⊗ρ( f 0)∂̂0

H

(
ρ( f 1)

)
. . . ∂̂0

H

(
ρ( f n)

))
for m ∈ M and f 0 ⊗ ·· · ⊗ f n ∈ HomDH (X1, X0)⊗HomDH (X2, X1)⊗ ·· · ⊗HomDH (X0, Xn). We will
often suppress the semifunctor ρ and refer to φ simply as the character of the n-dimensional
cycle (SH , ∂̂H , M ,T̂ H ).

We now have a characterization of the space Z n
H (DH , M) of n-cocycles in the Hopf cyclic

cohomology of the category DH with coefficients in the SAYD module M .
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Theorem 14. Let DH be a left H-category and M be a right-left SAYD module over H. Let φ ∈
C n

H (DH , M). Then, the following conditions are equivalent:

(i) φ is the character of an n-dimensional cycle over DH , i.e., there is an n-dimensional cycle
(SH , ∂̂H , M ,T̂ H ) with coefficients in M and an H-linear semifunctor ρ : DH → S 0

H such
that

φ(m ⊗ f 0 ⊗·· ·⊗ f n) = T̂ H
X0

((1M ⊗ ρ̂)(m ⊗ f 0d f 1 . . .d f n))

= T̂ H
X0

(
m ⊗ρ( f 0)∂̂0

H

(
ρ( f 1)

)
. . . ∂̂0

H

(
ρ( f n)

)) (26)

for any m ∈ M and f 0⊗·· ·⊗ f n ∈ HomDH (X1, X0)⊗HomDH (X2, X1)⊗·· ·⊗HomDH (X0, Xn).
(ii) There exists a closed graded (H , M)-trace T H of dimension n on (Ω(DH ),∂H ) such that

φ(m ⊗ f 0 ⊗·· ·⊗ f n) =T H
X0

(m ⊗ f 0d f 1 . . .d f n) (27)

for any m ∈ M and f 0⊗·· ·⊗ f n ∈ HomDH (X1, X0)⊗HomDH (X2, X1)⊗·· ·⊗HomDH (X0, Xn).
(iii) φ ∈ Z n

H (DH , M).

Proof. (i)⇒(ii). By the universal property of Ω(DH ), the H-linear semifunctor ρ : DH → S 0
H

can be extended to a DGH-semifunctor ρ̂ : Ω(DH ) → SH as in (20). We define a collection
T H := {T H

X : M ⊗Homn
Ω(DH )(X , X ) → k}X∈Ob(Ω(DH )) of k-linear maps given by

T H
X (m ⊗ ( f 0 +µ)d f 1 . . .d f n) := T̂ H

X

(
m ⊗ ρ̂(( f 0 +µ)d f 1 . . .d f n)

)
(28)

for any m ∈ M and f 0 ⊗ ·· · ⊗ f n ∈ HomDH (X1, X ) ⊗ HomDH (X2, X1) ⊗ ·· · ⊗ HomDH (X , Xn). In
particular, it follows from (28) that

φ(m ⊗ f 0 ⊗·· ·⊗ f n) = T̂ H
X

(
m ⊗ρ( f 0)∂̂0

H

(
ρ( f 1)

)
. . . ∂̂0

H

(
ρ( f n)

))=T H
X (m ⊗ f 0d f 1 . . .d f n) (29)

It may be verified that the collection T H is an n-dimensional closed graded (H , M)-trace on
Ω(DH ).

(ii)⇒(i). Suppose that we have a closed graded (H , M)-trace T H of dimension n on Ω(DH )
satisfying (27). Then, the tuple (Ω(DH ),∂H , M ,T H ) forms an n-dimensional cycle over DH with
coefficients in M . Further, by observing that ∂0

H ( f ) = d f for any f ∈ HomDH (X ,Y ), we get (26).

(i)⇒(iii). Let (SH , ∂̂H , M ,T̂ H ) be an n-dimensional cycle over DH with coefficients in M and
ρ : DH →S 0

H be an H-linear semifunctor satisfying

φ(m ⊗ f 0 ⊗·· ·⊗ f n) = T̂ H
X0

(
m ⊗ρ( f 0)∂̂0

H

(
ρ( f 1)

)
. . . ∂̂0

H

(
ρ( f n)

))
for any m ∈ M and f 0 ⊗ ·· · ⊗ f n ∈ HomDH (X1, X0)⊗HomDH (X2, X1)⊗ ·· · ⊗HomDH (X0, Xn). For
simplicity of notation, we will drop the functor ρ. To show that φ is an n-cocycle, it suffices to
check that (see (15))

b(φ) = 0 and (1−λ)(φ) = 0

where b = ∑n+1
i=0 (−1)iδi and λ = (−1)nτn . For any p0 ⊗ ·· · ⊗ pn+1 ∈ HomDH (X1, X0) ⊗

HomDH (X2, X1)⊗·· ·⊗HomDH (X0, Xn+1), we have

n+1∑
i=0

(−1)iδi (φ)(m ⊗p0 ⊗·· ·⊗pn+1)

=
n∑

i=0
(−1)iφ(m ⊗p0 ⊗·· ·⊗p i p i+1 ⊗·· ·⊗pn+1)

+ (−1)n+1φ
(
m(0) ⊗

(
S−1(m(−1))pn+1)p0 ⊗p1 ⊗·· ·⊗pn)

= T̂ H
X0

(
m ⊗p0p1∂̂0

H (p2) . . . ∂̂0
H (pn+1)

)+ n∑
i=1

(−1)i T̂ H
X0

(
m ⊗p0∂̂0

H (p1) . . . ∂̂0
H (p i p i+1) . . . ∂̂0

H (pn+1)
)

+ (−1)n+1T̂ H
Xn+1

(
m(0) ⊗

(
S−1(m(−1))pn+1)p0∂̂0

H (p1) · · ·⊗ ∂̂0
H (pn)

)
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Now using the equality ∂̂0
H ( f g ) = ∂̂0

H ( f )g + f ∂̂0
H (g ) for any f and g of degree 0, we have(

p0∂̂0
H (p1) . . . ∂̂0

H (pn)
)
pn+1

=
n∑

i=1
(−1)n−i p0∂̂0

H (p1) . . . ∂̂0
H (p i p i+1) . . . ∂̂0

H (pn+1)+ (−1)n p0p1∂̂0
H (p2) . . . ∂̂0

H (pn+1)

Thus, using the condition in (25), we obtain

n+1∑
i=0

(−1)iδi (φ)(m ⊗p0 ⊗·· ·⊗pn+1)

= (−1)nT̂ H
X0

(
m ⊗ (

p0∂̂0
H (p1) . . . ∂̂0

H (pn)
)
pn+1)

+ (−1)n+1T̂ H
Xn+1

(
m(0) ⊗

(
S−1(m(−1))pn+1)p0∂̂0

H (p1) . . . ∂̂0
H (pn)

)= 0

Next, using (24), (25), and the H-linearity of ∂̂H , we have((
1− (−1)nτn

)
φ

)
(m ⊗ f 0 ⊗·· ·⊗ f n)

=φ(m ⊗ f 0 ⊗·· ·⊗ f n)− (−1)nφ
(
m(0) ⊗S−1(m(−1)) f n ⊗ f 0 ⊗·· ·⊗ f n−1)

= T̂ H
X0

(m ⊗ f 0∂̂0
H ( f 1) . . . ∂̂0

H ( f n))− (−1)nT̂ H
Xn

(
m(0) ⊗

(
S−1(m(−1)) f n)

∂̂0
H ( f 0)∂̂0

H ( f 1) . . . ∂̂0
H ( f n−1)

)
= (−1)n−1T̂ H

Xn

(
m(0) ⊗

(
S−1(m(−1))∂̂

0
H ( f n)

)
f 0∂̂0

H ( f 1) . . . ∂̂0
H ( f n−1)

)
+ (−1)n−1T̂ H

Xn

(
m(0) ⊗

(
S−1(m(−1)) f n)

∂̂0
H ( f 0)∂̂0

H ( f 1) . . . ∂̂0
H ( f n−1)

)
= (−1)n−1T̂ H

Xn

(
m(0) ⊗ ∂̂n−1

H

(
(S−1(m(−1)) f n) f 0∂̂0

H ( f 1) . . . ∂̂0
H ( f n−1)

))= 0

(iii)⇒(ii). Let φ ∈ Z n
H (DH , M). For each X ∈ Ob(Ω(DH )), we define an H-linear map T H

X :
M ⊗Homn

Ω(DH )(X , X ) → k given by

T H
X (m ⊗ ( f 0 +µ)d f 1 . . .d f n) :=φ(m ⊗ f 0 ⊗·· ·⊗ f n)

for f 0 ⊗ ·· · ⊗ f n ∈ HomDH (X1, X ) ⊗ HomDH (X2, X1) ⊗ ·· · ⊗ HomDH (X , Xn). We now verify that
the collection {T n

X : M ⊗ Homn
Ω(DH )(X , X ) → k}X∈Ob(Ω(DH )) is a closed graded (H , M)-trace on

(Ω(DH ),∂H ). For any (p0 +µ)dp1 . . .dpn−1 ∈ Homn−1
Ω(DH )(X , X ), we have

T H
X

(
m ⊗∂n−1

H ((p0 +µ)dp1 . . .dpn−1)
)=T H

X

(
m ⊗1dp0dp1 . . .dpn−1)

=φ(m ⊗0⊗p0 ⊗·· ·⊗pn−1) = 0

This proves the condition in (24). Using (13), it is also clear that {T n
X : M ⊗Homn

Ω(DH )(X , X ) →
k}X∈Ob(Ω(DH )) satisfies condition (23). Finally, for any g ′ = (g 0 +µ′)dg 1 . . .dg r ∈ Homr

Ω(DH )(Y , X )

and g = (g r+1 +µ)dg r+2 . . .dg n+1 ∈ Homn−r
Ω(DH )(X ,Y ), we have

T H
X

(
m ⊗ g ′g

)
=

r∑
j=1

(−1)r− j T H
X

(
m ⊗ (g 0 +µ′)dg 1 . . .d(g j g j+1) . . .dg n+1)

+ (−1)r T H
X

(
m ⊗ (g 0 +µ′)g 1dg 2 . . .dg n+1)+T H

X

(
m ⊗µ(g 0 +µ′)dg 1 . . .dg r dg r+2 . . .dg n+1)

=
r∑

j=1
(−1)r− jφ(m ⊗ g 0 ⊗·· ·⊗ g j g j+1 ⊗·· ·⊗ g n+1)+ (−1)r φ(m ⊗ g 0g 1 ⊗ g 2 ⊗·· ·⊗ g n+1)

+ (−1)r µ′φ(m ⊗ g 1 ⊗ g 2 ⊗·· ·⊗ g n+1)+µφ(m ⊗ g 0 ⊗ g 1 ⊗·· ·⊗ g r ⊗ g r+2 ⊗·· ·⊗ g n+1)

=
r∑

j=0
(−1)r+ jφ(m ⊗ g 0 ⊗·· ·⊗ g j g j+1 ⊗·· ·⊗ g n+1)+ (−1)r µ′φ(m ⊗ g 1 ⊗ g 2 ⊗·· ·⊗ g n+1)

+µφ(m ⊗ g 0 ⊗ g 1 ⊗·· ·⊗ g r ⊗ g r+2 ⊗·· ·⊗ g n+1)
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On the other hand, we have

(−1)r (n−r )T H
Y

(
m(0) ⊗

(
S−1(m(−1))g

)
g ′

)
= (−1)r (n−r )T H

Y

(
m(0) ⊗

([
S−1((m(−1))n−r+1)(g r+1 +µ)

][
d(S−1((m(−1))n−r )g r+2)

]
. . .[

d(S−1((m(−1))1)g n+1)
])◦ (

(g 0 +µ′)dg 1 . . .dg r ))
= (−1)r (n−r )

n∑
j=r+2

(−1)n− j+1T H
Y

(
m(0) ⊗

[
S−1((m(−1))n−r )(g r+1 +µ)

]
. . .

d
[
S−1((m(−1))n− j+1)(g j g j+1)

]
. . .dg r

)
+ (−1)r (n−r )T H

Y

(
m(0) ⊗

[
S−1((m(−1))n−r+1)(g r+1 +µ)

]
. . .d

[(
S−1((m(−1))1)g n+1)g 0] . . .dg r

)
+ (−1)r (n−r )(−1)n−r T H

Y

(
m(0) ⊗

([
S−1((m(−1))n−r )((g r+1 +µ)g r+2)

])
. . .[

d
(
S−1((m(−1))1)g n+1)](dg 0dg 1 . . .dg r ))

+ (−1)r (n−r )µ′T H
Y

(
m(0) ⊗ .

[
S−1((m(−1))n−r+1)(g r+1 +µ)

][
d

(
S−1((m(−1))n−r )g r+2)] . . .[

d
(
S−1((m(−1))1)g n+1)].dg 1 . . .dg r

)
= (−1)r (n−r )

n∑
j=r+2

(−1)n− j+1φ
(
m(0) ⊗S−1((m(−1))n−r )g r+1 ⊗ . . .

⊗S−1((m(−1))n− j+1)(g j g j+1)⊗·· ·⊗ g r
)

+ (−1)r (n−r )φ
(
m(0) ⊗S−1((m(−1))n−r+1)g r+1 ⊗·· ·⊗ (

S−1((m(−1))1)g n+1)g 0 ⊗·· ·⊗ g r
)

+ (−1)r (n−r )(−1)n−rφ
(
m(0) ⊗S−1((m(−1))n−r )(g r+1g r+2)⊗ . . .

⊗ (S−1((m(−1))1)g n+1)⊗ g 0 ⊗ g 1 ⊗·· ·⊗ g r
)

+ (−1)r (n−r )(−1)n−rµφ
(
m(0) ⊗S−1((m(−1))n−r )g r+2 ⊗ . . .

⊗ (S−1((m(−1))1)g n+1)⊗ g 0 ⊗ g 1 ⊗·· ·⊗ g r
)

+ (−1)r (n−r )µ′φ
(
m(0) ⊗ .S−1((m(−1))n−r+1)g r+1 ⊗S−1((m(−1))n−r )g r+2 ⊗ . . .

⊗ (S−1((m(−1))1)g n+1 ⊗ .g 1 ⊗·· ·⊗ g r
)

Using repeatedly the fact that φ= (−1)nτnφ, we get

(−1)r (n−r )T n
Y

(
m(0) ⊗

(
S−1(m(−1))g

)
g ′

)
=−

n∑
j=r+1

(−1)r+ jφ
(
m ⊗ g 0 ⊗·· ·⊗ g j g j+1 ⊗·· ·⊗ g n+1)

− (−1)n+r+1φ
(
m(0) ⊗

(
S−1(m(−1))g n+1)g 0 ⊗ g 1 ⊗·· ·⊗ g n

)
+ (−1)r µ′φ

(
m ⊗ g 1 ⊗ g 2 ⊗·· ·⊗ g n+1)+µφ(

m ⊗ g 0 ⊗ g 1 ⊗·· ·⊗ g r ⊗ g r+2 ⊗·· ·⊗ g n+1)
The condition (25) now follows using the fact that b(φ) = 0. This proves the result. □

Remark 15. From the statement and proof of Theorem 14, it is clear that there is a one to one
correspondence between n-dimensional closed graded (H , M)-traces onΩ(DH ) and Z n

H (DH , M).
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4. Linearization by matrices and Hopf cyclic cohomology

We continue with DH being a left H-category. In the previous section, we described the spaces
Z •

H (DH , M). The next aim is to find a characterization of B•
H (DH , M) which will be done in several

steps. Let Mr (k) denote the algebra of r × r -matrices with entries in the field k. The linearization
DH ⊗Mr (k) of DH by the algebra Mr (k) is the k-linear category defined as follows:

Ob(DH ⊗Mr (k)) := Ob(DH ) HomDH⊗Mr (k)(X ,Y ) := HomDH (X ,Y )⊗k Mr (k) (30)

for any X , Y ∈ Ob(DH ⊗Mr (k)). The composition in DH ⊗Mr (k) is determined by setting

( f ′⊗ A′)◦ ( f ⊗ A) := ( f ′ ◦ f )⊗ A′A ∀ f ∈ HomDH (X ,Y ), f ′ ∈ HomDH (Y , Z ), A, A′ ∈ Mr (k) (31)

for any X , Y , Z ∈ Ob(DH ⊗Mr (k)) = Ob(DH ). We observe that DH ⊗Mr (k) is also a left H-category
with left H-module structure on any HomDH⊗Mr (k)(X ,Y ) determined by setting

h( f ⊗ A) := h f ⊗ A ∀ h ∈ H , f ∈ HomDH (X ,Y ), A ∈ Mr (k) (32)

We denote by CatH the category whose objects are left H-categories and whose morphisms are
H-linear semifunctors.

We denote by Vectk the category of all k-vector spaces and by H-Mod the category of all left
H-modules. Let HomH ( · ,k) : H-Mod → Vectk be the functor that takes N 7→ HomH (N ,k).

We now make some conventions. If P• = {Pn}n≥0 is a simplicial module with face maps
{di : Pn → Pn−1}0≤i≤n (see, for instance, [34, Section 1.6.1]) we let Phoc• denote the associated
Hochschild complex whose terms and differentials are given as follows

Phoc
n :=Pn b :=

n∑
i=0

(−1)i di : Pn −→Pn−1 (33)

Further, if Q• = {Qn}n≥0 is a cocyclic module with coface maps {δi : Qn−1 →Qn}0≤i≤n , codegen-
eracy maps {σi : Qn+1 →Qn}0≤i≤n and cocyclic operators {τn : Qn →Qn}n≥0, we let Q••

c y denote
the bicomplex with terms and differentials given as follows

Qm,n
c y :=Qm−n b :=

l+1∑
i=0

(−1)iδi : Qm,n −→Qm+1,n

B :=
(

l−1∑
i=0

(−1)i (l−1)τi
l−1

)
σlτl (1− (−1)lτl ) : Qm,n −→Qm,n+1

where we have set l := m − n. Then, Q••
c y is a bicomplex whose total cohomology computes

the cyclic cohomology of Q• (see, for instance, [34, Section 2.5]). Additionally, we let Q•
hoc

denote the complex with differentials b :=∑n+1
i=0 (−1)iδi : Qn →Qn+1 computing the Hochschild

cohomology of the cosimplicial module underlying Q•. The cohomology groups of this complex
will be denoted by H•(Q•

hoc ).
We now fix r ≥ 1. For 1 ≤ i , j ≤ r and α ∈ k, we let Ei j (α) denote the elementary matrix in

Mr (k) having α at (i , j )-th position and 0 everywhere else. We will often use Ei j for Ei j (1). For
each 1 ≤ p ≤ r , we have an inclusion incp : DH →DH ⊗Mr (k) in CatH which fixes the objects and
incp ( f ) = f ⊗Epp = f ⊗Epp (1) for any morphism f ∈DH .

For any right-left SAYD module M , the inclusion incp : DH →DH ⊗Mr (k) induces an inclusion
map

(incp , M) : M ⊗C Nn(DH ) −→ M ⊗C Nn (DH ⊗Mr (k))

m ⊗ f 0 ⊗·· ·⊗ f n 7−→ m ⊗ ( f 0 ⊗Epp )⊗·· ·⊗ ( f n ⊗Epp )
(34)

If we consider the para-cyclic modules C•(DH , M) and C•(DH ⊗ Mr (k), M) as in the notation of
Proposition 6, we see that the morphisms in (34) induce a morphism C•(incp , M) : C•(DH , M) →
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C• (DH ⊗Mr (k), M) of para-cyclic modules. Accordingly, we have an induced morphism of
Hochschild complexes

C•(incp , M)hoc : C•(DH , M)hoc −→C• (DH ⊗Mr (k), M)hoc (35)

Applying the functor HomH ( · ,k) and considering the cocyclic modules C •
H (DH , M) and C •

H (DH ⊗
Mr (k), M) as in the notation of Proposition 4, we obtain morphisms of Hochschild cohomology
complexes

C •
H (incp , M)hoc : C •

H (DH ⊗Mr (k), M)hoc −→C •
H (DH , M)hoc (36)

Similarly, we obtain a morphism of bicomplexes computing cyclic cohomology

C ••
H (incp , M)c y : C ••

H (DH ⊗Mr (k), M)c y −→C ••
H (DH , M)c y (37)

For each n ≥ 0, there is an H-linear trace map trM : M ⊗C Nn (DH ⊗Mr (k)) → M ⊗C Nn(DH )
given by

trM (
m ⊗ ( f 0 ⊗B 0)⊗·· ·⊗ ( f n ⊗B n)

)
:= (m ⊗ f 0 ⊗·· ·⊗ f n) trace(B 0 . . .B n) (38)

for any m ∈ M and ( f 0 ⊗B 0)⊗ ·· · ⊗ ( f n ⊗B n) ∈ C Nn (DH ⊗Mr (k)). It may be verified easily that
the trace map as in (38) defines a morphism C•(trM ) : C• (DH ⊗Mr (k), M) → C•(DH , M) of para-
cyclic modules. In particular, we have an induced morphism between underlying Hochschild
complexes

C•(trM )hoc : C• (DH ⊗Mr (k), M)hoc −→C•(DH , M)hoc (39)

Applying the functor HomH ( · ,k), we see that we have a morphism C •
H (trM )hoc : C •

H (DH , M)hoc →
C •

H (DH ⊗Mr (k), M)hoc of complexes computing Hochschild cohomologies.

Proposition 16. The maps C•(inc1, M)hoc and C•(trM )hoc are homotopy inverses of each other.

Proof. It may be easily verified that C•(trM )hoc ◦C•(inc1, M)hoc = 1. To show that C•(inc1, M)hoc ◦
C•(trM )hoc ∼ 1, we define k-linear maps {ħi : Cn (DH ⊗Mr (k), M) → Cn+1 (DH ⊗Mr (k), M)}0≤i≤n

by setting:

ħi
(
m ⊗ ( f 0 ⊗B 0)⊗·· ·⊗ ( f n ⊗B n)

)
:= m ⊗ ∑

1≤ j ,k,l ,...,p,q≤r
( f 0 ⊗E j 1(B 0

j k ))⊗ ( f 1 ⊗E11(B 1
kl ))⊗ . . .

⊗ ( f i ⊗E11(B i
pq ))⊗ (1Xi+1 ⊗E1q (1))⊗ ( f i+1 ⊗B i+1)⊗·· ·⊗ ( f n ⊗B n)

for 0 ≤ i < n and

ħn
(
m ⊗ ( f 0 ⊗B 0)⊗·· ·⊗ ( f n ⊗B n)

)
:= m ⊗ ∑

1≤ j ,k,m,...,p,q≤r
( f 0 ⊗E j 1(B 0

j k ))⊗ ( f 1 ⊗E11(B 1
km))⊗·· ·⊗ ( f n ⊗E11(B n

pq ))⊗ (1X0 ⊗E1q (1))

We now verify that ħn := ∑n
i=0(−1)iħi is a pre-simplicial homotopy (see, for instance, [34, Sec-

tion 1.0.8]) between C•(inc1, M)hoc ◦C•(trM )hoc and 1C•(DH⊗Mr (k),M)hoc . For this, we need to verify
the following identities:

diħi ′ =ħi ′−1di for i < i ′

diħi = diħi−1 for 0 < i ≤ n

diħi ′ =ħi ′di−1 for i > i ′+1

d0ħ0 = 1C•(DH⊗Mr (k),M)hoc and dn+1ħn =C•(inc1, M)hoc ◦C•(trM )hoc

(40)



630 Mamta Balodi and Abhishek Banerjee

where di : Cn+1 (DH ⊗Mr (k), M) → Cn (DH ⊗Mr (k), M), 0 ≤ i ≤ n +1 are the face maps. We only
verify the last one in (40) because the others follow similarly. Using the fact that E1q (1)E j 1(B j k ) = 0
unless q = j , we have

dn+1ħn
(
m ⊗ ( f 0 ⊗B 0)⊗·· ·⊗ ( f n ⊗B n)

)
= dn+1

(
m ⊗ ∑

1≤ j ,k,l ,...,p,q≤r
( f 0 ⊗E j 1(B 0

j k ))⊗ ( f 1 ⊗E11(B 1
kl ))⊗·· ·⊗ ( f n ⊗E11(B n

pq ))⊗ (1X0 ⊗E1q (1))

)
= m(0) ⊗

∑
1≤ j ,k,l ,...,p,q≤r

(
S−1(m(−1))(1X0 ⊗E1q (1))

)
( f 0 ⊗E j 1(B 0

j k ))⊗ ( f 1 ⊗E11(B 1
kl ))⊗ . . .

· · ·⊗ ( f n ⊗E11(B n
pq ))

= m ⊗ ∑
1≤ j ,k,l ,...,p,q≤r

(
f 0 ⊗E1q (1)E j 1(B 0

j k )
)
⊗ ( f 1 ⊗E11(B 1

kl ))⊗·· ·⊗ ( f n ⊗E11(B n
pq ))

= m ⊗ ∑
1≤ j ,k,l ,...,p≤r

(
f 0 ⊗E1 j (1)E j 1(B 0

j k )
)
⊗ ( f 1 ⊗E11(B 1

kl ))⊗·· ·⊗ ( f n ⊗E11(B n
p j ))

= m ⊗ ∑
1≤ j ,k,l ,...,p≤r

( f 0 ⊗E11(B 0
j k ))⊗ ( f 1 ⊗E11(B 1

kl ))⊗·· ·⊗ ( f n ⊗E11(B n
p j ))

= (
m ⊗ ( f 0 ⊗E11)⊗·· ·⊗ ( f n ⊗E11)

) ∑
1≤ j ,k,l ,...,p≤r

(B 0
j k B 1

kl . . .B n
p j )

= (
m ⊗ ( f 0 ⊗E11)⊗·· ·⊗ ( f n ⊗E11)

) ∑
1≤ j≤r

(B 0B 1 . . .B n) j j

= (
m ⊗ ( f 0 ⊗E11)⊗·· ·⊗ ( f n ⊗E11)

)
trace(B 0B 1 . . .B n)

=
(
C•(inc1, M)hoc ◦C•(trM )hoc

)(
m ⊗ ( f 0 ⊗B 0)⊗·· ·⊗ ( f n ⊗B n)

)
This proves the result. □

Proposition 17. Let DH be a left H-category and M be a right-left SAYD module. Then,

(i) The morphisms

H•(C •
H (inc1, M)hoc ) : H•(C •

H (DH ⊗Mr (k), M)hoc ) −→ H•(C •
H (DH , M)hoc )

H•(C •
H (trM )hoc ) : H•(C •

H (DH , M)hoc ) −→ H•(C •
H (DH ⊗Mr (k), M)hoc )

induced by C •
H (inc1, M)hoc and C •

H (trM )hoc are mutually inverse isomorphisms of
Hochschild cohomologies.

(ii) We have isomorphisms

HC •
H (DH , M)

HC •
H (trM )

HC •
H (inc1, M)

//
oo HC •

H (DH ⊗Mr (k), M)

Proof.

(i). By Proposition 16, we know that C•(trM )hoc ◦ C•(inc1, M)hoc = 1C•(DH ,M)hoc and
C•(inc1, M)hoc ◦ C•(trM )hoc ∼ 1C•(DH⊗Mr (k),M)hoc . Thus, applying the functor HomH ( · ,k), we
obtain

C •
H (inc1, M)hoc ◦C •

H (trM )hoc = 1C•
H (DH ,M)hoc C •

H (trM )hoc ◦C •
H (inc1, M)hoc ∼ 1C•

H (DH⊗Mr (k),M)hoc

Therefore, C •
H (inc1, M)hoc and C •

H (trM )hoc are homotopy inverses of each other.

(ii). This follows immediately from (i) and the Hochschild to cyclic spectral sequence. □

Corollary 18. For an n-cocycle φ ∈ Z n
H (DH , M), the n-cocycle φ̃ = HomH (trM ,k)(φ) = φ ◦ trM ∈

Z n
H (DH ⊗Mr (k), M) may be described as follows

φ̃
(
m ⊗ ( f 0 ⊗B 0)⊗·· ·⊗ ( f n ⊗B n)

)=φ(m ⊗ f 0 ⊗·· ·⊗ f n) trace(B 0 . . .B n)
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5. Vanishing cycles on an H-category and coboundaries

From now onwards, we will always assume that k =C. In this section, we will describe the spaces
B•

H (DH , M). We will then use the formalism of categorified cycles and vanishing cycles developed
in this paper to obtain a product on Hopf cyclic cohomologies of H-categories. We begin by
recalling the notion of an inner automorphism of a category.

Definition 19 ([43, p. 24]). Let DH be a left H-category. An automorphismΦ ∈ HomCatH (DH ,DH )
is said to be inner if Φ is isomorphic to the identity functor 1DH . In particular, there exist isomor-
phisms {η(X ) : X →Φ(X )}X∈Ob(DH ) such thatΦ( f ) = η(Y )◦ f ◦ (η(X ))−1 for any f ∈ HomDH (X ,Y ).

We now set
G(DH ) := ∏

X∈Ob(DH )
AutDH (X ) (41)

By definition, an element η ∈ G(DH ) corresponds to a family of automorphisms {η(X ) : X →
X }X∈Ob(DH ). We now set

UH (DH ) := {
η ∈G(DH )

∣∣h(η(X )) = ε(h)η(X ) for every h ∈ H and X ∈ Ob(DH )
}

(42)

Lemma 20. UH (DH ) is a subgroup of G(DH ).

Proof. The element e = ∏
X∈Ob(DH ) 1X is the identity of the group G(DH ). By definition of an H-

category, we know that h ·1X = ε(h) ·1X for each X ∈ Ob(DH ) and h ∈ H . Thus, e ∈UH (DH ). Now,
suppose that η,η′ ∈UH (DH ). Then, for each X ∈ Ob(DH ) and h ∈ H ,

h
(
(η◦η′)(X )

)= h(η(X )◦η′(X )) = (h1η(X ))◦ (h2η
′(X ))

= (ε(h1)η(X ))◦ (ε(h2)η′(X )) = ε(h)(η(X )◦η′(X ))

Hence, η ◦ η′ ∈ UH (DH ). Also, η−1 ∈ G(DH ) corresponds to a family of morphisms {η−1(X ) :=
η(X )−1 : X → X }X∈Ob(DH ). Then, for each h ∈ H and X ∈ Ob(DH ),

ε(h)1X = h(η(X )◦η−1(X )) = (ε(h1)η(X ))◦ (h2η
−1(X )) = η(X )◦ (hη−1(X ))

which gives ε(h)η−1(X ) = hη−1(X ). Therefore, η−1 ∈UH (DH ). □

Lemma 21. Let DH be a left H-category and let η ∈UH (DH ).

(i) ConsiderΦη : DH →DH defined by

Φη(X ) = X Φη( f ) := η(Y )◦ f ◦η(X )−1

for every X ∈ Ob(DH ) and f ∈ HomDH (X ,Y ). Then, Φη : DH → DH is an inner automor-
phism of DH .

(ii) Consider Φ̃η : DH ⊗M2(k) →DH ⊗M2(k) defined by

Φ̃η(X ) = X Φ̃η( f ⊗B) = (1Y ⊗E11 +η(Y )⊗E22)◦ ( f ⊗B)◦ (1X ⊗E11 +η(X )−1 ⊗E22)

for every X ∈ Ob(DH ⊗ M2(k)) = Ob(DH ) and f ⊗ B ∈ HomDH⊗M2(k)(X ,Y ). Then, Φ̃η :
DH ⊗M2(k) →DH ⊗M2(k) is an inner automorphism.

Proof.

(i). Using the fact that η,η−1 ∈UH (DH ), we have

h(Φη( f )) = (h1η(Y ))◦ (h2 f )◦ (h3η(X )−1) = (ε(h1)η(Y ))◦ (h2 f )◦ (ε(h3)η(X )−1)

= η(Y )◦ (h1 f )◦ (ε(h2)η(X )−1)

= η(Y )◦ (h f )◦η(X )−1

for any h ∈ H and f ∈ HomDH (X ,Y ). By Definition 19, we now see that Φη is an inner automor-
phism.
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(ii). Setting η̃(X ) : X → X in DH ⊗M2(k) as η̃(X ) = 1X ⊗E11 +η(X )⊗E22, we see that

Φ̃η( f ⊗B) = (1Y ⊗E11 +η(Y )⊗E22)◦ ( f ⊗B)◦ (1X ⊗E11 +η(X )−1 ⊗E22)

= η̃(Y )◦ ( f ⊗B)◦ η̃(X )−1

for any f ⊗B ∈ HomDH⊗M2(k)(X ,Y ). Considering the H-action on the category DH ⊗ M2(k), we
have

h
(
Φ̃η(( f ⊗B)

)= h1(1Y ⊗E11 +η(Y )⊗E22)◦h2( f ⊗B)◦h3(1X ⊗E11 +η(X )−1 ⊗E22)

= (h11Y ⊗E11 +h1η(Y )⊗E22)◦h2( f ⊗B)◦ (h31X ⊗E11 +h3η(X )−1 ⊗E22)

= ε(h1)(1Y ⊗E11 +η(Y )⊗E22)◦h2( f ⊗B)◦ε(h3)(1X ⊗E11 +η(X )−1 ⊗E22)

= (1Y ⊗E11 +η(Y )⊗E22)◦h( f ⊗B)◦ (1X ⊗E11 +η(X )−1 ⊗E22)

= Φ̃η(h( f ⊗B))

for any h ∈ H and f ⊗B ∈ HomDH⊗M2(k)(X ,Y ). By Definition 19, we now see that Φη̃ is an inner
automorphism. □

For any η ∈UH (DH ), we will always denote byΦη and Φ̃η the inner automorphisms defined in
Lemma 21.

Lemma 22. Let M be a right-left SAYD module over H. Then,

(i) A semifunctor α ∈ HomCatH
(DH ,D′

H ) induces a morphism (for all n ≥ 0)

C n
H (α, M) : C n

H (D′
H , M) = HomH (M ⊗C Nn(D′

H ),k) −→C n
H (DH , M) = HomH (M ⊗C Nn(DH ),k)

determined by

C n
H (α, M)(φ)(m ⊗ f 0 ⊗·· ·⊗ f n) =φ(

m ⊗α( f 0)⊗·· ·⊗α( f n)
)

for any φ ∈ C n
H (D′

H , M), m ∈ M and f 0 ⊗ ·· · ⊗ f n ∈ C Nn(DH ). This leads to a morphism
C ••

H (α, M)c y : C ••
H (D′

H , M)c y → C ••
H (DH , M)c y of double complexes and induces a functor

HC •
H ( · , M) : Cat

op
H → Vectk .

(ii) Let η ∈UH (DH ). Then,Φη induces the identity map on HC •
H (DH , M).

Proof.

(i). Sinceφ andα are H-linear, the morphisms C n
H (α, M) are well-defined and well behaved with

respect to the maps appearing in the Hochschild and cyclic complexes. The result follows.

(ii). Let η ∈UH (DH ) and Φη ∈ HomCatH (DH ,DH ) be the corresponding inner automorphism. By
Proposition 17, the maps HC •

H (inc1, M) and HC •
H (trM ) are mutually inverse isomorphisms of

Hopf cyclic cohomology groups. Thus, we have

HC •
H (inc2, M)◦ (

HC •
H (inc1, M)

)−1 = HC •
H (inc2, M)◦HC •

H (trM ) = HC •
H

(
trM ◦(inc2, M)

)= 1 (43)

Further, we have the following commutative diagram in the category CatH :

DH
inc1 //

1DH ��

DH ⊗M2(k)

Φ̃η��

DH
inc2oo

ΦηV
��

DH
inc1 // DH ⊗M2(k) DH

inc2oo

(44)

Thus, by applying the functor HC •
H ( · , M) to the commutative diagram (44) and using (43), we

obtain

HC •
H (Φη, M)

= (
HC •

H (inc2, M)
)◦HC •

H (inc1, M)−1 ◦HC •
H (1DH , M)◦ (

HC •
H (inc1, M)

)◦HC •
H (inc2, M)−1

= 1HC•
H (DH ,M) □
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Proposition 23. Let DH be a left H-category. Suppose that there is a semifunctor υ ∈
HomCatH

(DH ,DH ) and an η ∈UH (DH ⊗M2(k)) such that

(i) υ(X ) = X ∀ X ∈ Ob(DH )
(ii) Φη( f ⊗E11 +υ( f )⊗E22) = υ( f )⊗E22

for all f ∈ HomDH (X ,Y ) and X ,Y ∈ Ob(DH ). Then, HC •
H (DH , M) = 0.

Proof. Let α,α′ ∈ HomCatH
(DH ,DH ⊗M2(k)) be the semifunctors defined by

α(X ) := X α( f ) := f ⊗E11 +υ( f )⊗E22

α′(X ) := X α′( f ) := υ( f )⊗E22

for all X ∈ Ob(DH ) and f ∈ HomDH (X ,Y ). Then, by assumption, α′ =Φη ◦α. Therefore, applying
the functor HC •

H ( · , M) and using Lemma 22 (2), we get

HC •
H (α′, M) = HC •

H (α, M)◦HC •
H (Φη, M)

= HC •
H (α, M) : HC •

H (DH ⊗M2(k), M) −→ HC •
H (DH , M) (45)

Let φ ∈ Z n
H (DH , M) and φ̃ = HomH (trM ,k)(φ) = φ ◦ trM ∈ Z n

H (DH ⊗ M2(k), M) as in Corol-
lary 18. Let [φ̃] denote the cohomology class of φ̃. Then, by (45), we have HC •

H (α, M)([φ̃]) =
HC •

H (α′, M)([φ̃]), i.e.,

φ̃◦ (1M ⊗C Nn(α))+B n
H (DH , M) = φ̃◦ (1M ⊗C Nn(α′))+B n

H (DH , M)

so that φ̃◦ (1M ⊗C Nn(α))− φ̃◦ (1M ⊗C Nn(α′)) ∈ B n
H (DH , M). Applying the definition of φ̃, we now

have

(φ̃◦ (1M ⊗C Nn(α)))(m ⊗ f 0 ⊗·· ·⊗ f n)

= φ̃(
m ⊗α( f 0)⊗·· ·⊗α( f n)

)
= φ̃(

m ⊗ ( f 0 ⊗E11 +υ( f 0)⊗E22)⊗·· ·⊗ ( f n ⊗E11 +υ( f n)⊗E22)
)

=φ(m ⊗ f 0 ⊗·· ·⊗ f n)+φ(m ⊗υ( f 0)⊗·· ·⊗υ( f n))

Similarly, (φ̃◦ (1M ⊗C Nn(α′)))(m ⊗ f 0 ⊗·· ·⊗ f n) = φ(m ⊗υ( f 0)⊗·· ·⊗υ( f n)). Thus, φ = φ̃◦ (1M ⊗
C Nn(α))− φ̃◦ (1M ⊗C Nn(α′)) ∈ B n

H (DH , M). This proves the result. □

Definition 24. Let (SH , ∂̂H , M ,T̂ H ) be an n-dimensional SH -cycle with coefficients in a SAYD
module M over H (see, Definition 13). Then, we say that the cycle (SH , ∂̂H , M ,T̂ H ) is vanishing if
S 0

H is a left H-category and S 0
H satisfies the assumptions in Proposition 23.

We now recall from Connes [12, p. 103] the algebra C of infinite matrices (ai j )i , j∈N with entries
from C satisfying the following conditions (see also Karoubi–Villamayor [25])

(i) the set {ai j | i , j ∈N} is finite,
(ii) the number of non-zero entries in a row or a column is bounded.

Explicitly, if A = (ai j )i , j∈N and A′ = (a′
i j )i , j∈N are elements of C, their product B := A A′ in C is the

matrix B = (bi j )i , j∈N whose entries are given by

bi j := ∑
k∈N

ai k a′
k j (46)

for any i , j ∈N. The unit 1 ∈ C is given by the infinite matrix whose diagonal entries are all 1, with
zero entries everywhere else.

Identifying M2(C) = C⊗M2(C), we now recall the following result from [12, p. 104]:
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Lemma 25. There exists an algebra homomorphism ω : C → C and an invertible element Ũ ∈
M2(C) such that the corresponding inner automorphism Ξ : M2(C) → M2(C) satisfies

Ξ(B ⊗E11 +ω(B)⊗E22) =ω(B)⊗E22 ∀ B ∈ C (47)

Then, HC •(C) = 0.

Remark 26. We note that the condition in (47) ensures thatω(1) ̸= 1, where 1 is the unit element
of C.

For any k-algebra A , we may define a k-linear category A ⊗DH by setting Ob(A ⊗DH ) =
Ob(DH ) and HomA⊗DH (X ,Y ) =A ⊗HomDH (X ,Y ). The category A ⊗DH is a left H-category via
the action h(a ⊗ f ) := a ⊗h f for any h ∈ H , a ⊗ f ∈A ⊗HomDH (X ,Y ).

Lemma 27. We have HC •
H (C⊗DH , M) = 0.

Proof. We will verify that the category C⊗DH satisfies the assumptions of Proposition 23. Let ω
and Ũ be as in Lemma 25. We now define υ : C⊗DH → C⊗DH given by

υ(X ) := X υ(B ⊗ f ) :=ω(B)⊗ f

for any X ∈ Ob(C⊗DH ) and B ⊗ f ∈ HomC⊗DH (X ,Y ). Since ω : C → C is an algebra homomor-
phism, it follows that υ is a semifunctor. By the definition of the H-action on C⊗DH , it is also
clear that υ is H-linear.

Using the identification C⊗DH ⊗M2(C) = M2(C)⊗DH , we now define an element η ∈ G(C⊗
DH ⊗M2(C)) =G(M2(C)⊗DH ) given by the family of morphims

{η(X ) := Ũ ⊗1X ∈ HomM2(C)⊗DH (X , X ) = M2(C)⊗HomDH (X , X )}X∈Ob(DH ) (48)

Since Ũ is a unit in M2(C), it follows that each η(X ) in (48) is an automorphism. Since
H acts trivially on M2(C), we see that η ∈ UH (C ⊗ DH ⊗ M2(C)). Moreover, for any B̃ ⊗ f ∈
HomM2(C)⊗DH (X ,Y ) = M2(C)⊗HomDH (X ,Y ), we have

Φη(B̃ ⊗ f ) = η(Y )◦ (B̃ ⊗ f )◦η(X )−1 = (Ũ ⊗1Y )◦ (B̃ ⊗ f )◦ (Ũ−1 ⊗1X ) = Ũ B̃Ũ−1 ⊗ f =Ξ(B̃)⊗ f

Therefore, for any B ⊗ f ∈ C⊗HomDH (X ,Y ), we have

Φη((B ⊗ f )⊗E11 +υ(B ⊗ f )⊗E22) =Φη(B ⊗ f ⊗E11 +ω(B)⊗ f ⊗E22)

=Φη(B ⊗E11 ⊗ f +ω(B)⊗E22 ⊗ f )

=Ξ(B ⊗E11 +ω(B)⊗E22)⊗ f

=ω(B)⊗E22 ⊗ f = υ(B ⊗ f )⊗E22

This proves the result. □

We are now ready to describe elements in the space B n
H (DH , M).

Theorem 28. An element φ ∈ C n
H (DH , M) is a coboundary iff φ is the character of an n-

dimensional vanishing SH -cycle (SH , ∂̂H , M ,T̂ H ,ρ) over DH .

Proof. Let φ be the character of an n-dimensional vanishing SH -cycle (SH , ∂̂H , M ,T̂ H ,ρ). By
definition, T̂ H is an n-dimensional closed graded (H , M)-trace on the H-semicategory SH and
that S 0

H is an ordinary H-category. We now define ψ ∈C n
H (S 0

H , M) by setting

ψ(m ⊗ g 0 ⊗·· ·⊗ g n) := T̂ H
X0

(
m ⊗ g 0∂̂0

H (g 1) . . . ∂̂0
H (g n)

)
for m ∈ M and g 0 ⊗ ·· ·⊗ g n ∈ HomS 0

H
(X1, X0)⊗HomS 0

H
(X2, X1)⊗ ·· ·⊗HomS 0

H
(X0, Xn). Then, by

the implication (1) ⇒ (3) in Theorem 14, we have that ψ ∈ Z n
H (S 0

H , M). Since HC n
H (S 0

H , M) = 0,
we have that ψ= bψ′ for some ψ′ ∈C n−1

H (S 0
H , M).
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By Lemma 22, the semifunctor ρ ∈ HomCatH
(DH ,S 0

H ) induces a map C n−1
H (ρ, M) :

C n−1
H (S 0

H , M) →C n−1
H (DH , M). Setting ψ′′ :=C n−1

H (ρ, M)(ψ′), we have(
ψ′′) (m ⊗p0 ⊗·· ·⊗pn−1) =ψ′ (m ⊗ρ(p0)⊗·· ·⊗ρ(pn−1)

)
for any m ∈ M and p0 ⊗·· ·⊗pn−1 ∈C Nn−1(DH ). Therefore,

φ(m ⊗ f 0 ⊗·· ·⊗ f n) = T̂ H
X0

(
m ⊗ρ( f 0)∂̂0

H

(
ρ( f 1)

)
. . . ∂̂0

H

(
ρ( f n)

))=ψ(
m ⊗ρ( f 0)⊗·· ·⊗ρ( f n)

)
= (bψ′)

(
m ⊗ρ( f 0)⊗·· ·⊗ρ( f n)

)= (bψ′′)(m ⊗ f 0 ⊗·· ·⊗ f n)

for any m ∈ M and f 0 ⊗·· ·⊗ f n ∈ HomDH (X1, X0)⊗HomDH (X2, X1)⊗·· ·⊗HomDH (X0, Xn). Thus,
φ ∈ B n

H (DH , M).
Conversely, suppose that φ ∈ B n

H (DH , M). Then, φ = bψ for some ψ ∈ C n−1
H (DH , M). We now

extend ψ to get an element ψ′ ∈C n−1
H (C⊗DH , M) as follows:

ψ′ (m ⊗ (B 0 ⊗ f 0)⊗·· ·⊗ (B n−1 ⊗ f n−1)
)=ψ(m ⊗B 0

11 f 0 ⊗·· ·⊗B n−1
11 f n−1)

We now setφ′ = bψ′ ∈ Z n
H (C⊗DH , M). We now consider the H-linear semifunctor ρ : DH → C⊗DH

which fixes objects and takes any morphism f to 1⊗ f . Then, we have(
C n

H (ρ, M)(φ′)
)

(m ⊗ f 0 ⊗·· ·⊗ f n) =φ′ (m ⊗ρ( f 0)⊗·· ·⊗ρ( f n)
)= (bψ′)

(
m ⊗ρ( f 0)⊗·· ·⊗ρ( f n)

)
= (bψ)(m ⊗ f 0 ⊗·· ·⊗ f n) =φ(m ⊗ f 0 ⊗·· ·⊗ f n)

Since φ′ ∈ Z n
H (C ⊗DH , M), the implication (iii) ⇒ (ii) in Theorem 14 gives us a closed graded

(H , M)-trace T H of dimension n on the DGH-semicategory (Ω(C⊗DH ),∂H ) such that

T H
X0

(
m ⊗ρ( f 0)∂0

H

(
ρ( f 1)

)
. . .∂0

H

(
ρ( f n)

))=φ′ (m ⊗ρ( f 0)⊗·· ·⊗ρ( f n)
)=φ(m ⊗ f 0 ⊗·· ·⊗ f n) (49)

Since (Ω (C⊗DH ))0 = C⊗DH is a left H-category, we see that φ is the character associated to the
cycle

(
Ω (C⊗DH ) ,∂H , M ,T H ,ρ

)
over DH .

From the proof of Lemma 27, we know that C⊗DH satisfies the assumptions in Proposition 23.
Hence,

(
Ω (C⊗DH ) ,∂H , M ,T H ,ρ

)
is a vanishing cycle over DH . From this, the result follows. □

For the remaining part of this section, we shall suppose that H is cocommutative. If DH , D′
H are

left H-categories, we observe that DH ⊗D′
H then becomes a left H-category under the diagonal

action of H .
Let M , M ′ be left H-comodules equipped respectively with coactions ρM : M → H ⊗ M and

ρM ′ : M ′ → H ⊗M ′. Since H is cocommutative, M may be treated as a right H-comodule and we
can form the cotensor product M□H M ′ defined by the kernel

M□H M ′ := Ker
(
M ⊗M ′ ρM⊗1M ′−1M⊗ρM ′−−−−−−−−−−−−−→ M ⊗H ⊗M ′)

in Vectk . It follows by [9, Proposition 7.2.2] that the map ρM ⊗ 1M ′ gives M□H M ′ a left H-
comodule structure. We also note that M⊗M ′ carries a right H-module structure via the diagonal
action.

Lemma 29. Let H be a cocommutative Hopf algebra and M, M ′ be right-left SAYD modules over
H such that M□H M ′ is a right H-submodule of M ⊗M ′. Then, M□H M ′ is also an SAYD module
over H.

Proof. For any m ⊗m′ ∈ M□H M ′, we have(
(m ⊗m′)h

)
(−1) ⊗

(
(m ⊗m′)h

)
(0)

= (mh1 ⊗m′h2)(−1) ⊗ (mh1 ⊗m′h2)(0) = (mh1)(−1) ⊗ (mh1)(0) ⊗m′h2

= S(h13)m(−1)h11 ⊗m(0)h12 ⊗m′h2 = S(h3)m(−1)h1 ⊗m(0)h2 ⊗m′h4
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On the other hand, we have

S(h3)(m ⊗m′)(−1)h1 ⊗ (m ⊗m′)(0)h2 = S(h3)m(−1)h1 ⊗ (m(0) ⊗m′)h2

= S(h3)m(−1)h1 ⊗m(0)h21 ⊗m′h22 = S(h4)m(−1)h1 ⊗m(0)h2 ⊗m′h3

Since H is cocommutative, we see that the two expressions are the same. This proves that
M□H M ′ is an anti-Yetter–Drinfeld module. We now check that it is also stable. Using the co-
commutativity of H and the stability of M , M ′, we have

(m ⊗m′)(0)(m ⊗m′)(−1) = m0m1 ⊗m′m2 = m00m01 ⊗m′m1 = m0 ⊗m′m1 = m ⊗m′
0m′

−1 = m ⊗m′

for any m ⊗m′ ∈ M□H M ′. □

Let (SH , ∂̂H ) and (S ′
H , ∂̂′H ) be DGH-semicategories. Then, their tensor product SH ⊗S ′

H is the
DG-semicategory defined by setting Ob(SH ⊗S ′

H ) = Ob(SH )×Ob(S ′
H ) and

Homn
SH⊗S ′

H

(
(X , X ′), (Y ,Y ′)

)= ⊕
i+ j=n

Homi
SH

(X ,Y )⊗k Hom j
S ′

H
(X ′,Y ′)

The composition in SH ⊗S ′
H is given by the rule:

(g ⊗ g ′)◦ ( f ⊗ f ′) = (−1)deg(g ′)deg( f )(g f ⊗ g ′ f ′)

for homogeneous f : X → Y , g : Y → Z in SH and f ′ : X ′ → Y ′, g ′ : Y ′ → Z ′ in S ′
H . The differential

(∂̂H ⊗ ∂̂′H )n : Homn
SH⊗S ′

H

(
(X , X ′), (Y ,Y ′)

)→ Homn+1
SH⊗S ′

H

(
(X , X ′), (Y ,Y ′)

)
is determined by

(∂̂H ⊗ ∂̂′H )n( fi ⊗ g j ) = ∂̂i
H ( fi )⊗ g j + (−1)i fi ⊗ ∂̂′ j

H (g j )

for any fi ∈ Homi
SH

(X ,Y ) and g j ∈ Hom j
S ′

H
(X ′,Y ′) such that i + j = n. Clearly, (SH ⊗S ′

H )0 =
S 0

H ⊗S ′0
H .

Theorem 30. Let H be a cocommutative Hopf algebra and M, M ′ be right-left SAYD modules over
H such that M□H M ′ is a right H-submodule of M ⊗M ′. Let DH , D′

H be left H-categories. Then, we
have a pairing

HC p
H (DH , M)⊗HC q

H (D′
H , M ′) −→ HC p+q

H (DH ⊗D′
H , M□H M ′)

for p, q ≥ 0.

Proof. Let φ ∈ Z p
H (DH , M) and φ′ ∈ Z q

H (D′
H , M). We may express φ and φ′ respectively as the

characters of p and q-dimensional cycles (SH , ∂̂H , M ,T̂ H ,ρ) and (S ′
H , ∂̂′H , M ′,T̂ ′H ,ρ′) over DH

and D′
H with coefficients in M and M ′ respectively. We now consider the collection T̂ H #T̂ ′H :=

{(T̂ H #T̂ ′H )(X ,X ′) : M□H M ′⊗Homp+q
SH⊗S ′

H

(
(X , X ′), (X , X ′)

)→C}(X ,X ′)∈Ob
(
SH⊗S ′

H

) ofC-linear maps

defined by
(T̂ H #T̂ ′H )(X ,X ′)(m ⊗m′⊗ f ⊗ f ′) := T̂ H

X (m ⊗ fp )T̂ ′H
X ′ (m′⊗ f ′

q )

for any m ⊗m′ ∈ M□H M ′ and f ⊗ f ′ = ( fi ⊗ f ′
j )i+ j=p+q ∈ Homp+q

SH⊗S ′
H

(
(X , X ′), (X , X ′)

)
. We will

now prove that T̂ H #T̂ ′H is a (p+q)-dimensional closed graded trace on the DGH-semicategory
SH ⊗S ′

H with coefficients in M□H M ′. For any m⊗m′ ∈ M□H M ′ and g ⊗g ′ = (gi ⊗g ′
j )i+ j=p+q−1 ∈

Homp+q−1
SH⊗S ′

H

(
(X , X ′), (X ,Y )

)
, we have

(T̂ H #T̂ ′H )(X ,X ′)
(
m ⊗m′⊗ (∂̂H ⊗ ∂̂′H )p+q−1(g ⊗ g ′)

)
= ∑

i+ j=p+q−1
(T̂ H #T̂ ′H )(X ,X ′)

(
m ⊗m′⊗ ∂̂i

H (gi )⊗ g ′
j + (−1)i m ⊗m′⊗ gi ⊗ ∂̂′ j

H (g ′
j )

)
= T̂ H

X (m ⊗ ∂̂p−1
H (gp−1))T̂ ′H

X ′ (m′⊗ g ′
q )+ (−1)pT̂ H

X (m ⊗ gp )T̂ ′H
X ′ (m′⊗ ∂̂′q−1

H (g ′
q−1)) = 0
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This proves the condition in (24). Next for any homogeneous f : X → Y , g : Y → X in SH and
f ′ : X ′ → Y ′, g ′ : Y ′ → X ′ in S ′

H , we have

(T̂ H #T̂ ′H )(X ,X ′)
(
m ⊗m′⊗ (g ⊗ g ′)( f ⊗ f ′)

)
= (−1)deg(g ′)deg( f )(T̂ H #T̂ ′H )(X ,X ′)(m ⊗m′⊗ g f ⊗ g ′ f ′)

= (−1)deg(g ′)deg( f )T̂ H
X (m ⊗ (g f )p )T̂ ′H

X ′ (m′⊗ (g ′ f ′)q )

= (−1)deg(g ′)deg( f )(−1)deg(g )deg( f )(−1)deg(g ′)deg( f ′)T̂ H
Y (m ⊗ ( f g )p )T̂ ′H

Y ′ (m′⊗ ( f ′g ′)q )

= (−1)deg(g ′)deg( f )(−1)deg(g )deg( f )(−1)deg(g ′)deg( f ′)(−1)deg(g )deg( f ′)

× (T̂ H #T̂ ′H )(Y ,Y ′)
(
m ⊗m′⊗ ( f ⊗ f ′)(g ⊗ g ′)

)
= (−1)deg(g⊗g ′)deg( f ⊗ f ′)(T̂ H #T̂ ′H )(Y ,Y ′)

(
m ⊗m′⊗ ( f ⊗ f ′)(g ⊗ g ′)

)
This proves the condition in (25). We may similarly verify the condition in (23). Thus, we get a (p+
q)-dimensional cycle

(
SH ⊗S ′

H , ∂̂H ⊗ ∂̂′H , M□H M ′,T̂ H #T̂ ′H ,ρ⊗ρ′) with coefficients in M□H M ′

over the category DH ⊗D′
H . Then, the character of this cycle, denoted by φ#φ′ ∈ Z p+q

H (DH ⊗
D′

H , M□H M ′), gives a well defined map γ : Z p
H (DH , M)⊗Z q

H (D′
H , M ′) → Z p+q

H (DH ⊗D′
H , M□H M ′).

We now verify that the map γ restricts to a pairing

B p
H (DH , M)⊗Z q

H (D′
H , M ′) −→ B p+q

H (DH ⊗D′
H , M□H M ′)

For this, we let φ ∈ Z p
H (DH , M) be the character of a p-dimensional vanishing cycle(

SH , ∂̂H , M ,T̂ H ,ρ
)

over DH . In particular, it follows from Definition 24 that S 0
H is an or-

dinary left H-category. From the implication (1) ⇒ (2) in Theorem 14, it follows that we
might as well take S ′0

H to be an ordinary left H-category. In fact, we could assume that
S ′

H = ΩD′
H . Then, S 0

H ⊗S ′0
H is an ordinary left H-category. It suffices to show that the tuple(

SH ⊗S ′
H , ∂̂H ⊗ ∂̂′H , M□H M ′,T̂ H #T̂ ′H ,ρ⊗ρ′) is a vanishing cycle.

Since
(
SH , ∂̂H , M ,T̂ H

)
is a vanishing cycle, we have an H-linear semifunctor υ : S 0

H →S 0
H and

an η ∈U(S 0
H ⊗M2(C)) satisfying the conditions in Proposition 23. Extending υ, we get the H-linear

semifunctor υ⊗1 : S 0
H ⊗S ′0

H →S 0
H ⊗S ′0

H . Identifying, S 0
H ⊗S ′0

H ⊗M2(C) ∼=S 0
H ⊗M2(C)⊗S ′0

H , we
obtain η̃ ∈U(S 0

H ⊗M2(C)⊗S ′0
H ) given by

{η̃(X , X ′) = η(X )⊗1X ′ ∈ HomS 0
H⊗M2(C)⊗S ′0

H
((X , X ′), (X , X ′))

= HomS 0
H⊗M2(C)(X , X )⊗HomS ′0

H
(X ′, X ′)}

It may also be easily verified that

Φη̃( f ⊗ f ′⊗E11 + (υ⊗1)( f ⊗ f ′)⊗E22) = (υ⊗1)( f ⊗ f ′)⊗E22

Thus, we see that the category (SH ⊗S ′
H )0 =S 0

H ⊗S ′0
H satisfies the conditions in Proposition 23.

Therefore, the tuple
(
SH ⊗S ′

H , ∂̂H ⊗ ∂̂′H , M□H M ′,T̂ H #T̂ ′H ,ρ ⊗ ρ′) is a vanishing cycle. This
proves the result. □

6. Characters of Fredholm modules over categories

In the rest of this paper, we will study Fredholm modules and Chern characters. We fix a small
C-linear category C . Our categorified Fredholm modules will consist of linear functors from C

taking values in separable Hilbert spaces. Let SHilb be the category whose objects are separable
Hilbert spaces and whose morphisms are bounded linear maps.

Given separable Hilbert spaces H1 and H2, let B(H1,H2) denote the space of all bounded
linear operators from H1 to H2 and B∞(H1,H2) ⊆ B(H1,H2) be the space of all compact
operators. For any bounded operator T ∈ B(H1,H2), let µn(T ) denote the n-th singular value
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of T . In other words, µn(T ) is the n-th (arranged in decreasing order) eigenvalue of the positive
operator |T | := (T ∗T )

1
2 . For 1 ≤ p <∞, the p-th Schatten class is defined to be the space

Bp (H1,H2) :=
{

T ∈B(H1,H2)
∣∣∣ ∑

µn(T )p <∞
}

Clearly, Bp (H1,H2) ⊆Bq (H1,H2) for p ≤ q . For q1, q2, q3 ≥ 1 and separable Hilbert spaces H ,
H ′, H ′′, it follows from Hölder’s inequality (see [12, p. 86]) that we have

T2T1 ∈Bq3 (H ,H ′′), ∀ T1 ∈Bq1 (H ,H ′), T2 ∈Bq2 (H ′,H ′′),
1

q1
+ 1

q2
= 1

q3
(50)

For separable Hilbert spaces H1 and H2, the space B1(H1,H2) is the collection of all trace
class operators from H1 to H2. For T ∈ B1(H1,H2), we write Tr(T ) := ∑

µn(T ). Then, it is well
known that

Tr(T1T2) = Tr(T2T1) ∀ T1 ∈Bn1 (H ,H ′), T2 ∈Bn2 (H ′,H ),
1

n1
+ 1

n2
= 1 (51)

We note that each Bp (H1,H2) is an “ideal” in the following sense: consider the functor

B( · , · ) : SHilbop ⊗SHilb −→ VectC B( · , · )(H1,H2) :=B(H1,H2)

B( · , · )(φ1,φ2) : B(H1,H2) −→B(H ′
1,H ′

2) T 7−→φ2Tφ1

taking values in the category VectC of C-vector spaces. Then, Bp ( · , · ) is a subfunctor of B( · , · ).
In other words, for morphisms φ1 : H ′

1 → H1, φ2 : H2 → H ′
2 and any T ∈ Bp (H1,H2), we have

φ2Tφ1 ∈Bp (H ′
1,H ′

2).
We fix the following convention for the commutator notation: Let H : C → SHilb be a linear

functor and G := {GX : H (X ) →H (X )}X∈Ob(C ) be a collection of bounded linear operators. Then,
we set

[G , · ] : B(H (X ),H (Y )) −→B(H (X ),H (Y )) [G ,T ] :=GY ◦T −T ◦GX ∈B(H (X ),H (Y ))

We now let SHilbZ/2Z be the category whose objects are Z/2Z-graded separable Hilbert spaces
and whose morphims are bounded linear maps. Let H : C → SHilbZ/2Z be a linear functor and
G := {GX : H (X ) →H (X )}X∈Ob(C ) be a collection of bounded linear operators of the same degree
|G |. Then, we set

[G , · ] : B(H (X ),H (Y )) −→B(H (X ),H (Y ))

[G ,T ] :=GY ◦T − (−1)|G ||T |T ◦GX ∈B(H (X ),H (Y ))
(52)

for each X , Y ∈C .

Definition 31. Let C be a small C-category and let p ∈ [1,∞). We consider a pair (H ,F ) as
follows.

(i) A linear functor H : C → SHilbZ/2Z such that H ( f ) : H (X ) →H (Y ) is a linear operator
of degree 0 for each f ∈ HomC (X ,Y ).

(ii) A collection F := {FX : H (X ) → H (X )}X∈Ob(C ) of bounded linear operators of degree 1
such that F 2

X = 1H (X ) for each X ∈ Ob(C ).

The pair (H ,F ) is said to be a p-summable even Fredholm module over the category C if every
f ∈ HomC (X ,Y ) satisfies

[F , f ] := (
FY ◦H ( f )−H ( f )◦FX

) ∈Bp (H (X ),H (Y )) (53)

Taking H = C = M in Definition 12, we note that a closed graded trace of dimension n on
a DG-semicategory (S , ∂̂) is a collection of C-linear maps T̂ := {T̂ X : Homn

S
(X , X ) → C}X∈Ob(S )

satisfying the following two conditions

T̂ X
(
∂̂n−1( f )

)= 0 T̂ X (g g ′) = (−1)i j T̂ Y (g ′g ) (54)

for all f ∈ Homn−1
S

(X , X ), g ∈ Homi
S

(Y , X ), g ′ ∈ Hom j
S

(X ,Y ) and i + j = n. Accordingly, we will
consider cycles (S , ∂̂,C, T̂ ,ρ) over C by setting H = C = M in Definition 13. In the rest of this
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paper, since we always have H = C = M , we will suppress the SAYD module C and write a cycle
over C simply as (S , ∂̂, T̂ ,ρ).

Let (H ,F ) be a pair that satisfies conditions (i) and (ii) in Definition 31. We define a graded
semicategoryΩ′C =Ω(H ,F )C as follows: we put Ob(Ω′C ) := Ob(C ) and for any X , Y ∈C , j ≥ 0,

we set Hom j
Ω′C (X ,Y ) to be the linear span in B(H (X ),H (Y )) of the operators

H ( f̃ 0)[F , f 1][F , f 2] . . . [F , f j ] (55)

where f̃ 0 ⊗ f 1 ⊗ ·· ·⊗ f j is a homogeneous element of degree j in HomΩC (X ,Y ). Here, we write
H ( f̃ 0) =H ( f 0)+µ ·1, where f̃ 0 = f 0 +µ. Using the fact that

[F , f ]H ( f ′) = [F , f ◦ f ′]−H ( f )[F , f ′]

for composable morphisms f , f ′ in C , we observe thatΩ′C is closed under composition. We set

∂′ := [F , · ] : B (H (X ),H (Y )) −→B (H (X ),H (Y ))

∂′T = [F ,T ] =FY ◦T − (−1)|T |T ◦FX

We now have the following Lemma.

Lemma 32. Let (H ,F ) be a pair that satisfies conditions (1) and (2) in Definition 31. Then,

(i) (Ω′C ,∂′) is a DG-semicategory andΩ′0C is an ordinary category.
(ii) There is a canonical semifunctor ρ′ = ρH : C → Ω′0C which is identity on objects and

takes any f ∈ HomC (X ,Y ) to H ( f ) ∈ B(H (X ),H (Y )). This extends to a unique DG-
semifunctor ρ̂′ = ρ̂H : (ΩC ,∂) → (Ω′C ,∂′) such that the restriction of ρ̂′ to C is identical
to ρ′.

(iii) Suppose that (H ,F ) is a p-summable Fredholm module. Choose n ≥ p −1. Then, for X ,
Y ∈ Ob(C ) and 1 ≤ k ≤ n +1, we have Homk

Ω′C (X ,Y ) ⊆B(n+1)/k (H (X ),H (Y )).

Proof.

(i). Since each FX is a degree 1 operator and FY [F , f ] = −[F , f ]FX for any f ∈ HomC (X ,Y ),
we have ∂′

(
Hom j

Ω′C (X ,Y )
) ⊆ Hom j+1

Ω′C (X ,Y ). We now check that ∂′2 = 0. For any homogeneous
element H ( f̃ 0)[F , f 1][F , f 2] . . . [F , f j ] of degree j , we have

∂′2
(
H ( f̃ 0)[F , f 1][F , f 2] . . . [F , f j ]

)
= ∂′

(
FY ◦

(
H ( f̃ 0)[F , f 1][F , f 2] . . . [F , f j ]

))
− (−1) j∂′

((
H ( f̃ 0)[F , f 1][F , f 2] . . . [F , f j ]

)
◦FX

)
=F 2

Y ◦H ( f̃ 0)[F , f 1][F , f 2] . . . [F , f j ]

− (−1) j+1FY ◦H ( f̃ 0)[F , f 1][F , f 2] . . . [F , f j ]◦FX

− (−1) j (FY ◦H ( f̃ 0)[F , f 1][F , f 2] . . . [F , f j ]◦FX

− (−1) j+1H ( f̃ 0)[F , f 1][F , f 2] . . . [F , f j ]◦F 2
X

)
= 0

The fact that ∂′ is compatible with composition follows by direct computation. It is also easy to
see thatΩ′0C is an ordinary category.

(ii). This is immediate using the universal property in Proposition 9.

(iii). This is a consequence of Hölder’s inequality used as in (50) and the condition (53) in
Definition 31. □

For any Z/2Z-graded Hilbert space H = H0 ⊕H1, the grading operator ϵH on H is de-
termined by setting ϵH (x) := (−1)deg(x)x for any homogeneous element x ∈ H . When H is
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clear from context, we will often denote the grading operator ϵH simply by ϵ. For any T ∈
B(H (X ),H (Y )) such that [F ,T ] ∈B1(H (X ),H (Y )), we define

Trs (T ) := 1

2
Tr(ϵFY [F ,T ]) = 1

2
Tr

(
ϵFY ∂

′(T )
)= 1

2
Tr

(
ϵFY (FY ◦T − (−1)|T | T ◦FX )

)
Proposition 33. Let (H ,F ) be a p-summable Fredholm module over C . Take 2m ≥ p −1. Then,
the collection

T̂rs =
{
Trs : Hom2m

Ω′C (X , X ) −→C
}

X∈Ob(C ) (56)

defines a closed graded trace of dimension 2m on (Ω′C ,∂′).

Proof. From the proof of Lemma 32(i), it is clear that for any T ∈ Hom2m
Ω′C (X , X ), we have

[F ,T ] ∈ Hom2m+1
Ω′C (X , X ). Applying Lemma 32(iii), it follows that [F ,T ] ∈ B1(H (X ),H (X )).

Accordingly, each of the maps Trs : Hom2m
Ω′C (X , X ) →C is well-defined.

For T ′ ∈ Hom2m−1
Ω′C (X , X ), we notice that

Trs (∂′T ′) = 1

2
Tr

(
ϵFX (∂′2T ′)

)= 0

We now consider T1 ∈ Homi
Ω′C (X ,Y ), T2 ∈ Hom j

Ω′C (Y , X ) such that i + j = 2m. We notice that

ϵFY ∂
′(T1) = ∂′(T1)ϵFX ϵFX ∂

′(T2) = ∂′(T2)ϵFY (57)

We note that i ≡ j (mod 2). Using (57) and (51), we now have

2 ·Trs (T1T2) = Tr
(
ϵFY ∂

′(T1T2)
)= Tr

(
ϵFY ∂

′(T1)T2
)+ (−1)i Tr

(
ϵFY T1∂

′(T2)
)

= Tr
(
∂′(T1)ϵFX T2

)+ (−1)i Tr
(
∂′(T2)ϵFY T1

)
= Tr

(
ϵFX T2∂

′(T1)
)+ (−1)i Tr

(
ϵFX ∂

′(T2)T1
)

= Tr
(
ϵFX T2∂

′(T1)
)+ (−1) j Tr

(
ϵFX ∂

′(T2)T1
)

= (−1)i j 2 ·Trs (T2T1) □

Theorem 34. Let (H ,F ) be a p-summable Fredholm module over C . Take 2m ≥ p − 1. Then,
the tuple (Ω′C ,∂′, T̂rs ,ρ′) defines a 2m-dimensional cycle over C . Then, φ2m ∈ C N 2m(C ) =
C 2m
C

(C ,C) = Hom(C N2m(C ),C) defined by

φ2m( f 0 ⊗ f 1 ⊗·· ·⊗ f 2m) := Trs
(
H ( f 0)[F , f 1][F , f 2] . . . [F , f 2m]

)
for any f 0⊗ f 1⊗·· ·⊗ f 2m ∈ HomC (X1, X )⊗HomC (X2, X1)⊗·· ·⊗HomC (X , X2m) is a cyclic cocycle
over C .

Proof. It follows directly from Lemma 32 and Proposition 33 that (Ω′C ,∂′, T̂rs ,ρ′) is a 2m-
dimensional cycle over C . The rest follows by applying Theorem 14 with H =C= M . □

We will refer to φ2m as the 2m-dimensional character associated with the p-summable even
Fredholm module (H ,F ) over the category C .

Remark 35. The appearance of only even cyclic cocycles in Theorem 34 is due to the follow-
ing fact from [12, Lemma 2(a)]: if T ∈ B(H (X ),H (X )) is homogeneous of odd degree, then
Trs (T ) = 0.

7. Periodicity of Chern character for Fredholm modules

We continue with C being a small C-category. Taking H =C= M , we denote the cyclic cohomol-
ogy groups of C by H•

λ
(C ) := HC •

C
(C ,C). The cyclic complex corresponding to the cocyclic mod-

ule {C N n(C ) = HomC(C Nn(C ),C)}n≥0 as in (14) will be denoted by C •
λ

(C ). The cocycles of this
complex will be denoted by Z •

λ
(C ) := Z •

C
(C ,C) and the coboundaries by B•

λ
(C ) := B•

C
(C ,C).
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Let (H ,F ) be a p-summable Fredholm module over C . We take 2m ≥ p − 1. Let φ2m

be the 2m-dimensional character associated to the Fredholm module (H ,F ). We de-
note by ch2m(H ,F ) ∈ H 2m

λ
(C ) the cohomology class of φ2m . Since Bp (H (X ),H (Y )) ⊆

Bq (H (X ),H (Y )) for any p ≤ q , the Fredholm module (H ,F ) is also (p +2)-summable. Using
Theorem 34, we then have the (2m +2)-dimensional character φ2m+2 associated to (H ,F ). We
will show that the cyclic cocycles φ2m and φ2m+2 are related to each other via the periodicity
operator.

If C and C ′ are small C-categories, from the proof of Theorem 30 it follows that there is a
pairing on cyclic cocycles

Z r
λ(C )⊗Z s

λ(C ′) −→ Z r+s
λ (C ⊗C ′) φ⊗φ′ 7−→φ#φ′ (58)

which descends to a pairing on cyclic cohomologies:

H r
λ(C )⊗H s

λ(C ′) −→ H r+s
λ (C ⊗C ′) (59)

given by

(T̂φ#T̂φ′
)(X ,X ′)( f ⊗ f ′) := T̂φ

X ( fr )T̂φ′
X ′ ( f ′

s ) (60)

for any f ⊗ f ′ = ∑
i+ j=r+s ( fi ⊗ f ′

j ) ∈ Homr+s
S ⊗S ′

(
(X , X ′), (X , X ′)

)
. Here φ and φ′ are expressed

respectively as the characters of r and s-dimensional cycles (S , ∂̂, T̂φ,ρ) and (S ′, ∂̂′, T̂φ′
,ρ′) over

C and C ′. In particular, φ#φ′ is the character of the (r + s)-dimensional cycle
(
S ⊗ S ′, ∂̂⊗

∂̂′, T̂φ#T̂φ′
,ρ⊗ρ′) over C ⊗C ′. For a morphism f in C , we will often suppress the functor ρ and

write the morphism ρ( f ) in S 0 simply as f . Similarly, when there is no danger of confusion, we
will often write the morphism H ( f ) simply as f .

Now setting C ′ =C (the category with one object) and considering the cyclic cocycleψ ∈ H 2
λ

(C)
determined by ψ(1,1,1) = 1, we obtain the periodicity operator:

S : Z r
λ(C ) −→ Z r+2

λ (C ) S(φ) :=φ#ψ

for any r ≥ 0 and φ ∈ Z r
λ

(C ).

Lemma 36. Let φ ∈ Z r
λ

(C ). For any f 0 ⊗ f 1 ⊗·· ·⊗ f r+2 ∈C Nr+2(C ), we have

(S(φ))( f 0 ⊗ f 1 ⊗·· ·⊗ f r+2) = T̂φ

X ( f 0 f 1 f 2∂̂ f 3 . . . ∂̂ f r+2)+ T̂φ

X ( f 0∂̂ f 1( f 2 f 3) . . . ∂̂ f r+2)+·· ·
+ T̂φ

X ( f 0∂̂ f 1 . . . ∂̂ f i−1( f i f i+1)∂̂ f i+2 . . . ∂̂ f r+2)+·· ·
+ T̂φ

X ( f 0∂̂ f 1 . . . ∂̂ f r ( f r+1 f r+2))

Proof. We consider the 2-dimensional trace T̂ψ on the DG-semicategory (ΩC,∂) such that ψ ∈
Z 2
λ

(C) is the character of the corresponding cycle over C. We first observe that we have the
following equalities inΩC:

∂1 = (∂1)1+1(∂1), 1(∂1)1 = 0, 1(∂1)2 = (∂1)21
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We illustrate the proof for r = 2. The general case will follow similarly. By definition, we have

(S(φ))( f 0 ⊗ f 1 ⊗ f 2 ⊗ f 3 ⊗ f 4)

= (φ#ψ)( f 0 ⊗ f 1 ⊗ f 2 ⊗ f 3 ⊗ f 4)

= (T̂φ#T̂ψ)
(
( f 0 ⊗1)(∂̂⊗∂)( f 1 ⊗1)(∂̂⊗∂)( f 2 ⊗1)(∂̂⊗∂)( f 3 ⊗1)(∂̂⊗∂)( f 4 ⊗1)

)
= (T̂φ#T̂ψ)

(
( f 0 ⊗1)(∂̂ f 1 ⊗1+ f 1 ⊗∂1)(∂̂ f 2 ⊗1+ f 2 ⊗∂1)(∂̂ f 3 ⊗1+ f 3 ⊗∂1)(∂̂ f 4 ⊗1+ f 4 ⊗∂1)

)
= (T̂φ#T̂ψ)

(
f 0∂̂ f 1∂̂ f 2∂̂ f 3∂̂ f 4 ⊗1+ f 0∂̂ f 1∂̂ f 2∂̂ f 3 f 4 ⊗1∂1+ f 0∂̂ f 1∂̂ f 2 f 3 f 4 ⊗1(∂1)2

+ f 0∂̂ f 1 f 2 f 3∂̂ f 4 ⊗1(∂1)21+ f 0∂̂ f 1 f 2 f 3 f 4 ⊗1(∂1)3 + f 0 f 1 f 2∂̂ f 3∂̂ f 4 ⊗1(∂1)2

+ f 0 f 1 f 2∂̂ f 3 f 4 ⊗1(∂1)3 − f 0 f 1 f 2 f 3∂̂ f 4 ⊗1(∂1)31+ f 0 f 1 f 2 f 3 f 4 ⊗1(∂1)4
)

= T̂φ
(

f 0∂̂ f 1∂̂ f 2 f 3 f 4) T̂ψ
(
1(∂1)2)+ T̂φ

(
f 0∂̂ f 1 f 2 f 3∂̂ f 4) T̂ψ

(
1(∂1)21

)
+ T̂φ

(
f 0 f 1 f 2∂̂ f 3∂̂ f 4) T̂ψ

(
1(∂1)2)

= T̂φ
(

f 0∂̂ f 1∂̂ f 2 f 3 f 4)+ T̂φ
(

f 0∂̂ f 1 f 2 f 3∂̂ f 4)+ T̂φ
(

f 0 f 1 f 2∂̂ f 3∂̂ f 4)
The last equality follows by using the fact that T̂ψ

(
1(∂1)2

)=ψ(1,1,1) = 1. □

Proposition 37. Let φ be the character of an r -dimensional cycle (S , ∂̂, T̂φ,ρ) over C . Then, S(φ)
is a coboundary. In particular, we have S(φ) = bψ, where ψ ∈C N r+1(C ) is given by

ψ( f 0 ⊗ f 1 ⊗·· ·⊗ f r+1) =
r+1∑
j=1

(−1) j−1 T̂φ
(

f 0∂̂ f 1 . . . ∂̂ f j−1 f j ∂̂ f j+1 . . . ∂̂ f r+1
)

Proof. Again, we illustrate the case of r = 2. The general computation is similar.

(bψ)( f 0 ⊗ f 1 ⊗ f 2 ⊗ f 3 ⊗ f 4)

=ψ( f 0 f 1 ⊗ f 2 ⊗ f 3 ⊗ f 4)−ψ( f 0 ⊗ f 1 f 2 ⊗ f 3 ⊗ f 4)+ψ( f 0 ⊗ f 1 ⊗ f 2 f 3 ⊗ f 4)

−ψ( f 0 ⊗ f 1 ⊗ f 2 ⊗ f 3 f 4)+ψ( f 4 f 0 ⊗ f 1 ⊗ f 2 ⊗ f 3)

= T̂φ( f 0 f 1 f 2∂̂ f 3∂̂ f 4)− T̂φ( f 0 f 1∂̂ f 2 f 3∂̂ f 4)+ T̂φ( f 0 f 1∂̂ f 2∂̂ f 3 f 4)− T̂φ( f 0 f 1 f 2∂̂ f 3∂̂ f 4)

+ T̂φ( f 0∂̂( f 1 f 2) f 3∂̂ f 4 − T̂φ( f 0∂̂( f 1 f 2)∂̂ f 3 f 4)+ T̂φ( f 0 f 1∂̂( f 2 f 3)∂̂ f 4)− T̂φ( f 0∂̂ f 1 f 2 f 3∂̂ f 4)

+ T̂φ( f 0∂̂ f 1∂̂( f 2 f 3) f 4)− T̂φ( f 0 f 1∂̂ f 2∂̂( f 3 f 4))+ T̂φ( f 0∂̂ f 1 f 2∂̂( f 3 f 4))− T̂φ( f 0∂̂ f 1∂̂ f 2 f 3 f 4)

+ T̂φ( f 4 f 0 f 1∂̂ f 2∂̂ f 3)− T̂φ( f 4 f 0∂̂ f 1 f 2∂̂ f 3)+ T̂φ( f 4 f 0∂̂ f 1∂̂ f 2 f 3)

= T̂φ( f 0 f 1 f 2∂̂ f 3∂̂ f 4)+ T̂φ( f 0∂̂ f 1( f 2 f 3)∂̂ f 4)+ T̂φ( f 0∂̂ f 1∂̂ f 2 f 3 f 4)

= (S(φ))( f 0 ⊗ f 1 ⊗ f 2 ⊗ f 3 ⊗ f 4) □

Theorem 38. Let C be a small C-category and let (H ,F ) be a p-summable even Fredholm
module over C . Take 2m ≥ p −1. Then,

S(φ2m) =−(m +1)φ2m+2 in H 2m+2
λ (C )

Proof. We will show that S(φ2m)+ (m +1)φ2m+2 = bψ for some ψ ∈ Z 2m+1
λ

(C ). By Theorem 34,
we know that φ2m is the character of the 2m-dimensional cycle (Ω′C ,∂′, T̂rs ,ρ′) over the category
C . Applying Lemma 36 and using the fact that Trs (T ) = 0 for any homogeneous T of odd degree,
we have

(S(φ2m))( f 0 ⊗ f 1 ⊗·· ·⊗ f 2m+2)

=
2m+1∑

j=0
Trs

(
f 0[F , f 1] . . . [F , f j−1]( f j f j+1)[F , f j+2] . . . [F , f 2m+2]

)
Further,

φ2m+2( f 0 ⊗ f 1 ⊗·· ·⊗ f 2m+2) = Trs
(

f 0[F , f 1] . . . . . . [F , f 2m+2]
)
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so that(
S(φ2m)+ (m +1)φ2m+2) ( f 0 ⊗ f 1 ⊗·· ·⊗ f 2m+2)

=
2m+1∑

j=0
Trs

(
f 0[F , f 1] . . . [F , f j−1]( f j f j+1)[F , f j+2] . . . [F , f 2m+2]

)
+ (m +1)Trs

(
f 0[F , f 1] . . . . . . [F , f 2m+2]

)
(61)

We now consider ψ=∑2m+1
j=0 (−1) j−1ψ j , where

ψ j ( f 0 ⊗ f 1 ⊗·· ·⊗ f 2m+1) = Tr
(
ϵF f j [F , f j+1] . . . [F , f 2m+1][F , f 0][F , f 1] . . . [F , f j−1]

)
(62)

Since 2m ≥ p −1 and (H ,F ) is a p-summable even Fredholm module over C , it follows that the
operator ϵF f j [F , f j+1] . . . [F , f 2m+1][F , f 0][F , f 1] . . . [F , f j−1] is trace class.

We observe that τψ j =ψ j−1 for 1 ≤ j ≤ 2m +1 and τψ0 =ψ2m+1. It follows that (1−λ)(ψ) = 0.
Hence, ψ ∈C 2m+1

λ
(C ) = Ker(1−λ). Using (62), we have

(bψ j )( f 0 ⊗ f 1 ⊗·· ·⊗ f 2m+2)

=
2m+1∑

i=0
(−1)i ψ j ( f 0 ⊗·· ·⊗ f i f i+1 ⊗·· ·⊗ f 2m+2)+ψ j ( f 2m+2 f 0 ⊗ f 1 ⊗·· ·⊗ f 2m+1)

= Tr
(
ϵF f j+1[F , f j+2] . . . [F , f 2m+2] f 0[F , f 1] . . . [F , f j ]

)
+ (−1) j−1 Tr

(
ϵF f j+1[F , f j+2] . . . [F , f 2m+2][F , f 0][F , f 1] . . . f j

)
+Tr

(
ϵF f j [F , f j+1] . . . [F , f 2m+2] f 0[F , f 1] . . . [F , f j−1]

)
We now set β j = [F , f j+2] . . . [F , f 2m+2] f 0[F , f 1] . . . [F , f j−1]. Then, we have

[F ,β j ] =Fβ j − (−1)2mβ j F =F [F , f j+2] . . . [F , f 2m+2] f 0[F , f 1] . . . [F , f j−1]

− [F , f j+2] . . . [F , f 2m+2] f 0[F , f 1] . . . [F , f j−1]F

= (−1) j−1[F , f j+2] . . . [F , f 2m+2][F , f 0][F , f 1] . . . [F , f j−1]

With α j = f j F f j+1, we get

(−1) j−1 Tr
(
ϵF f j+1[F , f j+2] . . . [F , f 2m+2][F , f 0][F , f 1] . . . [F , f j−1] f j

)
= Tr

(
ϵF f j+1[F ,β j ] f j

)
= Trs

(
α j [F ,β j ]

)
= Trs ([F ,α j ]β j ) (63)

where we have used the fact that Trs is a closed graded trace and Trs (T ) = Tr(ϵT ) for any operator
that is trace class (see [12, Lemma 2]). Thus, we have

(bψ j )( f 0 ⊗ f 1 ⊗·· ·⊗ f 2m+2) =−Trs

(
[F , f j ]F f j+1β j

)
+Trs ([F ,α j ]β j )+Trs

(
F f j [F , f j+1]β j

)
Since

F [F , f j f j+1] =F [F , f j ] f j+1 +F f j [F , f j+1] =−[F , f j ]F f j+1 +F f j [F , f j+1],

we obtain

(bψ j )( f 0 ⊗ f 1 ⊗·· ·⊗ f 2m+2) = Trs
((

F [F , f j f j+1]+ [F ,α j ]
)
β j

)
As

F [F , f j f j+1]+ [F ,α j ] =F [F , f j f j+1]+Fα j +α j F = [F , f j ][F , f j+1]+2 f j f j+1
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we get

(bψ)( f 0 ⊗ f 1 ⊗·· ·⊗ f 2m+2) =
2m+1∑

j=0
(−1) j−1(bψ j )( f 0 ⊗ f 1 ⊗·· ·⊗ f 2m+2)

=
2m+1∑

j=0
(−1) j−1

(
2Trs

(
f j f j+1β j )+Trs

(
[F , f j ][F , f j+1]β j ))

=
2m+1∑

j=0
2Trs

(
f 0[F , f 1] . . . [F , f j−1]( f j f j+1)[F , f j+2] . . . [F , f 2m+2]

)
+

2m+1∑
j=0

Trs
(

f 0[F , f 1] . . . [F , f 2m+2]
)

=
2m+1∑

j=0
2Trs

(
f 0[F , f 1] . . . [F , f j−1]( f j f j+1)[F , f j+2] . . . [F , f 2m+2]

)
+ (2m +2)Tr

(
f 0[F , f 1] . . . [F , f 2m+2]

)
The result now follows by (61). □

8. Homotopy invariance of the Chern character

Let SHilb2 be the full subcategory of SHilbZ/2Z whose objects are of the form D = D0 ⊕D1 with
D0 = D1 = H for some separable Hilbert space H , and whose morphisms are bounded linear
maps. Given separable Hilbert spaces H , H ′, a sequence of operators {Tn ∈ B(H ,H ′)}n≥1

converges to T ∈ B(H ,H ′) in the strong topology if Tn x → T x in the norm on H ′ for each
x ∈ H (see, for instance, [41, Section 4.1]). A function φ : [0,1] → B(H ,H ′) is strongly C 1 if it is
differentiable and its derivative is continuous with respect to the strong topology on B(H ,H ′).

In this section, if D =H ⊕H ∈ SHilb2, we will denote by F (D) the morphism in SHilb2(D,D) =
B(H ⊕H ,H ⊕H ) given by the matrix

(
0 1
1 0

)
swapping the two copies of H .

Lemma 39. Let C be a smallC-category and {Ht : C → SHilb2}t∈[0,1] be a family of linear functors
such that for each X ∈ Ob(C ), we have Ht (X ) =Ht ′ (X ) for all t , t ′ ∈ [0,1]. We put H (X ) :=Ht (X )
for all t ∈ [0,1]. For each f : X → Y in C , we assume that the function

p f : [0,1] −→ SHilbZ/2Z(Ht (X ),Ht (Y )) t 7−→Ht ( f )

is strongly C 1. Then if δt ( f ) := p ′
f (t ), we have

δt ( f g ) =Ht ( f )◦δt (g )+δt ( f )◦Ht (g )

for composable morphisms f , g in C .

Proof. We have

δt ( f g )−Ht ( f )◦δt (g )−δt ( f )◦Ht (g )

= p ′
f g (t )−Ht ( f )◦p ′

g (t )−p ′
f (t )◦Ht (g )

= lim
s→0

1

s

(
p f g (t + s)−p f g (t )−Ht ( f )◦pg (t + s)+Ht ( f )◦pg (t )−p f (t + s)◦Ht (g )+p f (t )◦Ht (g )

)
= lim

s→0

1

s

(
Ht+s ( f g )−Ht ( f g )−Ht ( f )Ht+s (g )+Ht ( f )Ht (g )−Ht+s ( f )Ht (g )+Ht ( f )Ht (g )

)
= lim

s→0

1

s

(
Ht+s ( f )−Ht ( f )

)(
Ht+s (g )−Ht (g )

)
= lim

s→0

1

s

(
p f (t + s)−p f (t )

)(
pg (t + s)−pg (t )

)
= p ′

f (t ) lim
s→0

(
pg (t + s)−pg (t )

)= 0 □
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For each n ∈Z≥0, we now define an operator A : C N n(C ) →C N n(C ) given by

A := 1+λ+λ2 +·· ·+λn

where λ is the (signed) cyclic operator. We observe that if ψ ∈ C n
λ

(C ) = Ker(1−λ), then Aψ =
(n +1)ψ. From the relation

(1−λ)(1+2λ+3λ2 +·· ·+ (n +1)λn) = A− (n +1) ·1

it is immediate that Ker(A) ⊆ Im(1−λ). Let B0 : C N n+1(C ) → C N n(C ) be the map defined as
follows:

(B0φ)( f 0 ⊗·· ·⊗ f n) :=φ(1X0 ⊗ f 0 ⊗·· ·⊗ f n)− (−1)n+1φ( f 0 ⊗·· ·⊗ f n ⊗1X0 )

for any f 0 ⊗ f 1 ⊗·· ·⊗ f n ∈ HomC (X1, X0)⊗HomC (X2, X1)⊗·· ·⊗HomC (X0, Xn). We now set

B := AB0 : C N n+1(C ) −→C N n(C )

Lemma 40. We have

(i) b A = Ab′.
(ii) bB +Bb = 0.

Proof.

(i). This follows from the general fact that the dual C N •(C ) of the cyclic nerve of C is a cocyclic
module (see, for instance, [34, Section 2.5]).

(ii). For any f 0⊗ f 1⊗·· ·⊗ f n ∈ HomC (X1, X0)⊗HomC (X2, X1)⊗·· ·⊗HomC (X0, Xn) andφ ∈C N nC ,
we have

(B0bφ)( f 0 ⊗·· ·⊗ f n) = (bφ)(1X0 ⊗ f 0 ⊗·· ·⊗ f n)− (−1)n+1(bφ)( f 0 ⊗·· ·⊗ f n ⊗1X0 )

=φ( f 0 ⊗·· ·⊗ f n)+
n−1∑
i=0

(−1)i+1φ(1X0 ⊗ f 0 ⊗·· ·⊗ f i f i+1 ⊗·· ·⊗ f n)

+ (−1)n+1φ( f n ⊗ f 0 ⊗·· ·⊗ f n−1)

− (−1)n+1

(
n−1∑
i=0

(−1)iφ( f 0 ⊗·· ·⊗ f i f i+1 ⊗·· ·⊗ f n ⊗1X0 )

)
On the other hand,

(b′B0φ)( f 0 ⊗·· ·⊗ f n) =
n−1∑
i=0

(−1)iφ(1X0 ⊗ f 0 ⊗·· ·⊗ f i f i+1 ⊗·· ·⊗ f n)

− (−1)n
n−1∑
i=0

(−1)iφ( f 0 ⊗·· ·⊗ f i f i+1 ⊗·· ·⊗ f n ⊗1X0 )

Thus, we obtain

(B0b +b′B0)(φ)( f 0 ⊗·· ·⊗ f n) =φ( f 0 ⊗·· ·⊗ f n)+ (−1)n+1φ( f n ⊗ f 0 ⊗·· ·⊗ f n−1)

Therefore,

(B0b +b′B0)(φ) =φ−λφ (64)

Now, by applying the operator A to both sides of (64), we have

AB0b + Ab′B0 = 0

The result now follows from part (i). □

Proposition 41. The image of the map B : C N n+1(C ) →C N n(C ) is C n
λ

(C ).
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Proof. Let φ ∈ C n
λ

(C ) and let R := ⊕
X ,Y ∈Ob(C ) Hom(X ,Y ). Then R is an algebra with mutiplica-

tion given by composition wherever possible and 0 otherwise. We choose a linear map η : R → C

such that
η( f ) = 0 for f ∈ HomC (X ,Y ), X ̸= Y

η(1X ) = 1 ∀ X ∈ Ob(C )

We now define ψ ∈C N n+1(C ) by setting

ψ( f 0 ⊗·· ·⊗ f n+1) := η( f 0)φ( f 1 ⊗·· ·⊗ f n+1)

+ (−1)n (
φ

(
f 0 ⊗ f 1 ⊗·· ·⊗ f n)

η( f n+1)−η( f 0)φ
(
1X1 ⊗ f 1 ⊗·· ·⊗ f n)

η( f n+1)
)

for any f 0⊗ f 1⊗·· ·⊗ f n+1 ∈ HomC (X1, X0)⊗HomC (X2, X1)⊗·· ·⊗HomC (X0, Xn+1). We observe that
if the tuple ( f 1, . . . , f n+1) is not cyclically composable, i.e., X0 ̸= X1, then the first term vanishes as
η( f 0) = 0. Similarly, if the tuple ( f 0, . . . , f n) is not cyclically composable, i.e., Xn+1 ̸= X0, then the
second term vanishes. For the last term, η( f 0) and η( f n+1) will be non zero only if X1 = X0 and
X0 = Xn+1 which means that Xn+1 = X1 and the tuple (1X1 , f 1, . . . , f n) is cyclically composable.

Then, for any g 0 ⊗ g 1 ⊗·· ·⊗ g n ∈ HomC (Y1,Y0)⊗HomC (Y2,Y1)⊗·· ·⊗HomC (Y0,Yn), we have

ψ(1Y0 ⊗ g 0 ⊗·· ·⊗ g n)

= η(1Y0 )φ(g 0 ⊗·· ·⊗ g n)

+ (−1)n
(
φ

(
1Y0 ⊗ g 0 ⊗·· ·⊗ g n−1)η(g n)−φ(

η(1Y0 )1Y0 ⊗ g 0 ⊗·· ·⊗ g n−1)η(g n)
)

=φ(g 0 ⊗·· ·⊗ g n)

Also

ψ(g 0 ⊗·· ·⊗ g n ⊗1Y0 ) = η(g 0)φ(g 1 ⊗·· ·⊗ g n ⊗1Y0 )

+ (−1)n
(
φ

(
g 0 ⊗·· ·⊗ g n)

η(1Y0 )−φ(
η(g 0)1Y1 ⊗ g 1 ⊗·· ·⊗ g n)

η(1Y0 )
)

= (−1)nφ
(
g 0 ⊗·· ·⊗ g n)

where the second equality follows from the fact that φ ∈ C n
λ

(C ) and that η(g 0) = 0 whenever
Y1 ̸= Y0. Thus,

(B0ψ)(g 0 ⊗·· ·⊗ g n) =ψ(1Y0 ⊗ g 0 ⊗·· ·⊗ g n)− (−1)n+1ψ(g 0 ⊗·· ·⊗ g n ⊗1Y0 )

= 2φ(g 0 ⊗·· ·⊗ g n)

Since φ ∈ Ker(1 − λ), we now have Bψ = 2Aφ = 2(n + 1)φ. Thus, φ ∈ Im(B). Conversely, let
φ ∈ Im(B). Then, φ= Bψ for some ψ ∈C N n+1(C ). Using the fact that (1−λ)A = 0, we have

(1−λ)(φ) = (1−λ)(Bψ) = ((1−λ)AB0)ψ= 0

This proves the result. □

Proposition 42. Let ψ ∈C N n(C ) be such that bψ ∈C n+1
λ

(C ). Then,

(i) Bψ ∈ Z n−1
λ

(C ) i.e., b(Bψ) = 0 and (1−λ)(Bψ) = 0.
(ii) S(Bψ) = n(n +1)bψ in H n+1

λ
(C ).

Proof.

(i). We know that (1 −λ)(Bψ) = (1 −λ)(AB0)(ψ) = 0. Further, for any φ ∈ Ker(1 −λ), we have
B0φ= 0. Therefore, it follows that bBψ=−Bbψ=−AB0bψ= 0.
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(ii). We have to show that SBψ−n(n +1)bψ = bζ for some ζ ∈ C n
λ

(C ). We set φ = Bψ. Then, φ
is the character of an (n − 1)-dimensional cycle (S , ∂̂, T̂ ,ρ) over C . By Proposition 37, we have
Sφ= bψ′, where ψ′ ∈C N n(C ) is given by

ψ′( f 0 ⊗·· ·⊗ f n) =
n∑

j=1
(−1) j−1 T̂

(
f 0∂̂ f 1 . . . ∂̂ f j−1 f j ∂̂ f j+1 . . . ∂̂ f n

)
Suppose we have ψ′′ ∈ C N n(C ) such that ψ′′−ψ ∈ B n(C ) and ζ =ψ′−n(n +1)ψ′′ ∈ C n

λ
(C ). This

would give
bζ= bψ′−n(n +1)bψ′′ = SBψ−n(n +1)bψ

We set θ := B0ψ, θ′ := 1
nφ and θ′′ := θ−θ′ ∈C N n−1(C ). Since Bψ ∈ Z n−1

λ
(C ), we have

Aθ′′ = AB0ψ− 1

n
Aφ= Bψ− 1

n
ABψ= Bψ− 1

n
nBψ= 0

Since Ker(A) ⊆ Im(1−λ), we have θ′′ = (1−λ)(ψ1) for someψ1 ∈C N n−1(C ). We takeψ′′ =ψ−bψ1.
We now show that (1−λ)(ζ) = 0, i.e., (1−λ)(ψ′) = n(n +1)(1−λ)(ψ′′) where ζ =ψ′−n(n +1)ψ′′.
We see that

(τnψ
′)( f 0 ⊗·· ·⊗ f n) =ψ′( f n ⊗ f 0 ⊗·· ·⊗ f n−1) =

n−1∑
j=0

(−1) j T̂
(
∂̂ f 0∂̂ f 1 . . . ∂̂ f j−1 f j ∂̂ f j+1 . . . ∂̂ f n−1 f n

)
where we have used the fact that T̂ is a graded trace. For 1 ≤ j ≤ n −1, we now set

ω j := f 0(∂̂ f 1 . . . ∂̂ f j−1) f j (∂̂ f j+1 . . . ∂̂ f n−1) f n

Then,

∂̂ω j = (∂̂ f 0∂̂ f 1 . . . ∂̂ f j−1) f j (∂̂ f j+1 . . . ∂̂ f n−1) f n + (−1) j−1 f 0(∂̂ f 1 . . . ∂̂ f j−1∂̂ f j ∂̂ f j+1 . . . ∂̂ f n−1) f n

+ (−1)n f 0(∂̂ f 1 . . . ∂̂ f j−1) f j (∂̂ f j+1 . . . ∂̂ f n−1∂̂ f n)

Thus,

0 = T̂ (∂̂ω j ) = T̂
(
∂̂ f 0∂̂ f 1 . . . ∂̂ f j−1 f j ∂̂ f j+1 . . . ∂̂ f n−1 f n

)
+ (−1) j−1T̂

(
f 0∂̂ f 1 . . . ∂̂ f j−1∂̂ f j ∂̂ f j+1 . . . ∂̂ f n−1 f n

)
+ (−1)n T̂

(
f 0∂̂ f 1 . . . ∂̂ f j−1 f j ∂̂ f j+1 . . . ∂̂ f n−1∂̂ f n

)
Therefore,

(1−λ)(ψ′)( f 0 ⊗·· ·⊗ f n) =−
n∑

j=1
(−1) j T̂

(
f 0∂̂ f 1 . . . ∂̂ f j−1 f j ∂̂ f j+1 . . . ∂̂ f n

)
− (−1)n

n−1∑
j=0

(−1) j T̂
(
∂̂ f 0∂̂ f 1 . . . ∂̂ f j−1 f j ∂̂ f j+1 . . . ∂̂ f n−1 f n

)
=−

(
(−1)n T̂

(
f 0∂̂ f 1 . . . ∂̂ f n−1 f n)+ (−1)n T̂

(
f 0∂̂ f 1 . . . ∂̂ f n−1 f n)

+
n−1∑
j=1

(−1) j
(
T̂

(
f 0∂̂ f 1 . . . ∂̂ f j−1 f j ∂̂ f j+1 . . . ∂̂ f n)

+ (−1)n T̂
(
∂̂ f 0∂̂ f 1 . . . ∂̂ f j−1 f j ∂̂ f j+1 . . . ∂̂ f n−1 f n)))

= (−1)n+1(n +1)T̂ ( f n f 0∂̂ f 1 . . . ∂̂ f n−1)

= (−1)n+1(n +1)φ( f n f 0 ⊗ f 1 ⊗·· ·⊗ f n−1)

Hence,
(1−λ)(ψ′)( f 0 ⊗·· ·⊗ f n) = (−1)n+1 (n +1)φ( f n f 0 ⊗ f 1 ⊗·· ·⊗ f n−1) (65)
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On the other hand, using the definition of ψ′′ and the fact that (1−λ)b = b′(1−λ), we have

(1−λ)(ψ′′) = (1−λ)(ψ)− (1−λ)(bψ1) = (1−λ)(ψ)−b′(1−λ)(ψ1) = (1−λ)(ψ)−b′θ′′

Since bψ ∈ C n+1
λ

(C ), we have from (64) that (1 − λ)(ψ) = (B0b + b′B0)(ψ) = b′B0ψ = b′θ =
b′θ′+b′θ′′. Hence,

(1−λ)(ψ′′) = b′θ′ = 1

n
b′φ

Since φ= Bψ ∈ Z n−1
λ

(C ), bφ= 0 and therefore

(1−λ)(ψ′′)( f 0 ⊗·· ·⊗ f n) = 1

n
(b′φ)( f 0 ⊗·· ·⊗ f n) = 1

n
(−1)n−1φ( f n f 0 ⊗ f 1 ⊗·· ·⊗ f n−1) (66)

The result now follows by comparing (65) and (66). □

Proposition 43. Let C be a small C-category and {Ht : C → SHilb2}t∈[0,1] be a family of linear
functors such that for each X ∈ Ob(C ), we have Ht (X ) =Ht ′ (X ) for all t , t ′ ∈ [0,1] and Ht ( f ) is of
degree zero for each f ∈ HomC (X ,Y ) and t ∈ [0,1]. We put H (X ) :=Ht (X ) for all t ∈ [0,1].

Let F be the family of operators

F =
{

(F (H (X )) =
(
0 1
1 0

)}
X∈Ob(C )

(67)

Let p = 2m be an even integer. We assume that

(i) for each f ∈ HomC (X ,Y ), the association t 7→ [F ,Ht ( f )] is a continuous map

ζ f : [0,1] −→Bp (H (X ),H (Y )) t 7−→ [F ,Ht ( f )]

(ii) for each f ∈ HomC (X ,Y ), the association

p f : [0,1] −→ SHilbZ/2Z(Ht (X ),Ht (Y )) t 7−→Ht ( f )

is piecewise strongly C 1.

Let (Ht ,F ) be the corresponding p-summable Fredholm modules over C . Then, the class in
H p+2
λ

(C ) of the (p + 2)-dimensional character of the Fredholm module (Ht ,F ) is independent
of t .

Proof. For any t ∈ [0,1], let φt be the p-dimensional character of the Fredholm module (Ht ,F ).
We will show that S(φt1 ) = S(φt2 ) for any t1, t2 ∈ [0,1].

By assumption, we know that there exists a finite set R = {0 = r0 ≤ r1 < ·· · < rk ≤ rk+1 = 1} ⊆
[0,1] such that p f : [0,1] → SHilbZ/2Z(Ht (X ),Ht (Y )) is continuously differentiable in each
[ri ,ri+1]. By abuse of notation, we set for each f ∈ HomC (X ,Y ):

δt ( f ) := p ′
f (t ) ∈ SHilbZ/2Z(Ht (X ),Ht (Y )) (68)

Here, it is understood that if t = ri for some 1 ≤ i ≤ k, we use the right hand derivative when ri is
treated as a point of [ri ,ri+1] and the left hand derivative when ri is treated as a point of [ri−1,ri ].

Using Lemma 39, we know that

δt ( f g ) =Ht ( f )◦δt (g )+δt ( f )◦Ht (g ) (69)

for any t ∈ [0,1] and for any pair of composable morphisms f and g in C .
For any t ∈ [0,1] and 1 ≤ j ≤ p +1, we set

ψ
j
t ( f 0 ⊗·· ·⊗ f p+1)

:= Tr
(
ϵHt ( f 0)[F ,Ht ( f 1)] . . . [F ,Ht ( f j−1)]δt ( f j )[F ,Ht ( f j+1)] . . . [F ,Ht ( f p+1)]

)
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Using the expression in (69) and the fact that ϵH ( f ) =H ( f )ϵ for any morphism f ∈C , it may be
easily verified that bψ j

t = 0. For example, when j = 1, we have (suppressing the functor H )

(bψ1
t )( f 0 ⊗·· ·⊗ f p+2)

=
p+1∑
i=0

ψ1
t ( f 0 ⊗ . . . f i f i+1 ⊗·· ·⊗ f p+2)+ψ j

t ( f p+2 f 0 ⊗ f 1 ⊗·· ·⊗ f p+2)

= Tr
(
ϵ f 0 f 1δt ( f 2)[F , f 3] . . . [F , f p+2]

)−Tr
(
ϵ f 0δt ( f 1 f 2)[F , f 3] . . . [F , f p+2]

)
+Tr

(
ϵ f 0δt ( f 1)[F , f 2 f 3] . . . [F , f p+2]

)−Tr
(
ϵ f 0δt ( f 1)[F , f 2][F , f 3 f 4] . . . [F , f p+2]

)+ . . .

· · ·−Tr
(
ϵ f 0δt ( f 1)[F , f 2] . . . [F , f p+1 f p+2]

)+Tr
(
ϵ f p+2 f 0δt ( f 1)[F , f 2][F , f 3 f 4] . . . [F , f p+1]

)
= 0

We then define

ψt :=
p+1∑
j=0

(−1) j−1ψ
j
t

We have bψt = 0.
For fixed f , it follows from the compactness of [0,1] and the assumptions (1) and (2) that

the families {Ht ( f )}t∈[0,1], {p f (t )}t∈[0,1] and {δt ( f )}t∈[0,1] are uniformly bounded. For the sake of
simplicity, we assume that there is only a single point r ∈ R such that t1 ≤ r ≤ t2. Then, we form
ψ ∈C N p+1(C ) by setting

ψ( f 0 ⊗·· ·⊗ f p+1) :=
∫ r

t1

ψt ( f 0 ⊗·· ·⊗ f p+1)dt +
∫ t2

r
ψt ( f 0 ⊗·· ·⊗ f p+1)dt

We now have

ψ(1X0 ⊗ f 0 ⊗·· ·⊗ f p )

=
∫ r

t1

ψt (1X0 ⊗ f 0 ⊗·· ·⊗ f p )dt +
∫ t2

r
ψt (1X0 ⊗ f 0 ⊗·· ·⊗ f p )dt

=
∫ r

t1

(
p∑

j=0
(−1) j Tr

(
ϵ[F ,Ht ( f 0)] . . . [F ,Ht ( f j−1)]δt ( f j )[F ,Ht ( f j+1)] . . . [F ,Ht ( f p )]

))
dt

+
∫ t2

r

(
p∑

j=0
(−1) j Tr

(
ϵ[F ,Ht ( f 0)] . . . [F ,Ht ( f j−1)]δt ( f j )[F ,Ht ( f j+1)] . . . [F ,Ht ( f p )]

))
dt

Let φ : [0,1] → Z p
λ

(C ) be the map given by t 7→φt . We now claim that

ψ(1X0 ⊗ f 0 ⊗·· ·⊗ f p ) =
∫ r

t1

φ′(t )( f 0 ⊗·· ·⊗ f p )dt +
∫ t2

r
φ′(t )( f 0 ⊗·· ·⊗ f p )dt

Indeed, we have

φ′(t )( f 0 ⊗·· ·⊗ f p ) = lim
s→0

1

s
(φt+s −φt )( f 0 ⊗·· ·⊗ f p )

= lim
s→0

(
Tr

(
ϵ

1

s

(
Ht+s ( f 0)−Ht ( f 0)

)
[F ,Ht+s ( f 1)] . . . [F ,Ht+s ( f p )]

)
+Tr

(
ϵHt ( f 0)

[
F ,

1

s

(
Ht+s ( f 1)−Ht ( f 1)

)]
[F ,Ht+s ( f 2)] . . . [F ,Ht+s ( f p )]

)
+·· ·+Tr

(
ϵHt ( f 0)[F ,Ht ( f 1)] . . .

[
F ,

1

s

(
Ht+s ( f p )−Ht ( f p )

)]))
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By (i), we know that the association t 7→ [F ,Ht ( f )] is a continuous map for each morphism f ∈C .
Therefore, we have

lim
s→0

(
Tr

(
ϵHt ( f 0)[F ,Ht ( f 1)] . . . [F ,Ht ( f j−1)]

[
F ,

1

s

(
Ht+s ( f j )−Ht ( f j )

)]
. . . [F ,Ht+s ( f p )]

))
= lim

s→0
(−1) j

(
Tr

(
ϵ[F ,Ht ( f 0)] . . . [F ,Ht ( f j−1)]

× 1

s

(
Ht+s ( f j )−Ht ( f j )

)
[F ,Ht+s ( f j+1)] . . . [F ,Ht+s ( f p )]

))
= (−1) j Tr

(
ϵ[F ,Ht ( f 0)][F ,Ht ( f 1)] . . . [F ,Ht ( f j−1)]δt ( f j )[F ,Ht ( f j+1)] . . . [F ,Ht ( f p )]

)
From this, we obtain∫ r

t1

φ′(t )( f 0 ⊗·· ·⊗ f p )dt +
∫ t2

r
φ′(t )( f 0 ⊗·· ·⊗ f p )dt

=
∫ r

t1

p∑
j=0

(−1) j Tr
(
ϵ[F ,Ht ( f 0)][F ,Ht ( f 1)] . . .

[F ,Ht ( f j−1)]δt ( f j )[F ,Ht ( f j+1)] . . . [F ,Ht ( f p )]
)
dt

+
∫ t2

r

p∑
j=0

(−1) j Tr
(
ϵ[F ,Ht ( f 0)][F ,Ht ( f 1)] . . .

[F ,Ht ( f j−1)]δt ( f j )[F ,Ht ( f j+1)] . . . [F ,Ht ( f p )]
)
dt

=ψ(1X0 ⊗ f 0 ⊗·· ·⊗ f p )

Hence

ψ(1X0 ⊗ f 0 ⊗·· ·⊗ f p ) =φt2 ( f 0 ⊗·· ·⊗ f p )−φr ( f 0 ⊗·· ·⊗ f p )+φr ( f 0 ⊗·· ·⊗ f p )−φt1 ( f 0 ⊗·· ·⊗ f p )

=φt2 ( f 0 ⊗·· ·⊗ f p )−φt1 ( f 0 ⊗·· ·⊗ f p )

Since ψ( f 0 ⊗·· ·⊗ f p ⊗1X0 ) = 0, we now have

(B0ψ)( f 0 ⊗·· ·⊗ f p ) =ψ(1X0 ⊗ f 0 ⊗·· ·⊗ f p )−ψ( f 0 ⊗·· ·⊗ f p ⊗1X0 )

= (φt2 −φt1 )( f 0 ⊗·· ·⊗ f p )

Since bψ= 0, using Proposition 42 and the fact that φt2 −φt1 ∈ Ker(1−λ), we have

0 = S(Bψ) = S(AB0ψ) = (p +1)S(φt2 −φt1 )

This proves the result. □

Theorem 44. Let C be a smallC-category and {ρt : C → SHilb2}t∈[0,1] be a family of linear functors
such that for each X ∈ Ob(C ), we have ρt (X ) = ρt ′ (X ) for all t , t ′ ∈ [0,1]. We put ρ(X ) := ρt (X ) for
all t ∈ [0,1]. Further, for each t ∈ [0,1], let

Ft :=
{
Ft (X ) :=

(
0 Qt (X )

P t (X ) 0

)
: ρ(X ) −→ ρ(X )

}
X∈Ob(C )

(70)

with P t (X ) = Q−1
t (X ) be such that (ρt ,Ft ) is a p-summable Fredholm module over the category

C . We set ρ(X ) = ρ′(X )⊕ρ′(X ) ∈ SHilb2. We further assume that for some even integer p and for
any f ∈ HomC (X ,Y ), we have

(i) t 7→ ρ+
t ( f )−Qtρ

−
t ( f )P t is a continuous map from [0,1] to Bp (ρ′(X ),ρ′(Y )), where ρ±

t are
the two components of the morphism ρt of degree zero.

(ii) t 7→ ρ+
t ( f ) and t 7→ Qtρ

−
t ( f )P t are piecewise strongly C 1 maps from [0,1] to

SHilb(ρ′(X ),ρ′(Y )).

Then, the (p +2)-dimensional character chp+2(ρt ,Ft ) ∈ H p+2
λ

(C ) is independent of t ∈ [0,1].
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Proof. For each t ∈ [0,1], we set Tt := (1 0
0 Qt

)
. Then, T −1

t = (1 0
0 P t

)
and F ′

t :=Tt Ft T
−1

t = (
0 1
1 0

)
.

For each t ∈ [0,1], we also define a linear functor Ht : C → SHilbZ/2Z given by

Ht (X ) := ρ(X ) Ht ( f ) :=Ttρt ( f )T −1
t

Then, we have

[F ′
t ,Ht ( f )] =

(
0 Qtρt

−( f )P t −ρ+
t ( f )

ρ+
t ( f )−Qtρt

−( f )P t 0

)
Therefore, using assumption (i), we see that the map t 7→ [F ′,Ht ( f )] from [0,1] to
Bp (Ht (X ),Ht (Y )) is continuous for each f ∈ HomC (X ,Y ). Further,

Ht ( f ) =Ttρt ( f )T −1
t =

(
ρ+

t ( f ) 0
0 Qtρt

−( f )P t

)
Therefore, by applying assumption (ii), we see that the map t 7→ Ht ( f ) is piecewise strongly C 1.
Since trace is invariant under similarity, the result now follows using Proposition 43. □

Theorem 45. Let C be a smallC-category and {ρt : C → SHilb2}t∈[0,1] be a family of linear functors
such that for each X ∈ Ob(C ), we have ρt (X ) = ρt ′ (X ) for all t , t ′ ∈ [0,1]. We put ρ(X ) := ρt (X ) for
all t ∈ [0,1]. Further, for each t ∈ [0,1] and X ∈ Ob(C ), let

Ft (X ) :=
(

0 Qt (X )
P t (X ) 0

)
: ρ(X ) −→ ρ(X )

with Q−1
t = P t be such that (ρt ,Ft ) is a p-summable Fredholm module over the category C . We

further assume that for some even integer p, we have

(i) For any f ∈ HomC (X ,Y ), t 7→ ρt ( f ) is a strongly C 1-map from [0,1] to
SHilbZ/2Z(ρ(X ),ρ(Y )).

(ii) For any X ∈C , t 7→Ft (X ) is a strongly C 1-map from [0,1] to SHilbZ/2Z(ρ(X ),ρ(X )).

Then, the (p +2)-dimensional character chp+2(ρt ,Ft ) ∈ H p+2
λ

(C ) is independent of t ∈ [0,1].

Proof. By definition, ρt ( f ) =
(
ρ+( f ) 0

0 ρ−( f )

)
and Ft (X ) =

(
0 Qt (X )

P t (X ) 0

)
. As such, it is clear that a

system satisfying the assumptions (1) and (2) above also satisfies the assumptions in Theorem 44.
This proves the result. □
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