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1. Introduction

In his celebrated work [12], Connes extended differential calculus beyond the framework of
manifolds to include noncommutative spaces such as that of leaves of a foliation or the orbit
space of the action of a group on a manifold. For this, he began by considering Fredholm modules
over an algebra A which could in general be noncommutative. When A is commutative, such as
the space of smooth functions on a manifold M, examples of Fredholm modules over A may be
obtained by considering elliptic operators on M. More generally, by considering Schatten classes
inside the collection of bounded operators on a Hilbert space, Connes studied the notion of
p-summable Fredholm modules over A in [12]. The Fredholm modules over A lead to Chern
characters taking values in the cyclic cohomology of A. Moreover, these cohomology classes are
related by means of Connes’ periodicity operator.

In this paper, we study Fredholm modules over linear categories, along with their Chern
characters taking values in cyclic cohomology. Our idea is to have a counterpart of the algebraic
notion of modules over a category, a subject which has been highly developed in the literature
(see, for instance, [7, 17, 35, 36, 45, 46]). A small preadditive category is treated as a ring with
several objects, following an idea first advanced by Mitchell [39]. We note that there is also a well-
developed study of spaces in algebraic geometry over categories (see, for instance, [16,17,44]). It
is also important to mention here the work of Baez [2] with the category of Hilbert spaces as well
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as the recent work of Henriques [22], Henriques and Penneys [23] with fusion categories with
potential applications to physics.

Let €6 be a small linear category. Let SHilbz/»,7 be the category of Z/2Z-graded separable
Hilbert spaces and whose morphisms are bounded linear maps. We consider pairs (77, &), where
S is alinear functor

H : € — SHilbz,»7 (1)

and F = {Fx : H(X) — 7 (X)}xeob(e) is a family of bounded and involutive linear operators
each of degree 1. When the elements of & satisfy certain commutator conditions with respect
to the operators {77 (f)} feMor(€), We say that the pair (47, %) is a Fredholm module over the
category %. Following the methods of Connes [12], we construct Chern characters of these
Fredholm modules taking values in the cyclic cohomology of ¢ and study how they are related by
means of the periodicity operator. We hope this is the first step towards a larger program which
mixes together the techniques in categorical algebra with those in differential geometry.

The paper consists of two parts. In the first part, we study cyclic cohomology. We work more
generally with a small linear category 2 whose morphism spaces carry a well-behaved action
of a Hopf algebra H. In other words, 2y is a small Hopf-module category (or H-category) in
the sense of Cibils and Solotar [10], with which we can get H-linear categorical generalizations
of several results in Hopf cyclic cohomology. We recall that in [13-15], Connes and Moscovici
introduced Hopf cyclic cohomology as a generalization of Lie algebra cohomology adapted to
noncommutative geometry. For an H-category 2y, we describe the cocycles and coboundaries
that determine its Hopf cyclic cohomology groups by extending Connes’ original construction of
cyclic cohomology from [11] and [12] in terms of cycles and closed graded traces on differential
graded algebras. An important role in our paper is played by “semicategories,” which are cate-
gories that may not contain identity maps. This notion, introduced by Mitchell [40], is precisely
what we need in order to categorify non-unital algebras. We work with the Hopf cyclic cohomol-
ogy groups HC; (2, M) having coefficients in M, where M is a stable anti-Yetter Drinfeld mod-
ule in the sense of [18].

Let k be a field. After collecting some preliminaries in Section 2, we begin in Section 3 by
considering the universal differential graded Hopf-module semicategory (or DGH-semicategory)
associated to the H-category 2y. For a DGH-semicategory (%y,0y) and n = 0, we let an n-
dimensional closed graded (H, M)-trace on .# be a collection of maps

TH:={TH: MeHomY, (X,X)— k}ycopn) @

satisying certaln conditions (see Definition 12). A cycle over 2y consists of a tuple
(VH,OH,M TH ) along with an H-linear semifunctor p : 9y — 5”0 In Theorem 14, we pro-
vide a description of the cocycles Z;, (2, M) in Hopf cyclic cohomology in terms of characters of
cycles over Dp. This result is an H -linear categorical version of Connes’ [12, Proposition 1, p. 98].
It also follows from Theorem 14 that there is a one-one correspondence between ZI'{ Dy, M) and
the collection of n-dimensional closed graded (H, M)-traces on the universal DGH-semicategory
Q(9y) associated to D .

In Sections 4 and 5, we provide a description of the space B;I(QZ 1, M) of cobound-
aries. Throughout, we take k = C. We consider families n of automorphisms n = {n(X) €
Autg, (X)} xeob@,y) such that h(n(X)) = e(h)n(X) for all € H and X € Ob(2p). We show that
these families form a group, which we denote by Uy (2p). Further, we show that the inner auto-
morphism of 2y induced by conjugating with an element n € Uy (2y) induces the identity func-
tor on HC},(2y, M). Using this, we obtain in Proposition 23 a set of sufficient conditions for the
Hopf cyclic cohomology of an H- category to be zero.

We say that a cycle (S, 0, M, TH) is vanishing if 5”0 is an H-category and 5”0 satisfies the
assumptions in Proposition 23. We describe the elements of B} (@y, M) in Theorem 28 as the
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characters of vanishing cycles over 2. Finally, in Theorem 30, we use categorified cycles and
vanishing cycles to construct a product in Hopf cyclic cohomologies

HCY(@y, M) ® HC] (@}, M) — HCY '@y 02, MOyM)  p,g=0 3)

where @ and 2}, are H-linear categories and M and M’ are stable anti-Yetter Drinfeld modules
over H satisfying certain conditions.

In the second part of the paper, we study Fredholm modules and Chern classes. For this, we
assume H = C = M and consider a small C-linear category 6. Let p = 1 be an integer. We will say
that a pair (¢, %) over € asin (1) is a p-summable Fredholm module if it satisfies

(F, f1:= (Fy 0 S (f) = H(f) 0o Fx) € BP (A (X), #(Y)) @

for any morphism f : X — Y in € (see Definition 31). Here, 87 (¢ (X), 7 (Y)) is the p-th
Schatten class inside the space of bounded linear operators from .77 (X) to 77 (Y). We mention
here that in this paper, we will consider only even Fredholm modules. We hope to tackle the case
of odd Fredholm modules over linear categories in a future paper [4].

Let H;(€) := HC:(€¢,C) denote the cyclic cohomology groups of €. Corresponding to a p-
summable Fredholm module (J#,%) and any 2m = p — 1, we construct a DG-semicategory
(Qw,#)€,0') along with a closed graded trace Tr = {Trg : Homé’”ﬂ - (X,X) — Clxeobg) of
dimension 2m. Let CN.(%¥) denote the cyclic nerve of ¥ and CN* (%) ‘its linear dual. By taking
the character of the corresponding cycle over €, we obtain ¢?™ € CN?™(€) which is given by
(see Theorem 34)

(P e fle® f2M) i=Trg (S (fOIF, FUIZ, fA.. 1 F, ™) (5)

forany f® f1®---® f>™ € CNou (). Then, $*™ lies in the space Z>™ () of cocycles for the cyclic
cohomology of €. The Chern character ch®™ (7, F) of the Fredholm module (37, &) will be the
class of $*™ in the cyclic cohomology H3™ (%) of 6.

We relate the Chern characters by means of the periodicity operator in Section 7. We know that
the action of the periodicity operator S: H; (€¢) — H;'LJr2 (¥) is given by taking the product as in (3)
with a certain class in the cohomology Hi (O). If (¢, F) is a p-summable Fredholm module over
% and 2m = p — 1, we show in Theorem 38 that

Finally, in Section 8, we describe the homotopy invariance of the Chern character. For this, we
consider a family {(p;, %)} re(0,1] of p-summable Fredholm modules

{p::€ — SHilbz/27} 0] F:t(X) 1 p(X) — p(X) )

each having the same underlying Hilbert space and satisfying some conditions. Then, if the p,
and &; vary in a strongly C! manner with respect to f € [0,1], we show in Theorem 45 that the
(p +2)-dimensional character ch?*? (%, ;) € H f (%) is independent of ¢ € [0, 1].

Notation. Throughout the paper, H is a Hopf algebra over the field k of characteristic zero, with
comultiplication A, counit £ and bijective antipode S. We will use Sweedler’s notation for the
coproduct A(h) = h; ® hy and for a left H-coaction p: M — H® M, p(m) = m1) ® m) (with
the summation sign suppressed). The small cyclic category of Connes [11] will be denoted by A.
The Hochschild differential will always be denoted by b and the modified Hochschild differential
(with the last face operator missing) will be denoted by b'.

On any cocyclic module %, we will denote by 7, the unsigned cyclic operator on C"(¢) and by
An the signed cyclic operator (—1)"7, on C"*(%). The complex computing cyclic cohomology of
¢ will be denoted by C; (¢) := Ker(1—A). Accordingly, the cyclic cocycles and cyclic coboundaries
will be denoted by Z /1 (%) and B/’1 (%) respectively.
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2. Preliminaries on H-categories and Hopf cyclic cohomology

A small Hopf-module category may be treated as a “Hopf-module algebra with several objects.”
In this section, we will collect some preliminaries on Hopf-module categories and on Hopf cyclic
cohomology. We note that the Hopf cyclic cohomology introduced by Connes and Moscovici
([13-15]) has been developed extensively by a number of authors (see, for instance, [1, 3, 19-21,
26-28,32,33,42]).
Definition 1 (see Cibils and Solotar [10]). Let H be a Hopf algebra over a field k. A k-linear
category Dy is said to be a left H-module category if
(i) Homg, (X,Y) is a left H-module for all X, Y € Ob(2y)
(i) hlx=€e(h)lx forall X € Ob(Py) and he H
(iii) the composition map is a morphism of H-modules, i.e., h(g f) = (h18)(hy f) foranyhe H,
f€Homg, (X,Y) and g € Homg,, (Y, Z).

Asmall left H-module category will be called a left H-category. We will denote by Caty the category
of all left H-categories with H-linear functors between them.

For more on Hopf-module categories, we refer the reader, for instance, to [5, 6,24,29]. Let Zy
be a left H-category. We set
CN,(@p) := @Homg,, (X1, Xo) ® Homg,, (X2, X1) ® - -- ® Homg,, (Xo, X) 8)
where the direct sum runs over all (X, X, ..., X,) € Ob(@x)""1. We observe that CN,,(2p) carries
the structure of a left H-module with action determined by
h(fle-ofMi=hflehyf ® - ®huf" 9)
forany f®---® f" € CN,(@y) and he H.
Lemma 2. Let M be a right H-module. For each n = 0, M ® CN,(2p) is a right H-module with
action determined by
mefl®---® fh:=mh ®S(hy)(f°®---® ") = mhy ® S(hyi2) fP®---® S(hy) " (10)
foranyme M, f’®---® f" € CN,(2y) and h € H.

We now recall the notion of a stable anti-Yetter—Drinfeld module (SAYD) module from [19,
Definition 2.1].

Definition 3. Let H be a Hopf algebra with a bijective antipode S. A k-vector space M is said to be
a right-left anti-Yetter-Drinfeld module over H if M is a right H-module and a left H-comodule
such that

p(mh) = (mh)-1) ® (mh) ) = S(h3)m1yh1 ® m)hy (11)
forallme M and h € H, wherep: M — H® M, m— m(_y) ® my, is the coaction. Moreover, M is
said to be stable if mym1y = m.

We now take the Hopf cyclic cohomology HC}, (2, M) of an H-category 2y with coefficients
in a SAYD module M (see also [29]). This generalizes the construction of the Hopf cyclic coho-
mology for H-module algebras with coefficients in an SAYD module (see [18] and also [37]). For
each n =0, we set

C"(@y, M) := Hom(M ® CN,(Zg), k) Cr(@u, M) :=Homy(M ® CN,(Zr), k) (12)
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where M ® CN,,(2y) is considered as a right H-module with the action described in Lemma 2
and k is considered as a right H-module via the counit. It is clear from the definition in (12) and
the action described in (10) that an element in Cﬁr (Dp, M) is a k-linear map ¢p: M® CN,(Zy) — k
satisfying
d(mhy @ S(hy)(fP®---® f™) = (mhy ® S(hys2) fO @ ® S(hy) )
=e(hp(me fPo-- o 1
We recall that a (co)simplicial module is said to be para-(co)cyclic if all the relations for a
(co)cyclic module are satisfied except 7/*! = 1 (see, for instance [29]). The following may be
verified directly.

(13)

Proposition 4. Let Py be a left H-category and let M be a right-left SAYD module over H. Then,
(i) we have a para-cocyclic module C*(Dy, M) := {C"(Dy, M)} n=o with the following struc-
ture maps
pme fle--ofifitleg...0 1 0<i<sn-1
d(mey ® (S~ (me) f")fP®--ef'1) i=n
yme fle--efiely, ®fitle.-of") 0<sisn-1
y(me f'e---® f'ely,) i=n

(6i<p)(m®f°®---®f"):{

(a,-u/)(m®f°®-~®f”)={

Tap)me fPo--o f") =p(me &S (my)f"e fOe--o ")
for any ¢ € C" 1@y, M), v € C"" N (D, M), p € C*(Dy,M), me M and f°®---® f"* €
Homg,, (X3, Xo) ® Homg, (X>, X7) ® --- ® Homg,, (Xo, X).
(ii) By restricting to right H-linear morphisms C},(2y, M) = Homy (M ® CNy(2p), k), we
obtain a cocyclic module Cy( @y, M) := {Cg(@H, M)} 0.

The cohomology of the cocyclic module C},(2y, M) is referred to as the Hopf cyclic cohomol-
ogy of the H-category 2 with coefficients in the SAYD module M. The corresponding cohomol-
ogy groups are denoted by HC}, (9, M).

Remark 5. Ask contains Q, we recall that the cohomology of a cocyclic module € can be expresed
alternatively as the cohomology of the following complex (see, for instance [34, 2.5.9]):

b b b

(@) CI(E) Cpl (@) — - (14)

where Ci’(‘ﬁ) =Ker(1-1) € C"(¥), b= T‘:Ol(—l)i(‘)‘i and A = (-1)"1,,. In particular, an element

1

¢ € Cr;(Du, M) is a cyclic cocycle if and only if
b()=0 and (1-A)(¢p)=0 (15)
In this paper, the cocycles and coboundaries of a cocyclic module will always refer to this complex.

Proposition 6. Let Dy be a left H-category and let M be a right-left SAYD module. Then:
(i) We obtain a para-cyclic module C.(2y, M) := {C,,(D9, M) := M ® CN,(DH)} n=0 With the
following structure maps
®fn):{m®f°®f1®--~®fifi+1®---®f” 0<sisn-1
me) ® (SLme) f1)fPe fle-—-e f"1 i=n
meflefle..flely, ®f e ef" 0<sisn-1
meflefle--ef1ely, i=n

dime fle-.

sﬂm@f”@---@f"):{

thime o0 fNY=meeS im_yfrefle .o f"!

for any m € M and f°® fl ®---® f* € Homg,, (X1, Xo) ® Homg,, (X2, X;) ® --- ®
Homg,, (Xo, Xy).
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(ii) By passing to the tensor product over H, we obtain a cyclic module CH (2, M) :=
{C[ (@1, M) = M & CNuy (D)} nso-

The cyclic homology groups corresponding to the cyclic module C(2y, M) will be denoted
by HC (2w, M).

3. Traces, cocycles and DGH-semicategories

We continue with 9 being a left H-category and M a right-left SAYD module over H. Our
purpose is to develop a formalism analogous to that of Connes [12] in order to interpret the
cocycles Z; (2y, M) of the complex Cp, (9, M) and its coboundaries Bj,(2y, M) as characters
of differential graded semicategories. In this section, we will describe Z 1@, M), for which we
will need the framework of DG-semicategories. Let us first recall the notion of a semicategory
introduced by Mitchell in [38] (for more on semicategories, see, for instance, [8]).

Definition 7 (see [38, Section 4]). A semicategory € consists of a collection Ob(€) of objects to-
gether with a set of morphisms Hom« (X, Y) for each X,Y € Ob(€) and an associative composi-
tion. A semifunctor F : € — €' between semicategories assigns an object F(X) € Ob(€") to each
X € Ob(¥) and a morphism F(f) € Home (F(X), F(Y)) to each f € Home(X,Y) and preserves
composition.
A left H-semicategory is a small k-linear semicategory Sy such that
(i) Homg, (X,Y) isaleft H-module for all X,Y € Ob(#y)
(i) h(gf)=(mg(haf) foranyhe H, f e Homy, (X,Y) and g € Homg, (Y, Z).

It is clear that any ordinary category may be treated as a semicategory. Conversely, to any
k-semicategory €, we can associate an ordinary k-category € by setting Ob(%¥) = Ob(¥) and
adjoining unit morphisms as follows:

Hom¢ (X, X)Pk ifX=Y

Homg (X,Y):= .
Home (X, Y) ifX#2Y

A morphism in Hom (X, Y) will be denoted by f = f+u, where f € Hom¢ (X, Y) and p € k.
It is understood that u = 0 whenever X # Y. Any semifunctor F: ¢ — 2 where 2 is an ordinary
category may be extended to an ordinary functor F : € — 2. If S is a left H-semicategory, & g
has a unique left H-category structure extending that of .#.

Definition 8. A differential graded semicategory (DG-semicategory) (% ,0) is a k-linear semicate-
gory & such that
(i) Hongi(X, Y)= (Homgp (X, Y),éggy)nzo is a cochain complex of k-spaces for each X,Y €
Ob(S).
(i) the composition map Hom?,(Y, Z) ® Hom%, (X, Y) — Hom®, (X, Z) is a morphism of com-
plexes. Equivalently, we have

028N =047 (@ F + (1" g%y (f) (16)
forany f e Homg(X,Y)" and g e Homg (Y, Z)"7.

Whenever the meaning is clear from context, we will drop the subscript and simply write 0 for the
differential on any Hom'y(X, Y).

A small DG-semicategory may be treated as a differential graded (but not necessarily unital)
k-algebra with several objects. The DG-semicategories may be treated in a manner similar to DG-
categories (see, for instance, [30,31]). For instance, there is an obvious notion of DG-semifunctor
between DG-semicategories. We also note that if . is a DG-semicategory, the morphisms in
degree 0 determine a semicategory .#°.
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We now construct a “universal DG-semicategory” associated to a given k-linear semicategory
%€, similar to the construction of the universal differential graded algebra associated to a (not
necessarily unital) k-algebra (see, for instance, [12, p. 315]).

Let Q% be the semicategory with Ob(Q%€) := Ob(¥) and Homq« (X, Y) = @2 Homg,, (X, Y),
where

Hom%(X) Y) ]fn:O
Hom;’)(g(X, Y):= x @X )Hom%(Xl, Y)®Home (X3, X1)®---®@Homey (X, X)) ifn=1 (17)
Sy

Here the sum runs over the ordered tuples (Xj,..., X;;) € Ob(%)". In particular, (Q%)° = €. For
n=1,an element of the form f°® f'®---® f" in Hom?, (X, Y) will be denoted by f0df'...df" =
(f°+wdf...df" and said to be homogeneous of degree n. By abuse of notation, we will
continue to use fOdf!...df" = (f+ pdf'...df" to denote an element of Hom/., (X, Y) even
when 7 = 0. In that case, it will be understood that p = 0.

The composition in Q% is determined by

fodflo-odf™ = fodft . df"  @fOe M =d(fO - F0udfM (18)
dflo--odf=df!...df"

In particular, it follows that
(FO+wdf...dfY)-(g°+p)Hdg...dg))
. . Coi-l . .
= (P +w|dft....df A ghdg! .. dg? + Y (- A Y .. d fdgldgt ... dg
1=1

+ (DI AP, dfidgldgt...dgl + 1/ (f° + wdft...dfidgt...dg/  (19)
For each X, Y € Ob(Q%), the differential 8%, : Homp. (X, Y) — Hom%"} (X, Y) is determined by
setting
L (FO+wdft...dfm:=dfodft...df"
It follows from definition that G?YI 00% =0. Therefore, Homg, . (X, V) := (Homg(g (X,Y), agz(y)nzo

is a cochain complex for each X, Y € Ob(Q%). It may also be verified that the composition in Q%
is a morphism of complexes. Thus, Q% is a DG-semicategory.

Proposition 9. Let € be a small k-linear semicategory. Then, the associated DG-semicategory
(Q%€,0) is universal in the following sense: given

(i) any DG-semicategory (5”,5) and

(ii) a k-linear semifunctorp : € — #°,
there exists a unique DG-semifunctor p : (Q%6,0) — (#,0) such that the restriction of p to the
semicategory € is identical to p : € — #°.
Proof. We extend p to obtain a DG-semifunctor p: (Q%,0) — (& ,0) as follows:

p(X) :=p(X)
P +mdft...df™ = p(f9 00 (p(f1) 0 00°(p(f™) +pd (p(f) o0 (o (f™)

for all X € Ob(Q%¥) = Ob(%) and (f°+ pw)df'...df" € Homp (X,Y), n = 1. Since each p(f) is a
morphism of degree 0 in ., it follows from (16) and (19) that

(20)

DU+ wdfr ... df™ o (Y + p))df™2...df™)
=p((fO+wdfl...dfMep((f" +pHdf"r2 .. df™  (21)
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It is also clear by construction that pl¢ = p. Moreover, we have
3" (B0 +wdf...df™) =" (p(fH9°(f1)...8%(f™)) + ud" (3 (p(f1)...8%(p(F™))
=3" (03" (p(F1)...8 (") + p (13" (3" (o (.. 8 (0™
=33 (p(f)...8% p(f™) = p (0" (f° +wdf'...df™)
The uniqueness of p is also clear from (18) and (19). 0

Definition 10. A left DGH-semicategory is a left H-semicategory Sy equipped with a DG-
semicategory (Sy,0n) structure such that for alln = 0:
@) Hom;H (X,Y) isaleft H-module for X, Y € Ob(Fy).
N AN . 1 . .
(ii) 07 : Hom;H X,Y)— Hom% (X,Y) is H-linear for X, Y € Ob(Fy).
We can similarly define the notion of a DGH-semifunctor between DGH-semicategories. If
(Fu,0w) is aleft DGH-semicategory, we note that yg is a left H-semicategory.

Proposition 11. Let Py be a left H-semicategory. Then, the universal DG-semicategory
(Q(@Hn),0n) associated to Py is a left DGH-semicategory with the H-action determined by

(O +wdft...df") = (hy fO+ pe(h)d(ho f1) ... d(hpir f1) (22)
forallhe H and (f°+wdf!...df" €e Homgg,,) (X, Y).
Proof. This is immediate from the definitions in (19) and (22). O

Definition 12. Let (Fy,0y) bea left DGH-semicategory and M be a right-left SAYD module over
H. A closed graded (H, M) -trace of dimension n on ¥y is a collection of k-linear maps

TH:={7§ : MeHom?, (X,X) — k}xeob

such that
TH(mhy @ Shy) f) = e(h) T L (me f) 23)
TH(med ' (fH)=0 (24)
TR(meg'e)=1" T (mge (S (m-1)g)g) 25)

forallhe H,me M, f € Hom?, (X,X), f'€ Hom? (X, X), g € Home,H (X,Y), g € HomfyH (Y, X)
andi+j=n.
Definition 13. An n-dimensional Sy -cycle with coefficients in a SAYD module M is a tuple
(FH,01, M, f?\H) such that

(i) (Fu,0p) isa left DGH-semicategory.

(i) ZH isaclosed graded (H, M) -trace of dimension n on .
Let 9y be a left H-category. By an n-dimensional cycle over 9y, we mean a tuple
(L0, M, TH, p) such that

(a) (yH,EH, M, gH ) is an n-dimensional Sy -cycle with coefficients in a SAYD module M.

(b) p: 9y — 5”1‘_)1 is an H-linear semifunctor.

We fix a left H-category 2. Given an n-dimensional cycle (VH,EH,M, gH ,0) over Dy, we
define its character ¢ € Cf;(Zy, M) by setting

¢:M®CN,Py) —k  ¢pme fPo-af"):=TH (mep(f)9%(o(fh)...0% (p(f™))

for m € M and f0 ®---® f" € Homg,, (X1, Xo) ® Homg,, (X3, X)) ® --- ® Homg,, (X9, X;,). We will
often suppress the semifunctor p and refer to ¢ simply as the character of the n-dimensional
cycle (F, 0, M, TH).

We now have a characterization of the space Z};(2y, M) of n-cocycles in the Hopf cyclic
cohomology of the category 2 with coefficients in the SAYD module M.
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Theorem 14. Let Py be a left H-category and M be a right-left SAYD module over H. Let ¢ €
C},(Du, M). Then, the following conditions are equivalent:

(i) ¢ is the character of an n-dimensional cycle over 2y, i.e., there is an n-dimensional cycle
(yH,OH,M 3H) with coefficients in M and an H-linear semifunctor p : Dy — yo such
that

pme o0 =T (Amep)(me fodf'...df")
= 7% (me (9% (o(fM)...0% (p(f™))
foranyme M andfo ®---® f" € Homg, (X1, Xo) ®Homg,, (X2, X1) ® - --® Homg,, (Xo, X;,).
(ii) There exists a closed graded (H, M)-trace 7 H of dimension n on (Q(2y),0y) such that

pme oo " =T (me fOdf'...df" 27)

foranyme M andf0®~-®f” € Homg,, (X1, Xo) ® Homg,, (X2, X1) ® ---® Homg,, (X, X;).
(iii) ¢ € Z}}(@H, M).

(26)

Proof. (i)=(ii). By the universal property of Q(Zpy), the H-linear semifunctor p : 9y — y}?{
can be extended to a DGH-semifunctor p : Q(2y) — %y as in (20). We define a collection
TH=171:Me Homg, ,, (X, X) — k}xeob@@y) of k-linear maps given by

FTHme (P +wdf'...df":= 72 (mep(f*+wdf!...df") (28)
for any m € M and f0 ®---® f" € Homg,, (X1, X) ® Homg, (X, X;) ® --- ® Homg,, (X, X;,). In
particular, it follows from (28) that

¢p(me fo--0 f) = Ty (mep(f)9% (p(fM)...0% (p(f")) = T (me fodf...df"  (29)

It may be verified that the collection .7 is an n-dimensional closed graded (H, M)-trace on
QDn).

(ii) =(@). Suppose that we have a closed graded (H, M)-trace TH of dimension n on Q(2g)
satisfying (27). Then, the tuple (Q(2y),0, M, 7 ) forms an n-dimensional cycle over @y with
coefficients in M. Further, by observing that a0 i f)=df forany f € Homg, (X, Y), we get (26).

(i) =>(iii). Let (5”H,6 nM,T gH ) be an n-dimensional cycle over 2 with coefficients in M and
0:9y— 5”}01 be an H-linear semifunctor satisfying

pme fOo--af"=T% (mep(f9%(p(fH)...0% (o(f™))
for any m € M and f0 ®---®f'e Homg, (X;, Xp) ® Homg,, (X3, X;) ® --- ® Homg,, (Xo, X;,). For
simplicity of notation, we will drop the functor p. To show that ¢ is an n-cocycle, it suffices to
check that (see (15))
b(@)=0 and (1-A)(¢p)=0
where b = Z;’;()l(—l)iﬁi and A = (-1)"1,. For any p’®---® p"*! € Homg,, (X1, Xp) ®
Homg,, (X3, X1) ®---® Homg,, (X0, X;+1), we have

n+1

Y DS pmep’e---@p"th

i=0
n
=Y (-Dipmep’e---ep'ple--op
i=0

+ (1" p(me ® (S (m1)p" M )peple---ep")

n+l)

] o~ o~ n R ~ ~
= 7% (mep°p'aY(p*)...05,(p™ ") + Y (-1’ 7§ (me p®dY(p".. 0% (' p™h... 3% (p"h)
i=1

+ (D" T (mgy e (ST me1)p™) pPa% (ph) - 0 0% (p™)
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Now using the equality 8% (fg) = 8% (f)g + 39, (g) for any f and g of degree 0, we have
(P°0(p". 5%(p”)) "
— Z( 1)n i 060 (P ).. a(}]q(plpwl) ..5%[(pn+1)+(_l)np p aH(p ).. a(l)q(prwl)

Thus, using the condltlon in (25), we obtain
n+l
Y ~D'sipmep’e---ep"h
i=0
= (-0" T, (me (p°0%y(p"...05 (™M) p"")
+ (D" T (mgy @ (ST imenp™ ) Y% (ph) ... 0% (™) =0
Next, using (24), (25), and the H-linearity of F) H, We have
(1= (=D"1,)p)(me fP® -0 )
=pme fOo--8 f" - (-D"p(mo &S m ) f"efe--of"")
= T3, me £ (f1...0% (™ = 1" TK (moy ® (S men) f)0% ()% (... 05" ™)
= (D" TH (my ® (S m1)3%(fM) £08% (Y. 8% (F" )
+ (D" TY (m) © (ST m-) )% (9% (Y. 8% (£ ™h)
= (0" TR (o @07 (ST men) F 035 (Y- 0% (F 7)) =0
(iii) = (ii). Let ¢ € Zfl(@H,M). For each X € Ob(Q(Zp)), we define an H-linear map ﬂXH :
MeHom/, (X, X) — k given by
THme (fO+wdf'...df"Y:=¢pme fPo--ef"

for fo ®---® f" € Homg, (X1, X) ® Homg, (X3, X)) ® --- ® Homg,, (X, X;;). We now verify that
the collection {7 : M®HomQ(@ )(X X) — k}xecob@@y) is a closed graded (H, M)-trace on

(Q(Pg),0n). Forany (p° + wdp'...dp"" 1c—:Homg(é (X, X), we have

Q(2y)

T (medi  (p°+wdp'...dp" ™) = 7 (me1dp’dp'...dp" )
=pmeoep’e--ep" =0

This proves the condition in (24). Using (13), it is also clear that {9 "M® HomQ(@ )(X ,X) —
k} xeob@@yy) satisfies condition (23). Finally, for any g’ = (g°+u)dg'...dg" € HomQ(@ (¥, X)
and g = (g’ +wdg’*?...dg"*"! e Hom” (X,Y), we have

Q9Pp)
Ty (meg'g)

)r ij m®(g +N)dg d(gjgj+l) n+1)
- TH(me (g +p)g'dg®...dg" ) + 7 (meug’® + 1)dg'...dg"dg"*?...dg""")

j+1 n+1

®-- )+ (1) p(meglglegie---0g")

M* - Hl\’l*

(- )r—j(l)(m@g()@...@gjg

~.
Il

r+2 n+1)

1
D" popmegleg?e - 0g" ) +upimeg’egle - -0g’ og

+

.®g

n+1

( DHepmegle --0gigitte... )+ (-1 Wpmegleg’e---eg™th

T[v]*

r+2 VH—I)

([)(m®g0®g1® ®g'®g --®g
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On the other hand, we have

(-1rin=n %H(mm) ®(s7! (m(—l))g)g')
= (_l)r(n—r) yYH(m(O) ® ([S_l((m(—l))n—r+l)(gr+1 +”)] [d(S_l((m(—l))n—r)gr+2)]
[d(S_l((m(fn)l)g"“)]) o ((go +p)dg! --~dgr))

=Y 0T gy @ (ST One) - @7 )
j=r+2

a[s™ meaa-jo)(g' g’ )] .. dg")
+ (=" %H(mm) ® [ST (M) n-re) (8 + W] ...d[(S_l((m(—l))l)g"“)gO]...dgr)
+ (—1)”"‘”(—1)""9YH(m(0) & ([ST (M- +wg"™)])...
[d(s7 (m-)ng™)] (dg’dg" ..dg")
+ (=1 ,u’ﬂYH(m(o) ®.[ST (M) nere) (€ +W][d(ST (M) n-rg )] ...
(s (memng™ )] dg! ---dgr)

n .
=D Y 0P m © ST M) -Ng 8
j=r+2

® ST (M-1)n-j+1)(g g™ e o g’)
+ (—1)r("7r)¢(m(0) ® 571((m(—1))n—r+1)gr+1 ® - ® (571((7”(—1))1)8”“)80 ®--® gr)
+ (—1)’("")(—1)""¢(m(o) ®S L (men)nrn (g gD e...

® (S (m-1g" Hegleg e e gr)
+ (—1)””‘”(—1)"‘m¢(m(0) ® S (Mm1)nr)g He...

n+1

® (S H(m-1)1)g )®g0®g1®---®gr)

+ (—1)”"7”#'(/5(771(0) ®.S N (men)n-r+1)g P @S H(m1)n-r)g ...

n+1

® (S ((me))g ®.g1®~-®gr)

Using repeatedly the fact that ¢ = (—1)"7,,¢, we get

(_1)r(n_r] <?Yn(n’l((]) ® (S_l(m(_l))g)g’)
2 i . .
=— Y D)'¢p(megle --vg/g/t e -0g")
j=r+1
— (_1)n+r+1¢,(m(0) ® (S_l(m(—l))gn+l)g0 ®g1 ®--- ®gn)

+(-D pp(megleg’e og" ) rupmeg’egie og wg Yo

.® gn+1)

The condition (25) now follows using the fact that b(¢) = 0. This proves the result. 0

Remark 15. From the statement and proof of Theorem 14, it is clear that there is a one to one
correspondence between n-dimensional closed graded (H, M)-traces on Q(2g) and Z I’}(@ o, M).
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4. Linearization by matrices and Hopf cyclic cohomology

We continue with 25 being a left H-category. In the previous section, we described the spaces
Z1( Dy, M). The next aim is to find a characterization of B} (Du, M) which will be done in several
steps. Let M, (k) denote the algebra of r x r-matrices with entries in the field k. The linearization
D1 ® M, (k) of D by the algebra M, (k) is the k-linear category defined as follows:

Ob(@n ® M;(k)) :=0b(Zn)  Homgyem, (X, Y) := Homg, (X,Y) & M, (k) (30)
forany X, Y € Ob(Zy ® M, (k)). The composition in 2 ® M, (k) is determined by setting
(ffeA)o(feA):=(f'of)e A’A VY feHomgy,(X,Y),f €eHomg,(Y,Z),A A € M,(k) (31)

forany X, Y, Z € Ob(@y ® M, (k)) = Ob(Zf). We observe that 2y ® M, (k) is also a left H-category
with left H-module structure on any Homg, ¢ M, (k) (X, Y) determined by setting

h(feA):=hfe®A VheH,feHomg,(X,Y),A€ M, (k) (32)

We denote by Caty the category whose objects are left H-categories and whose morphisms are
H-linear semifunctors.

We denote by Vect the category of all k-vector spaces and by H-Mod the category of all left
H-modules. Let Homg(+, k) : H-Mod — Vect;. be the functor that takes N — Hompg (N, k).

We now make some conventions. If &, = {#,,},,>¢ is a simplicial module with face maps
{d; : P, — P,_1}o<i<n (see, for instance, [34, Section 1.6.1]) we let F2/°¢ denote the associated
Hochschild complex whose terms and differentials are given as follows

n .
Prc=P,  bi=) (-Didi: Pp— Ppa 33)
i=0

Further, if 2° = {2"},,5 is a cocyclic module with coface maps {§; : 21 — 2"}<;<p,, codegen-
eracy maps {o; : 2" — 2"}, and cocyclic operators {1, : 2" — 2"} ,,5¢, we let ,02;;, denote
the bicomplex with terms and differentials given as follows

I+1 .

any’” =9M " b= Z(—l)’éi s Qmn__, gmtln
i=0

1

-1 . .
B:= (Z(—1)”’—“T;_l)a,rl(1 - (=Dl 2mn — gmntl
i=0

where we have set [ := m — n. Then, Q;;, is a bicomplex whose total cohomology computes
the cyclic cohomology of 2° (see, for instance, [34, Section 2.5]). Additionally, we let 2}
denote the complex with differentials b := Z;L:Ol (-1)i5;: 2" — 2™ computing the Hochschild
cohomology of the cosimplicial module underlying 2°. The cohomology groups of this complex
will be denoted by H* (2] ).

We now fix r = 1. For 1 < i,j < r and «a € k, we let E;;j(a) denote the elementary matrix in
M, (k) having «a at (i, j)-th position and 0 everywhere else. We will often use E;; for E;;(1). For
each 1 < p <r, we have an inclusion inc, : 2y — 2y ® M; (k) in Caty which fixes the objects and
incy(f) = f ® Epp = f ® Epp(1) for any morphism f € 9.

For any right-left SAYD module M, the inclusion incy, : 2y — 9y ® M; (k) induces an inclusion
map

(incp, M) : M ® CNy(Py) — M ® CNy (D ® M, (k)
mefle--ef"—me(feE,,)® & (f"®E)) (54

If we consider the para-cyclic modules C. (2, M) and C.(Zy ® M, (k), M) as in the notation of
Proposition 6, we see that the morphisms in (34) induce a morphism C. (inc,, M) : C.(Dy, M) —
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C. @y ® M, (k), M) of para-cyclic modules. Accordingly, we have an induced morphism of
Hochschild complexes

C.(incp, M)"°¢ : C.( @1, M)"C — C. (@1 ® M, (k), M)"° (35)

Applying the functor Homp (-, k) and considering the cocyclic modules C;, (2, M) and C; (P ®
M, (k), M) as in the notation of Proposition 4, we obtain morphisms of Hochschild cohomology
complexes

Cyncy, M poc : Cpp (D © My (K), M) poe — Cr (@1, M) o (36)

Similarly, we obtain a morphism of bicomplexes computing cyclic cohomology
C;—I. (incpr M)cy . C;.[. (Do Mr(k);M)cy - C;-[' (@H»M)cy (37)
For each n = 0, there is an H-linear trace map trtM : M® CN,, (2 ® M, (k)) = M & CN,,(Px)

given by

trM (me (f'®B%®---® (f"®B"):=(me f’®---® ") trace(B’... B") (38)
for any m € M and (f0 ®BY®---® (f"® B™ € CN, (9 ® M, (k)). It may be verified easily that
the trace map as in (38) defines a morphism C. (tr™) : C. (25 ® M, (k), M) — C.(2y, M) of para-

cyclic modules. In particular, we have an induced morphism between underlying Hochschild
complexes

C.(tr"yoc . ¢, @y ® M, (k), M)"¢ — C.( @y, M)"°¢ 39)

Applying the functor Homp(+, k), we see that we have a morphism Cj, trM) e : Cy@u, M) poc —
C}; (@n ® M, (k), M) 0. of complexes computing Hochschild cohomologies.

Proposition 16. The maps C.(inc;, M)"°¢ and C. (tr™)"°¢ are homotopy inverses of each other.

Proof. It may be easily verified that C. (trMyhoc o C, (incy, M)9¢ = 1. To show that C, (incy, M)"°¢ o
C.(trM)hoc - 1 we define k-linear maps {; : C,, (25 ® M, (k), M) — Cps1 (D5 ® My (k), M)}o<i<n
by setting:

hi(me(f°eB% e o (f"®B")

=me Y (fPeEpB)e(f @ EnBy)e...
1<j,k,l,....p,qsr

® (f' ® Eni(B},) ® (x,, 8 Ei;) e (f ' @B e--o(f" @B

for0<i<mnand

hn(me(f°eBY) @ o (f"®B")

=me Y. (PeEpBie(f @ En(By,)) e o (f" ® Eui(B),)) @ (1x, ® Fig(1)
1=j,k,m,...p,q<r

We now verify that " := ?:o(_l)i h; is a pre-simplicial homotopy (see, for instance, [34, Sec-
tion 1.0.8]) between C. (incq, M)"%¢ o C, (trM)"°¢ and 1 For this, we need to verify

L oo C.@uoM;(k), M)
the following identities:

dihy =hy_yd; fori<i'

dih;=d;h;_; forO<i<n

dihy = hyd; fori>i'+1 (40)
dofio =1, g ers oapioc ANd dus1lin = Culiney, M) o C, (tr™)0¢
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where d; : Cp41 (91 ® M (k), M) — C,, (D91 ® M, (k), M), 0 < i < n+1 are the face maps. We only
verify the last one in (40) because the others follow similarly. Using the fact that E14(1) Ej1 (Bjx) =0
unless g = j, we have

dni1hy(me (P @B ®---®(f"®B™")

=dn+1(m® Y. (PeEpB) e (f e EnBy)) @ (f" 8 Eu(B),) @ (1x, ® Eig(1)
1<j,k,l,...p,qsr

mo® Y (ST men)(x @ Eig) (fP o En(BY ) @ (f @ En(By ) ®...
1<j,kl,...p,q<r

- (f" & En(B)y)

me Y (fPeEWENBY)e (! e EnBl) e 8 (" e En(B),)
1<j,k,l,....p,qsr

me Y (P eE;MENB)e (! e EnBL) e o (f" ® En(BL)

1<j,k,1,..,psr
=me 3} (fPeEnB)))e(f e En(By))® e (f" e En(B)))
1<j,kl,..,psr
_ 0 0 pl
=(me(f°®En)®---®(f"®E)) _Z (BjBy;---B))
1<j,k1,...p<r
=(me(f°®En)e---o(f"®En) Y. (B’B'...B")j;
1<j=<r

=(me(f°®E)®---® (f" ®Eyy))trace(B°B' ... B")
= (Cu(iner, M) o CL (™)) (me (' © B) 0+ @ (" ® B)
This proves the result. g
Proposition 17. Let 2y be a left H-category and M be a right-left SAYD module. Then,
(i) The morphisms
H*(Cy(incy, M) poc) : H' (Ch (DH © My (K), M) o) — H' (Cy(DH, M) hoc)
H*(Cy (™) poe) : H' (Cy (@1, M) o) — H* (C (D1 ® M (), M) o)

induced by Cj(incy, M)poc and C;I(trM)hoc are mutually inverse isomorphisms of
Hochschild cohomologies.
(ii) We have isomorphisms

HC;,(trM)
HC}( Py, M) : HC}; (@ ® M, (k), M)
HC3,(incy, M)
Proof.
(i). By Proposition 16, we know that C.(trMyhoc o C,(incy, M)"oc = L. @y, myhoc and

Cg(incl,M)h“ o C.(trMyhoc - lc.(@HeaM,(k),M)"“' Thus, applying the functor Hompg(-, k), we
obtain

Cry(incy, Mnoc o Cr () noe = 1es, @, Mipoe - Crrtr™noc © Ciinet, M) noc ~ L¢3, @y, (0, M)
Therefore, C;I (incy, M) 0 and C;{(trM )hoc are homotopy inverses of each other.
(ii). This follows immediately from (i) and the Hochschild to cyclic spectral sequence. O

Corollary 18. For an n-cocycle ¢ € Z;;(2y, M), the n-cocycle ¢ = Homp (trM, k) (¢p) = potrM €
Z11(@1 ® M, (k), M) may be described as follows

d(me(f°eB)®--o(f"®B")=¢p(me f'®---® f") trace(B"...B")
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5. Vanishing cycles on an H-category and coboundaries

From now onwards, we will always assume that k = C. In this section, we will describe the spaces
B}, (@1, M). We will then use the formalism of categorified cycles and vanishing cycles developed
in this paper to obtain a product on Hopf cyclic cohomologies of H-categories. We begin by
recalling the notion of an inner automorphism of a category.

Definition 19 ([43, p. 24]). Let 2y be a left H-category. An automorphism ® € Homcat, (91, 2H)
is said to be inner if ® is isomorphic to the identity functor 1g,,. In particular, there exist isomor-
phisms {n(X) : X — ®(X)} xeob(@,,) Such that®(f) =n(Y)o fom(X)~! forany f € Homg,, (X,Y).

We now set

62n) = [] Autg,X) 41)
XeOb(@p)
By definition, an element n € G(2p) corresponds to a family of automorphisms {n(X) : X —

X}XEOb(@H)- We now set
Un(@n) := {n€GPn) | hn(X)) = e(h)n(X) for every h € H and X € Ob(2p)} (42)
Lemma 20. Uy (Zp) is a subgroup of G(2p).

Proof. The element e = [[xcon@,,) 1x is the identity of the group G(2p). By definition of an H-
category, we know that h-1x = e(h) - 1x for each X € Ob(Zp) and h € H. Thus, e e Uy (Pp). Now,
suppose that n,n’ € Ug(2p). Then, for each X € Ob(@y) and h € H,
h((en) (X)) = hin(X)on' (X)) = (n(X)) e (han' (X))
= (e(h)n(X)) o (e(h2)n' (X)) = e(M) ((X) o' (X))

Hence, non' € Uy(2p). Also, 7! € G(@p) corresponds to a family of morphisms {5~ (X) :=
n(X)™': X = X}xeob(@yy)- Then, for each h € H and X € Ob(@p),

e(M1x = hn(X)on™ (X0) = (e(h)N(X)) o (han™' (X)) = N(X) o (hy~" (X))
which gives e(h)n~!(X) = hn~!(X). Therefore, n™! € Uy (Pp). O
Lemma21. Let2Py be a left H-category and letn € Uy (D).
(i) Consider @ : 2y — Dy defined by
Dy(X)=X  Oy(f)=n(Y)ofon(X) !

for every X € Ob(Zy) and [ € Homg,, (X,Y). Then, ®; : Dy — Dy is an inner automor-
phism of Dyy.
(i) Consider 5),7 1Dy ® My (k) — 21 ® M (k) defined by

Dy(X)=X Dy(feB)=(ly®E; +n(Y)®Exn)o(f®B)o(lx®Ey +1(X) ™" ® Ez)

for every X € Ob(@y ® M>(k)) = Ob(@y) and [ ® B € Homg,,em, k) (X, Y). Then, 513,7 :
D1 ® My (k) — Dy ® Mo (k) is an inner automorphism.

Proof.

(i). Using the fact thatn,n™! € Uy (@), we have
h(@,(f)) = (n(Y)) o (ha f) o (hsn(X)™h) = (e(h))n(Y)) o (ha f) o (e(hg)n(X) ™)
=n(Y)o (hyf)o(eh)n(X)™")
=n(Y)o(hf)on(X)™"

forany h € H and f € Homg,, (X, Y). By Definition 19, we now see that ®;, is an inner automor-
phism.
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(ii). Setting ?](X) X—>Xin9y e M, (k) as ?](X) =1x ® E11 +n(X) ® Ez, we see that
@, (f@B)=(ly ® E;1 +n(Y) ® Ep) o (f ® B)o (1x ® E11 +1(X) ™' ® Ep)
=7(Y)o(f®B)oR(X)!

for any f ® B € Homg, e M,k (X, Y). Considering the H-action on the category 2 ® M;(k), we
have

h(®y((f® B)) = hi(ly ® E11 +1(Y) ® Exp) o ha(f ® B)o hg(1x ® Eq1 +1(X) ™' ® Eap)
= (mly ® By + an(Y) ® Ex) o hy(f @ B)o (h3lx ® vy + han(X) ™' @ Enp)
=£(h)(ly ® E11 +1(Y) ® Exp) 0 hy(f ® B) o £(h3)(1x ® Eyq +1(X) ™' ® Ep)
= (ly ® Ey +7(Y) ® Exp) o h(f ® B) o (1x ® E1y +1(X) ™' ® Eyy)
=, (h(f ® B))
forany h € H and f ® B € Homg,,gMm, k) (X, Y). By Definition 19, we now see that ®j is an inner

automorphism. d

For any n € Uy(2p), we will always denote by ®, and 5,, the inner automorphisms defined in
Lemma 21.
Lemma 22. Let M be a right-left SAYD module over H. Then,
(i) A semifunctorae Homg; (D1,9},) induces a morphism (for alln = 0)
CP(a, M) : C} (@), M) = Hom (M ® CNy,(D}), k) — CP (@, M) = Homp (M ® CNy, (D), k)
determined by
Cha,M)(Pp)(me fle---ofH=¢p(mea(f) e ealf")
for any ¢ € C},(2},, M), m € M and f'®---® f" € CN,(@y). This leads to a morphism
C;I'(a,M)CJ’ C(D, M) — Cy (D, M) of double complexes and induces a functor
HC3,(-,M): Caty; — Vecty.
(ii) LetneUy(Pn). Then, @, induces the identity map on HC}, (25, M).

Proof.

(i). Since ¢ and a are H-linear, the morphisms Cy; (@, M) are well-defined and well behaved with
respect to the maps appearing in the Hochschild and cyclic complexes. The result follows.

(ii). Letn e Uy (2y) and @, € Homca, (D21, DH) be the corresponding inner automorphism. By
Proposition 17, the maps HC},(incy, M) and HC;{(trM) are mutually inverse isomorphisms of
Hopf cyclic cohomology groups. Thus, we have

HC},(incy, M) o (HC},(incy, M)) ™' = HC}(incy, M) o HC}, (tr™) = HC}, (tr™ o(incy, M)) =1 (43)

Further, we have the following commutative diagram in the category Cat:

Du . D © Mo (k) e Du
l_ozHl ‘ l&un lqnqv (44)
H > Dy @ My (k) ~——— Dy

Thus, by applying the functor HC}, (-, M) to the commutative diagram (44) and using (43), we
obtain

HC}y(®y, M)
= (HC},(incp, M)) o HC},(incy, M)~ 0 HC},(1g,,, M) o (HC},(incy, M)) o HC},(incp, M) ™!

=1ucy,@um O
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Proposition 23. Let 2y be a left H-category. Suppose that there is a semifunctor v €

Home (P, Pn) and ann € Uy (P ® Ma(k)) such that

i) vX)=X VY X € Ob(9Yg)
(i) @,(f ® E1 +v(f) ® Exp) =v(f) ® Exo

forall f e Homg, (X,Y) and X,Y € Ob(Zx). Then, HC;{(@H,M) =0.

Proof. Leta,a’€ HomaH (Du, 21 ® M»(k)) be the semifunctors defined by

aX):=X a(f):=feEn+uv(f)®Ex
d(X)=X a(f):=v(f)®Exn

for all X € Ob(Zp) and f € Homg,, (X, Y). Then, by assumption, a' = ®;, o a. Therefore, applying
the functor H Cy(, M) and using Lemma 22 (2), we get

HC;(a', M) = HCyy(at, M) o HC};(®p, M)
= HC}y(a, M) : HC};(21 ® My (k), M) — HC}, (P, M) (45)
Let ¢ € Z},(Pu,M) and ¢ = Homp (U, k)(@) = pot™ € Z!'(@y ® Ma(k), M) as in Corol-

lary 18. Let [¢] denote the cohomology class of ¢. Then, by (45), we have H C;{(a,M)([[ﬁ]) =
HCy (o', M) ([9)), i.e.,

$o(1y ® CNy(@) + Bl @y, M) = po(1p® CNy(a) + B} (D, M)

so that ¢po (1p7® CNy () —po(1y ® CNy(a') € By (2y, M). Applying the definition of ¢, we now
have

(po(ly® CNy(@))(me P& o f™
=p(moa(f)e---®a(fM)
=p(me (fP®E1 +v(fY) @ Ex) @ ® (f"® E1y +v(f™) ® Ey))
=pmefle---0 fH+pmev(f)e---eu(f")

Similarly, (¢po (1 ® CNuy(@)))(me fO®---® f) = p(mov(fO) ®---®v(f™). Thus, p = po(ly ®
CNy(a)) - (Eo (1p®CNy(ah) e B;’I(@H, M). This proves the result. O

Definition 24. Let (,SPH,aH,M , TH ) be an n-dimensional S-cycle Lgith coefficients in a SAYD
module M over H (see, Definition 13). Then, we say that the cycle (%y,0m, M, 7 ) is vanishing if
5’13 is a left H-category and 5”19[ satisfies the assumptions in Proposition 23.

We now recall from Connes [12, p. 103] the algebra C of infinite matrices (a; ), jen with entries
from C satisfying the following conditions (see also Karoubi-Villamayor [25])

(i) theset{a;;|i,jeN}isfinite,

(i) the number of non-zero entries in a row or a column is bounded.
Explicitly, if A= (a;;)i jen and A’ = (a;.j)i,jeN are elements of C, their product B := AA’ in C is the
matrix B = (b; ), jen Whose entries are given by

bij = Z a,-ka;w. (46)
keN

forany 7, j € N. The unit 1 € C is given by the infinite matrix whose diagonal entries are all 1, with
zero entries everywhere else.
Identifying M>(C) = C® M;(C), we now recall the following result from [12, p. 104]:
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Lemma 25. There exists an algebra homomorphism w : C — C and an invertible element U €
M5 (C) such that the corresponding inner automorphism = : M, (C) — M, (C) satisfies

Z(B®Ej] +w(B)®E») =w(B)® Ex VBeC (47)
Then, HC*(C) =0.

Remark 26. We note that the condition in (47) ensures that w(1) # 1, where 1 is the unit element
of C.

For any k-algebra «/, we may define a k-linear category « ® 9y by setting Ob(«/ ® D) =
Ob(Zy) and Homyeg,, (X,Y) = o ® Homg,, (X, Y). The category «f ® Py is a left H-category via
theaction h(a® f):=a®hf forany he H, a® f €  ® Homg,, (X, Y).

Lemma 27. We have HCL(Ce®9Dy, M) =0.
Proof. We will verify that the category C ® 9 satisfies the assumptions of Proposition 23. Let
and U be as in Lemma 25. We now define v: C® 9y — C® @y given by

v(X):=X vB®f)=wB)®f

for any X € Ob(C® 2y) and B® f € Homcgg, (X, Y). Since w : C — C is an algebra homomor-
phism, it follows that v is a semifunctor. By the definition of the H-action on C® 9y, it is also
clear that v is H-linear.
Using the identification C® 2y ® M, (C) = M, (C) ® D, we now define an element 1) € G(C ®
D1 ® M (C)) = G(M,(C) ® D) given by the family of morphims
N(X) := U® 1x € Homyy, sz, (X, X) = M2 (C) ® Homg,, (X, X)txeob@s) (48)

Since U is a unit in M, (C), it follows that each n(X) in (48) is an automorphism. Since
H acts trivially on M>(C), we see that n € Uy(C ® Py ® M>(C)). Moreover, for any B® f e
Homy, ey (X, Y) = M»(C) ® Homg,, (X, Y), we have
OyBef)=n(Y)oBefonX) ' =Usly)oBefloU 'ely)=UBU 'ef=2B)s f
Therefore, for any B® f € C® Homg,, (X, Y), we have
Dy ((B® f)®E1 +v(B® f)®E20) =Pp(B® f®E11 +w(B) ® f ® Ep))
=Ou(BREN® f+w(B)®Exn®[f)
=Z(B®Ej;1 +w(B) ® Ex) ®f
:a)(B)®E22®f=v(B®f)®E22
This proves the result. d

We are now ready to describe elements in the space B;’I(@ o, M).

Theorem 28. An element ¢ € Cp(Py, M) is a coboundary iff ¢ is the character of an n-
dimensional vanishing %y -cycle (5”H,5H, M, ﬁ\H, p) over Dyy.

Proof. Let (B\ be the character of an n-dimensional vanishing #-cycle (yH,éH, M, TH ,p). By
definition, .7 ¥ is an n-dimensional closed graded (H, M)-trace on the H-semicategory .#y and
that 913 is an ordinary H-category. We now define y € CJ; (9, M) by setting

ymeogle--vg") =T % (mogdYygh...0% ™M)
for m € M and go ®---0ghe HomyFo’(Xl,Xo) ®H0myg(X2,X1) ®® Homyg(Xo,Xn). Then, by

the implication (1) = (3) in Theorem 14, we have that y € Z;’I(yo,M). Since HCZ(?O,M) =0,
we have that ¢ = by’ for some v’ € Cﬁ’l (&9, M).



Mamta Balodi and Abhishek Banerjee 635

By Lemma 22, the semifunctor p € Homgy, (2, induces a map Cj'(o,M) :
CrU(FP, M) — CF7 (@, M). Setting y" := C 1 (p, M) (y"), we have

(") mep’e-ep" =y (mep(p’e--ep(p"™")
foranyme Mand p°®---® p"*~! € CN,,_1(@p). Therefore,

pime fOo---® ") =Ty (mep(f)3% (p(f1)...0% (o(f™)) =y (mep(fH 0@ p(f™)
=(by") (mep(fO)e--@p(fM) =y (me fP e f"

for any m € M and f0 ®---® f"" € Homg,, (X1, Xp) ® Homg,, (X>, X;) ® --- ® Homg,, (Xo, X5). Thus,
¢ €BL Dy, M).

Conversely, suppose that ¢ € B;’I(@H,M). Then, ¢ = by for some y € C;’I‘l(@H,M). We now
extend ¥ to get an element ' € Cl'ffl (C® 2Dy, M) as follows:

v (meB e o0 B" e f" ) =ymeB) fPe--@B fh

We now set ¢’ = by’ € Z;’I(C®@H, M). We now consider the H-linear semifunctor p : 2y — C®%p
which fixes objects and takes any morphism f to 1® f. Then, we have

(Chp, M) (@) (me fle--ofM)=¢ (mep(fO)e--op(fM)=(by)(mep(fe-ep(f")
=by)(me fle---fH=pme fle---of"

Since ¢’ € Zﬁ(C ® Py, M), the implication (iii) = (ii) in Theorem 14 gives us a closed graded
(H, M)-trace .7 I of dimension n on the DGH-semicategory (Q(C ® Z;),0y) such that

T (me p(f)89 (o(fM)...0% (p(fM)) =¢' (mep(fH®---ep(f) =pme fP o & ") (49)

Since (Q(C®2)° = C® Dy is a left H-category, we see that ¢ is the character associated to the
cycle (Q(C®2y),0u, M, T, p) over 2.

From the proof of Lemma 27, we know that C® 9 satisfies the assumptions in Proposition 23.
Hence, (Q (C®Dy), 0, M, TH, p) is a vanishing cycle over 2. From this, the result follows. [

For the remaining part of this section, we shall suppose that H is cocommutative. If 2y, 2}, are
left H-categories, we observe that 2 ® 2/, then becomes a left H-category under the diagonal
action of H.

Let M, M’ be left H-comodules equipped respectively with coactions pp : M — H® M and
om i M — He M'. Since H is cocommutative, M may be treated as a right H-comodule and we
can form the cotensor product MOy M’ defined by the kernel

M, OMOLypy =10 ®p

MOyM' :=Ker(M® MeHe M)

in Vecty. It follows by [9, Proposition 7.2.2] that the map pp; ® 1 gives MOy M’ a left H-
comodule structure. We also note that M ® M’ carries a right H-module structure via the diagonal
action.

Lemma 29. Let H be a cocommutative Hopf algebra and M, M’ be right-left SAYD modules over
H such that MOy M' is a right H-submodule of M ® M'. Then, MOgM' is also an SAYD module
over H.

Proof. Forany m® m'e MOy M', we have

((mem)h) _, & ((mem)h),

(=1
= (mhy ® m'hy)(—1) ® (mhy ® m'hy) o) = (Mhy) (1) ® (mhy) ) ® m'hy

= S(hl?,)l’n(fl) hi1 ® n’l(o)hlz ® m’hz = S(hg)l’)’l(fl)hl ® mp) hy ® m'h4
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On the other hand, we have
S(hy)(me m') 1yl ® (me m') g hy = S(h3) m—1yhy ® (M) ® m') hy
= S(l’lg)m(_l)]’ll ® mq) ho1 ® m,hgz = S(hy) m(_l)hl ® m) hy ® mlhg

Since H is cocommutative, we see that the two expressions are the same. This proves that
MOgM' is an anti-Yetter-Drinfeld module. We now check that it is also stable. Using the co-
commutativity of H and the stability of M, M’, we have

(mem')g(mem') 1) =momy ® m'my = moomer ® m'my =mp@®@m'my =memim’_;, =mem’
forany me m' e MOy M'. O

Let (,0x) and (& ,5’H) be DGH-semicategories. Then, their tensor product #y ® #}, is the
DG-semicategory defined by setting Ob(# ® #};) = Ob(#}) x Ob(#;;) and

Hom (X, XN, (v, Y) @ HomyH(X Y)®kH0my, X', vh

i+j=n

(7&7’(

The composition in ¥ ® %}, is given by the rule:

(g®g)o(fof)=(-1)8E)de) (g regg 1)

forhomogeneous f: X —Y,g:Y — Zin#yand f": X' = V', g': Y' — Z'in #};. The differential

(0r ©d,)" :Hom" (X, X",(Y,Y")) = Hom™"'L _ ((X,X"),(Y,Y")is determlnedby

FueSy; Fu®Sy;

(6H®6H)"(f,- ®g;) ajH(f,) ®gji+ (-1’ f, ®6’H(g])
for any f; € Homfy,H(X, Y) and g; € Homy;l(X’, Y') such that i + j = n. Clearly, (¥ ® ¥/)° =
e LY.
Theorem 30. Let H be a cocommutative Hopf algebra and M, M’ be right-left SAYD modules over

H such that MOy M’ is a right H-submodule of M® M'. Let 11, 91, be left H-categories. Then, we
have a pairing

HCY @y, M)® HC] (@}, M) — HCY @y © 2, MOy M)
forp,g=0.
Proof. Let ¢ € Zp (@1, M) and ¢’ € Zq (@', M). We may express ¢ and ¢ respectlvely as the
characters of p and g-dimensional cycles (%, 05, M, TH p) and (#4,,0%, M', .7 FH ) ") over 9
and 2}, with coefficients in M and M’ respectively. We now consider the collectlon FHFH =

—_ —_ + .

(TH#TH) x xn: MOg M’ @Hom;j@y;l (X, X", (X, X)) — Cx,xe0b(FHe72) of C-linear maps
defined by

(T T) x xn(mem' e fe f):= yH(m®fp)?§{(m’ ® f7)
for any mem' € MOyM' and f @ f' = (fi ® f))ixj=p+q € Homy o, (X, X", (X, X")). We will
now prove that TH# T H jsa( p+ g)-dimensional closed graded trace on the DGH-semicategory
S ® S, with coefficients in MOy M'. Forany me@m' € MOy M' and g g’ = (g; ®g})i+j:p+q_1 €

Hom? 1" ;, ((X, X"), (X, Y)), we have

TT47 M) % xy (mem' & @y ed,)" 1 (geg))

Y (ﬁH#?H)(X,X/)(m®m’®5§,(g,-)@g}+(—1)"m®m’®g,~@@L(g}))
i+j=p+q-1
THmedl gy T Hm ® g+ (-1 THime g,) THm' €3l (gl,_1)) =0
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This proves the condition in (24). Next for any homogeneous f: X — Y, g: Y — X in %y and
X' =Y, gV - X"in ¥, wehave

(TH#T ™) x xy (mem'e (g g (fe )

- (_Ddeg(g’) deg(/) (ﬁH#ﬁH)(X X,) (m em'® gf ® g’f’)

=(- 1)deg(g )deg(f)( l)deg(g)deg(f)( 1)deg(g )deg(f") yH(m ® (fg) (m ® (f g )t])

= (- l)deg(g )deg(f) (- l)deg(g) deg(f) (— l)deg(g Ydeg(f") (— l)deg(g) deg(f"

x (T TNy yn (mem' e (fe fgeg))

— (—l)deg(g®g’)deg(f®f’)(,?\H#?H)(y - (m® m/ ® (f® f’)(g® g/))
This proves the condition in (25) . We may similarly verlfy the condition in (23). Thus, we geta (p+
¢)-dimensional cycle (¥ ® #;,0p ®0, MOgM', 7 TH4 7'M p® p') with coefficients in MOy M’
over the category Py ® 97,. Then, the character of this cycle, denoted by ¢#¢’ € Z 1’-} Yoy e

2!, MOy M), gives awell defined map y: Z1) (@, M)® Z} (2, M) — Z 1 (@ D), MOy M)).
We now verify that the map y restricts to a pairing

BY @y, M) ® Z} (@), M) — BL (@ © D)y, MOL M)

For this, we let ¢ € ZZ(@H,M) be the character of a p-dimensional vanishing cycle
((S”HﬁH,M, gH ,p) over 9. In particular, it follows from Definition 24 that 5”191 is an or-
dinary left H-category. From the implication (1) = (2) in Theorem 14, it follows that we
might as well take 3"0 to be an ordinary left H-category. In fact, we could assume that
S = Q@’ Then, 5”0 ® ;) is an ordinary left H-category. It suffices to show that the tuple
(VHQD 6H®6 H,MEIHM’ FTH# T, p® p') is a vanishing cycle.

Since (yH,a M, T ) is a vanishing cycle, we have an H-linear semifunctorv: 5’0 — yo and
anne [U(5”° ® M, (C)) satisfying the conditions in Proposition 23. Extending v, we get the H- hnear
semifunctor v@ 1 : 9 Do S — Fhe s 1dentifying, # S} © My (C) = S5 © My (C) ® F12, we
obtain7 e [U(ﬂ’o ® M, (C) ® 5”’0) given by

{0 X)) =0(X) @ Ly € Hom o gy, 0y (X, X1, (X, X))
=Hom g0, 1,(c) (X, X) ® Hom gono (X', X')}
It may also be easily verified that

Op(fef @En+wel)(fef)eEyn =wel)(fef)eEx
Thus, we see that the category (¥y ® ., )0 yo yb’g;atlsﬁes the conditions in Proposition 23.
Therefore, the tuple (S ® y;,,EH ® 0’ g, MO HM’ THyTH ,p ® p') is a vanishing cycle. This

proves the result. d

6. Characters of Fredholm modules over categories

In the rest of this paper, we will study Fredholm modules and Chern characters. We fix a small
C-linear category €. Our categorified Fredholm modules will consist of linear functors from €
taking values in separable Hilbert spaces. Let SHilb be the category whose objects are separable
Hilbert spaces and whose morphisms are bounded linear maps.

Given separable Hilbert spaces ./, and A%, let B(#7,.#,) denote the space of all bounded
linear operators from /4 to % and B> (A, ) < B(S, #%) be the space of all compact
operators. For any bounded operator T € B(A, #>), let u,(T) denote the n-th singular value
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of T. In other words, p,(T) is the n-th (arranged in decreasing order) eigenvalue of the positive
operator |T|:=(T*T)2.For 1 < p < oo, the p-th Schatten class is defined to be the space

BP (1, 76):={T € B(I1,56) | ¥ (TP < oo}

Clearly, B” (#6,, 76,) < B (A6, 76,) for p < q. For q1, g2, g3 = 1 and separable Hilbert spaces ./,
A, 7", it follows from Holder’s inequality (see [12, p. 86]) that we have

1 1 1
T T, € BB (76, 7"), Y T, BNAH,H), T, BT(H A FH"), q— + q— = q— (50)
1 2 3

For separable Hilbert spaces /7 and #%, the space B! (A, #%) is the collection of all trace
class operators from ./ to /. For T € B (A, H), we write Tr(T) := Y. Un(T). Then, it is well
known that
1 1
Te(T\ o) =Tr(ToTy) Y Ty € B (A, 7)), Tr € B"™(H', ), —+—=1 (51)
ny nz
We note that each 8P (A, #>) is an “ideal” in the following sense: consider the functor
2(-,-) : SHilb°” ® SHilb — Vectc B(-, A, SE) := B(AO, H»)
B(-,) (P, $2) : B(IO, T6r) — B(FE], 76,)  T— ¢2Tehy
taking values in the category Vectc of C-vector spaces. Then, 9P (-,-) is a subfunctor of 2(-,-).
In other words, for morphisms ¢, : #| — F, ¢2 : #> — F, and any T € BP (F,, /), we have
¢2T§b1 € %p(eif/“]le).
We fix the following convention for the commutator notation: Let .7 : 6 — SHilb be a linear

functorand ¥ := {¥x : 77 (X) — 7€ (X)} xeob(«) be a collection of bounded linear operators. Then,
we set

(4,-1: BH(X),H(Y)) — B (X), () [94T:=GyoT-To¥YxeB(HX),H(Y))

We now let SHilbz/,7 be the category whose objects are Z/2Z-graded separable Hilbert spaces
and whose morphims are bounded linear maps. Let 77 : 6 — SHilbz,,7 be a linear functor and
4G :=1{9Yx : A (X) — 7 (X)}xeob(¢) be acollection of bounded linear operators of the same degree
|%4|. Then, we set

(9, ]: B (X),7(Y)) — B (X), H(Y))

2
(4, T):=%9yoT— (-1 Towy e BAH(X), #(Y)) (62)

foreach X, Y € 6.

Definition 31. Let € be a small C-category and let p € [1,00). We consider a pair (7, %) as
follows.
() A linear functor 7 : € — SHilbgz,27 such that 77 (f) : 7 (X) — € (Y) is a linear operator
of degree0 for each f € Hom¢ (X,Y).
(i) A collection F :={Fx : H(X) — F(X)}xeonwe) Of bounded linear operators of degree 1
such that F% =1 4, for each X € Ob(%6).
The pair (7, %) is said to be a p-summable even Fredholm module over the category € if every
f e Home (X, Y) satisfies

(F, f1:= (Fy o H(f) - H(f) o Fx) € BP (S (X), #(Y)) (53)

Taking H = C = M in Definition 12, we note that a closed graded trace of dimension n on
a DG-semicategory (<, d) is a collection of C-linear maps T := {Tx : Hom”, 5 (X, X) = Clxeob(s)
satisfying the following two conditions

Tx(@"'(N)=0 Tx(ggh=D"Ty(g'e (54)
for all f € Hom' 1(X X), 8 € Homy(Y X), g€ Homy(X Y) and i + j = n. Accordingly, we will
consider cycles (#,9,C, T, p) over € by setting H = C = M in Definition 13. In the rest of this
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paper, since we always have H = C = M, we will suppress the SAYD module C and write a cycle
over € simply as (£, o, T, o).

Let (J7,%) be a pair that satisfies conditions (i) and (ii) in Definition 31. We define a graded
semicategory Q'€ = Q)€ as follows: we put Ob(Q'€) := Ob(%) and for any X, Y €6, j 2 0,
we set Homékg(X, Y) to be the linear span in (7 (X), 7 (Y)) of the operators

H(fOLZ, fUZ, f21...1Z, ] (55)

where f'® fl®---® f/isa homogeneous element of degree j in Homg« (X, Y). Here, we write
H(f0) = %”(fo) + -1, where fO = f0+ u. Using the fact that

(F, 1A (f)=F, fo f1-HNZF,f]
for composable morphisms f, f’ in €, we observe that Q'€ is closed under composition. We set
=[F,1: B (X),H(Y)) — B (X),H(Y))
=[F T1=FyoT-(-D"Togy
We now have the following Lemma.

Lemma 32. Let (¢, %) be a pair that satisfies conditions (1) and (2) in Definition 31. Then,

(i) (Q'€,d") is a DG-semicategory and Q'€ is an ordinary category.

(ii) There is a canonical semifunctor p' = p y : € — Q'€ which is identity on objects and
takes any f € Home (X,Y) to F7(f) € B (X), 7 (Y)). This extends to a unique DG-
semifunctor p' = Py : (Q€,0) — (Q'€,0) such that the restriction of p' to € is identical
top'.

(iii) Suppose that (7, %) is a p-summable Fredholm module. Choose n = p — 1. Then, for X,
Y € Ob(%) and 1 < k < n+1, we haveHom§,.. (X, Y) € BV (), 4 (Y)).

Proof.

(i). Since each Fx is a degree 1 operator and Fy[Z, f1 = —[F, f1Fx for any f € Hom¢(X,Y),
we have 6’(Homg,<g(X Y)) < Hommg (X,Y). We now check that 8" = 0. For any homogeneous
element 2 (fO)[Z, fIZ, f2]...1Z, fI] of degree j, we have
02 (A FNF FUF, 2. 1T, 1) =0 (Fy o (2 FOUF UUF, 2117, £11))
- VI (A FNF NS fA. 1F, 1) 0 x)
= Fy o (fOIF, fIF, 2.1, ]
- VM Fy o (O, FUF, ). 1F, [0 Fx
-V (Fy o A FONE, FUNF, [ 1F, 0 Fx
- VA PONF, fUE 2. fe FR)
=0
The fact that &' is compatible with composition follows by direct computation. It is also easy to
see that Q'°% is an ordinary category.

(ii). This is immediate using the universal property in Proposition 9.

(iii). This is a consequence of Holder’s inequality used as in (50) and the condition (53) in
Definition 31. 0

For any Z/2Z-graded Hilbert space # = /4 @ /1, the grading operator €7 on J is de-
termined by setting €7 (x) := (—1)4e8) x for any homogeneous element x € /#. When ./ is
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clear from context, we will often denote the grading operator € simply by €. For any T €
B(A (X), #(Y)) such that [F, T] € B' (A (X), # (Y)), we define

Trg(T) := %Tr(egiy (F,T)) = %Tr(eé"ﬁ’y@’(T)) = %Tr(egz“y(gy oT— (- ToFy))

Proposition 33. Let (7, F) be a p-summable Fredholm module over €. Take2m = p — 1. Then,
the collection

Trs = {Try : HomZ)", (X, X) — C} v o) (56)
defines a closed graded trace of dimension 2m on (Q'€,0').

Proof. From the proof of Lemma 32 (i), it is clear that for any T € Hom?2™” (X, X), we have

Q'€
[#,T] € HomZ'X! (X, X). Applying Lemma 32 (iii), it follows that [F,T] € ' (2 (X), # (X)).
Accordingly, each of the maps Tr; : Homé’,’lg (X, X) — C is well-defined.
For T’ € Homé’,’%ﬁ 1(X, X), we notice that

1
Trg(0'T) = 5T (eFx(0°Th) =0

We now consider T; € Homgkg(X, Y), T, e Homélkg(Y, X) such that i + j = 2m. We notice that
eFyd' (T) =0 (MeFx  €Fx0' (1) =0 (Tr)eFy (57)
We note that i = j (mod 2). Using (57) and (51), we now have
2-Trg(Ty T2) = Tr (eFy 0 (T1 T2)) = Tr (eFy 0 (T)) T2) + (= 1) Tr (e Fy T19' (T»))
=Tr(0'(T))eFx o)+ (=)' Tr (8 (T)eFy Th)
=Tr(eFxT2d (T1)) + (1) Tr (eFxd (T2) T})
=Tr(eFxT20 (T) + (-1)! Tr (eFxd'(T2) T1)
= (D2 Trg(T, T) O
Theorem 34. Let (J7,F) be a p-summable Fredholm module over €. Take 2m = p — 1. Then,

the tuple ('€, Trs, p') defines a 2m-dimensional cycle over €. Then, ¢*™ € CN?"(€) =
C2™(€,C) = Hom(C N2, (6),C) defined by

(O flo e [ =T, (A (fOLF, FUIF, f2...1F, f7™)
forany f°® fl®---® f2™ € Home (X1, X) ® Home (X2, X1) ® - -- ® Home (X, Xo,,) is a cyclic cocycle
over €.

Proof. It follows directly from Lemma 32 and Proposition 33 that (Q'€¢,d',Trs,p') is a 2m-
dimensional cycle over €. The rest follows by applying Theorem 14 with H =C = M. d

We will refer to ¢p>™ as the 2m-dimensional character associated with the p-summable even
Fredholm module (J7, %) over the category 6.

Remark 35. The appearance of only even cyclic cocycles in Theorem 34 is due to the follow-
ing fact from [12, Lemma 2 (a)]: if T € #(7(X), 7 (X)) is homogeneous of odd degree, then
Trs(T) = 0.

7. Periodicity of Chern character for Fredholm modules

We continue with % being a small C-category. Taking H = C = M, we denote the cyclic cohomol-
ogy groups of € by H; (¥€) := HC¢. (€, C). The cyclic complex corresponding to the cocyclic mod-
ule {CN™(€) = Hom¢(CN,(%),C)} 0 as in (14) will be denoted by C/'l(‘g). The cocycles of this
complex will be denoted by Z /1 (€):=Z.(€,0) and the coboundaries by Bi (€) := BL.(€,0).
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Let (##,%) be a p-summable Fredholm module over €. We take 2m > p — 1. Let ¢*™
be the 2m-dimensional character associated to the Fredholm module (7,%). We de-
note by ch?"(J¢,F) € Him(%) the cohomology class of ¢?>™. Since BP(H# (X),#(Y)) <
B (X), 7 (Y)) for any p < g, the Fredholm module (77, %) is also (p + 2)-summable. Using
Theorem 34, we then have the (2m + 2)-dimensional character ¢>2’"+2 associated to (77, ). We
will show that the cyclic cocycles ¢?”* and ¢?"**2 are related to each other via the periodicity
operator.

If € and €’ are small C-categories, from the proof of Theorem 30 it follows that there is a
pairing on cyclic cocycles

Z( @) Z} (€ — Z; (€ 0F)  pod — ¢H¢’ (58)
which descends to a pairing on cyclic cohomologies:
H(€)® H;(¢") — H; " (€ ®%¢") (59)
given by
(TOHT ) 0 (f © £1) = T TS (1D (60)

forany fe f' = ¥ j—ris(fi ® f]f) € Hom’}? , ((X,X"),(X,X"). Here ¢ and ¢ are expressed
respectively as the characters of r and s-dimensional cycles (,0,T?, 0) and (&' 0, T?, o') over
€ and €'. In particular, ¢#¢' is the character of the (r + s)-dimensional cycle (% ® #',0 ®
3, To#TY, p®p') over € ® €’ For a morphism f in %, we will often suppress the functor p and
write the morphism p(f) in #° simply as f. Similarly, when there is no danger of confusion, we
will often write the morphism S (f) simply as f.

Now setting ¢’ = C (the category with one object) and considering the cyclic cocycle v € H;ZL(C)

determined by w(1,1,1) = 1, we obtain the periodicity operator:
S:Z)(€)— Z]**(6)  S(¢):=¢#y

foranyrannd(peZ/{(cg).
Lemma36. Let¢pe Z/{((g). Foramyfo®f1 ®-~®f’+2 € CN;,2(%€), we have
SO flo-o =T 2015 .. 0f ) + T (F2f5)...0f ) +---

+ T(f((fob\fl ---5fi_l(fifi+l)5fi+2---b\fH—z) +en
+ Tﬁ(fogfl .“b‘fr(fr+1fr+2))

Proof. We consider the 2-dimensional trace T¥ on the DG-semicategory (QC,d) such that v €
Zi(@) is the character of the corresponding cycle over C. We first observe that we have the
following equalities in QC:

A1=@N1+101), 1@D1=0, 101 =GD*1
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We illustrate the proof for r = 2. The general case will follow similarly. By definition, we have
S@O(feflof e fefh
=) (e fle f2o Ao fh
= (T*#T") (e 1)0@®d)(f®1)@ed)(fPe )@ (fP1)@ed)(f' 1)
=TTV ((fPeDOf @1+ fled)@f? 01+ f2ed)@f 01+ fPed0f o1+ f1®al)
= (T¢#TW)(f°5f15f25f35f4® 1+ 2910203 fre101+ fPafaf2 2 fA @ 1(01)2
+ O 2P0 @ 10121+ PO 2R Fre101)% + FO £ 2030 F4 © 1(01)2
" f0f1f25f3f4 81(01)° — f0f1f2f35f4 1011+ O f2f3 e 1(01)4)
=T (FO0r1ar2 1) TV (101%) + T (20 2 20 %) TV (101)%1)
+ T2 (01 201304 TV (101)?)
=T (fOOr'ar2 o) + T (fOor 2 201" + T (O£ f20 %0 1)
The last equality follows by using the fact that 7% (10eD?) =y(1,1,1) =1. O

Proposition 37. Let ¢ be the character of an r -dimensional cycle (& ,5, T‘/’, p) over €. Then, S(¢)
is a coboundary. In particular, we have S(¢p) = by, wherew € CN"*1(€) is given by

v(f’e fle--®f+)= rzﬂ(—l)f—l 79 (f°5f1 LAfILpIG it ...5f’+1)
j=1
Proof. Again, we illustrate the case of r = 2. The general computation is similar.
by)(fPefleffefiefh
=y’ f'offeffef-w(flef fPeffefY+ruef o f e fh
—v(fPefleffe P fh+y(fiffeflef e f)
= T FLF2A 3 1) — TLO L2 34 + TP (O F1ar28 1% 4 — T (O £ 28 1%8 1
OO A LR = TP B ) + TO O LA A 1Y — T (OB 2120 Y
TR Y = TP L1720 ) + TO (PR £ F2ACf2 ) — TP (PR F1a 2 £2 £
FTOFOFIAL2 1% — TP O L F281%) + T4 OB 132 )
= T 2R3 + TLPOBFL (P2 A 1Y + TP (PP .13 7213 £
=SN(Peflefle e fh O
Theorem 38. Let 6 be a small C-category and let (7¢,F) be a p-summable even Fredholm
module over €. Take2m = p — 1. Then,
S@*™ =-(m+ D> in H{"(6)
Proof. We will show that S(¢*™) + (m + 1)¢p*>™*? = by for some v € Z/%m“((g). By Theorem 34,
we know that ¢?”" is the character of the 2m-dimensional cycle (Q'¢,d’, Trs, p') over the category

% . Applying Lemma 36 and using the fact that Trs(7) = 0 for any homogeneous T of odd degree,
we have

(S(¢2m))(f0 ®fl ®--- ®f2m+2)
2m+1

= Y (T AF PN E L 1)
j=0
Further,
(p2m+2 (fO ®fl ®--- ®f2m+2) — Tl's (fO [g’fll ..... [g]meJrZ])
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so that

(S((sz) + (m+ 1)¢2m+2) (fO ®fl ®--- ®f2m+2)

2m+1

= Y T (OF N F PN I E R )

j=0
+(m+1)Trg (2L, M. [F, f2™*2])  (61)

We now consider v = Z?TOH (-1 lyd, where

vl flo- o f2mH =Tr(e$2ff[32,ff“]...[g,fm“][g,f"][g,fl] ...[g,ff‘l]) (62)

Since 2m = p—1 and (S, %) is a p-summable even Fredholm module over ¥, it follows that the
operator eZ fIZ, fit1]...[Z, FA™(Z, fO1LZ, f1...[F, fI1] is trace class.

We observe that 7y/ = y/~! for 1< j <2m+1 and 7y° = w?>™*! It follows that (1 — A)(y) = 0.
Hence, € C3"*1(%6) = Ker(1 - A). Using (62), we have

(bw])(f0®fl ®“.®f2m+2)
2m+1

— Z (_1)i ,l[/j(f0®".®fifl'+l ®”_®f2m+2) +,([/j(f2m+2f0®fl ®'”®f2m+1)
i=0

- Tr(e?fj+l[?,fj+2]... (F, F2m42) O 7, f1) ...[f/r,ff'])
DI T (e fIF (1A, A fOUFL . )
+Tr(69‘fj[9,fj”] [g,me”]fO[g,fl]...[gr,ff'*l])

We now set B/ = [, fI*?]...[Z, f2"*2 fOL%, f11...1Z, fI~1]. Then, we have
(Z, B =Fp - (1" F = F(F, {12, 1F, 220U, 1.0,
—(F, I PR O, N NS
G N N A I - e [ A [ 8 A PO - 2

With a/ = f1.Z i1, we get
D T (e FIHNF, FIRAF fNE N 1 AF PN )
=Te(e f11F, pII 1) = Trs (o] 17, B1)) = Tr (17, 07 1B7) (63)

where we have used the fact that Tr; is a closed graded trace and Trg(T) = Tr(e T) for any operator
that is trace class (see [12, Lemma 2]). Thus, we have

by (08 1o @ 22 = ~Te(IF, F11F 17 1)+ Tr(F, @l 1) + T (7 117, £ B7)

Since
FIF, N =F(Z, I+ FF, I =-1F, fAF I+ F 11 Z, 7,
we obtain
by (fO® fle.-- f2m+2) =Trs((9[9,ffff“] +1Z, af])ﬁf)
As

FIFf N+ 1F,a | =FF I+ Fal + ol F =17, fIF, FIT +2f1 I
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we get
2m+1 X .
(bw)(f()@fl ®,..®f2m+2) — (_I)J*I(b,(//])(f()@fl ®”_®f2m+2)
Jj=0
2m+1 X o ) ‘ ) .
=) (—1)]_1(2Trs(f]ff+1ﬁf) +Tr5([9,ff][g,f]+1]’3]))
j=0
2m+1 ) o )
= Y 2T (OUF A U PO LA, 1)
j=0
2m+1
+ Y T (fOLF, f1. 1, )
j=0
2m+1 ) o )
= Y 2T (fO1F 11 AF, PN OIE, L )
Jj=0
+Cm+2)Tr (L7, ... 1F, f2)
The result now follows by (61). [

8. Homotopy invariance of the Chern character

Let SHilb, be the full subcategory of SHilbz,,7 whose objects are of the form 2 = 9, @ 9; with
2y = 91 = S for some separable Hilbert space #, and whose morphisms are bounded linear
maps. Given separable Hilbert spaces #, #’', a sequence of operators {T,, € B(H, ")} n=1
converges to T € %B(#, ') in the strong topology if T,x — Tx in the norm on s’ for each
x € F (see, for instance, [41, Section 4.1]). A function ¢ : [0,1] — %B(H#, #") is strongly C! if it is
differentiable and its derivative is continuous with respect to the strong topology on % (A4, 7).

In this section, if 2 = #° & A € SHilb,, we will denote by F(2) the morphism in SHilb,(2,2) =
B(F ® 7€, 7€ ® 7€) given by the matrix (§ }) swapping the two copies of 7.

Lemma39. Let€ beasmallC-category and {7, : € — SHilby}c(0,1] be a family of linear functors
such that for each X € Ob(€), we have #;(X) = #(X) forall t, t' € (0,1]. We put 7 (X) := 7#;(X)
forallte|0,1]. Foreach f : X — Y in €, we assume that the function

pr:10,1] — SHilbz 27 (7(X), 7;(Y)) t— JG(f)
is strongly Cl. Then ifo:(f):= p}(t), we have
0:(f8) =1(f)0b.(8)+6:(f)oHi(g)
for composable morphisms f, g in6.
Proof. We have
0:(f8)— 1 (f)ob(8)—0,(f) o7 (g)
= P}g(l‘) —%”z(f)opfg(f) —p}(t)o%(g)
1
= y_l}(l)}(pfg(t“‘ )= Prg(t) = H() o pg(t+ )+ A5 (f) o pg(1) — pp(t+5) 0 H3(g) + py(1) 0 H3(8))
1
=£i£I(l); (jft+s(fg)_<%ﬂt(fg) — FG () H15(8) + I () A (Q) — Hivs () (8) +%0t(f)«?ﬁ(g))
1
=lim = (Hrs(N) =GN (Hrs(9) - H1(8))

1
=lim = (p;(t+9) = pp(0) (pg(t+5) = pg(0)
= py(Olim (pg (1 +5) - pg(n) =0



Mamta Balodi and Abhishek Banerjee 645

For each n € Z», we now define an operator A: CN"(€¢) — CN" (%) given by
A=1+ A+ A%+ 4 A"

where A is the (signed) cyclic operator. We observe that if v € C /'1’(<€) = Ker(1 - 1), then Ay =
(n+1)y. From the relation

A=A +2043A 2%+ -+ n+ DAY =A-(n+1)-1

it is immediate that Ker(4) < Im(1 — 1). Let By : CN™*1(¢) — CN"(€) be the map defined as
follows:

(BO¢)(f0®®fn) ::¢(1XO ®f0®"'®fn)_ (_1)n+1(p(f0®"'®fn®]-X0)
forany f’® fl®---® f" € Home (X1, Xo) ® Home (X2, X7) ® - - ® Home (X, X;,). We now set
B:= ABy:CN"""(¢) — CN"(6)

Lemma 40. We have
(i) bA=Ab'.
(i) bB+Bb=0.

Proof.

(i). This follows from the general fact that the dual CN* (%) of the cyclic nerve of ¥ is a cocyclic
module (see, for instance, [34, Section 2.5]).

(if). Forany f'®fl®---® f" € Home (X1, Xo)®Home (X5, X;)®---®Home (X, X,,) and ¢ € CN"€,
we have

(Bobp)(f'®---® f) = (bp)(1x, ® fO®---® 1) = (=1)" L (bp)(f'®---® f ®1x,)
n-1 X o
=p(fPeofM+y (D gy e e o f fle ofm
i=0
+(_1)n+l(p(fn®f0®_”®fnfl)
n-1 . o
_(_1)n+1 Z(_l)l(P(fO@"’@flle®"’®fn®1X0)
i=0

On the other hand,

n-1

'Bop)(f®-®fM=Y (-Diplx,®fl o f ffle...of"
i=0
n—1 . L
DY Do e fif e e fM @ 1,)

i=0

Thus, we obtain
(Bob+b'Bp) () (fP®---® f=¢p(f®--® fH+(-1)" (" P00 "]
Therefore,
(Bob+ b'By) () =p— A (64)

Now, by applying the operator A to both sides of (64), we have

ABob+ Ab'By=0
The result now follows from part (i). O

Proposition 41. The image of the map B : CN""1(€) — CN"(¥€) is C;l (6).
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Proof. Let ¢ € C7'(¥) and let R := Dx, yecob) Hom(X, V). Then R is an algebra with mutiplica-
tion given by composition wherever possible and 0 otherwise. We choose a linear mapn: R — C
such that

n(f)=0 for fe Homg(X,Y), X#Y

nlx)=1 V XeOb(¥)
We now define ¢ € CN"""1 (%) by setting

w(fPe-o ") =0 e £
+ (D" (p(fPefle-o - (1x @ fle---o f1)n(f™h)

forany f'® fl®---® f"*! € Home (X}, Xo) ®Home (X2, X1)®- - -@Home (Xo, X4 1). We observe that
if the tuple (f',..., f**1) is not cyclically composable, i.e., Xy # X1, then the first term vanishes as
n(f°) = 0. Similarly, if the tuple (f°,..., f™) is not cyclically composable, i.e., X,,+1 # Xo, then the
second term vanishes. For the last term, n(f°) and n(f"*!) will be non zero only if X; = X; and
Xo = Xp+1 which means that X;,.; = X; and the tuple (lxl,fl, ..., f™) is cyclically composable.
Then, forany g ® g' ®---® g" € Home (Y7, Yy) ® Home (Y2, Y1) ® - -- ® Home (Yp, Y;,), we have
y(ypeg’e--og"
=1y e---eg"
+0" (1880 08" ) n(g" ¢ (nly)1y, ©8° 00 g" n(g")
:(l)(g()@@gn)
Also
v(g'e g aly)=n(g)pg o og"aly)
+(-D"(9(8% @0 8" nly) ~ 9 (g1 @8 © -2 ") n(Lyy))
=(-1D"p(g"e-0g")

where the second equality follows from the fact that ¢ € C} (%) and that n(g%) = 0 whenever
Yl # Y(). Thus,

Boy)(g'®--egM =y(lyeg’e g - -y’ e -8g"aly)
=2¢(g0®...®g")

Since ¢ € Ker(1 — 1), we now have By = 2A¢ = 2(n + 1)¢p. Thus, ¢ € Im(B). Conversely, let
¢ € Im(B). Then, ¢ = By for some ¢ € CN""*1(%). Using the fact that (1 - 1) A = 0, we have

1-M(P)=0-)(By)=((1-1)ABy)y =0
This proves the result. O

Proposition 42. Lety € CN"(6) be such that by € C;’“ (€). Then,

(i) By e Z}"'(6) i.e, b(By)=0and(1-A)(By)=0.
(i) S(By)=n(n+1)by in Hy*'(6).

Proof.

(i). We know that (1 - 1)(Byw) = (1 — 1)(ABy)(y) = 0. Further, for any ¢ € Ker(1 — 1), we have
By¢ = 0. Therefore, it follows that bBy = —Bby = —AByby = 0.
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(ii). We have to show that SBy — n(n+ 1)by = b( for some { € C}(€). We set ¢ = By. Then, ¢
is the character of an (n — 1)-dimensional cycle (#,0, T, p) over €. By Proposition 37, we have
S¢p = by', where ¢’ € CN"(€) is given by

V(o e = f(—nf—l T(f05f1...5ff‘1ff5fj+1...5f”)
j=1

Suppose we have " € CN" () such that " —y € B"(€) and { = ¢' — n(n+ Dy" € CJ(¥). This
would give
bl =by' - nn+1)by" =SBy —n(n+1) by
We set 0 := Bow, 0’ := L and 6" := 0 — 0’ € CN""(%). Since By € Z}'"! (6), we have
1 1 1
A0" = AByy — —Adp=By - —ABy =By - —nBy =0
n n n

Since Ker(A) € Im(1-1), we have 8” = (1-1) (1) for some y; € CN""1(€). We take v = w—by.
We now show that (1-1)({) =0, i.e., 1-A) ") =nn+1)1A-A) ") where { =y’ — n(n+ 1)y".
We see that

@) (0o f =y (fe oo ") = 2(—1)!’ T(0£°9f .07 Fiofi*t .3 f7)
=
where we have used the fact that T is a graded trace. For 1 < j < n— 1, we now set
wj=f@ft AT @t amh
Then,
dwj=@f 0f .. 0f Y IO LA T+ (1T @ e LA
+(=D"OOf AT @ A e ™
Thus,
0=T@w;)=T(3f%f"...0f " f1af*! ...5f"—1f")
+(—1)!’*1’T‘(f°5f1...Efffléffﬁff“...Ef"*f")
+(-1)"T(f05f1...Bff—lfféff“...5f”—15f”)
Therefore,

A-DW)Poo ==Y (1)) T(f°5f1...5ff‘1ff5fj“...5f”)

n
i1

J

n-1 TR . . R
~ D" Y DT T(8f08f" BT AL )

j=0

) _((_1)"T(f°5f1 AP+ DT (9B )
+ nf(—l)f(f(foéfl T AT AL
j=1

+(—1)"?(5f°5f1...5ff—1ff5ff+1...5f”—1f")))
=D+ DT 00" ... 0"
— (_1)n+1(n+ 1)¢(fnf0®fl ® _”®fn—1)

Hence,

Q- fH==D""m+Do(f"fPofle---of" (65)
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On the other hand, using the definition of " and the fact that (1 - A)b = b'(1 — 1), we have
A-My")=A-Nw)-1-Dby)=A-N@)-b'A-N)w)=1-Nw)-b'6e"

Since by € C}f“(‘g), we have from (64) that (1 — A)(yw) = (Bob + b'By)(w) = b'Bow = b'0 =
b'0' + b'9". Hence,

(l—ﬂ,)(’(//”) — blel — % b,(p

Since ¢ = By € Z]'"}(6), b¢p = 0 and therefore

A-Dy" (oo fh= % bP)(fPe---®fh= % D"l e e 7 (66)
The result now follows by comparing (65) and (66). O

Proposition 43. Let € be a small C-category and {7¢; : € — SHilby}c(0,1] be a family of linear
functors such that for each X € Ob(%€), we have 74(X) = #,(X) forallt, t' € 0,1] and () is of
degree zero for each f € Homg (X, Y) and t € [0,1]. We put 7 (X) := 5¢;(X) forall t € [0,1].

Let & be the family of operators

01
F = {(F(%”(X)) = (l 0)} (67)
XeOb(6)

Let p = 2m be an even integer. We assume that
() foreach f € Home (X,Y), the association t — [F,7;(f)] is a continuous map
(f:00,1] — BP(AH(X), H(Y)) t— [F, ()]
(i) foreach f €e Home (X, Y), the association
py :10,1] — SHilbz/27 (#7(X), #;(Y)) t— H(f)
is piecewise strongly C'.

Let (¢}, %) be the corresponding p-summable Fredholm modules over €. Then, the class in
Hf *2(€) of the (p + 2)-dimensional character of the Fredholm module (7¢;, ) is independent
of t.

Proof. For any ¢ € [0,1], let ¢; be the p-dimensional character of the Fredholm module (57, %).
We will show that S(¢4,) = S(¢py,) for any 1, £ € [0,1].

By assumption, we know that there exists a finite set R = {0=rg<r <---<rp<rgs1 =1} S
[0,1] such that py : [0,1] — SHilbz,»z(77(X),7(Y)) is continuously differentiable in each
[ri,ri+1]. By abuse of notation, we set for each f € Hom¢ (X, Y):

8:(f) = pj(1) € SHilbz22 (H1(X), H(Y)) (68)

Here, it is understood that if ¢ = r; for some 1 < i < k, we use the right hand derivative when r; is
treated as a point of [r;, ;1] and the left hand derivative when r; is treated as a point of [r;_1, r;].
Using Lemma 39, we know that

0:(f8) =71(f)ob:(8)+6:(f) o 1(g) (69)

for any ¢ € [0,1] and for any pair of composable morphisms f and gin ¥.
Foranyte[0,1]and1=<j<p+1, weset

W{(f0®"'®fp+l)
= Tr (e (fONF, AN (T, AT NS (FDNF, AT AF A7)



Mamta Balodi and Abhishek Banerjee 649

Using the expression in (69) and the fact that .77 (f) = 7°(f)e for any morphism f € €, it may be
easily verified that bu/{ = 0. For example, when j = 1, we have (suppressing the functor J#)

(bw%)(f()@...@fp*Z)
p+l L. ,
— Z ’(//}’(f0®"'flfl+l ®_”®fp+2)+,(//£(fp+2f0®fl ®'”®fp+2)
i=0
=Tr(efOf 0, (fOF, 1. 1F, fP2) = Te (e fO8:.(f FOIZF, ... 1F, FP2)

T (20 OS2 L) (F ) = Te(ef 28 ONF, T L 1) F, f2) +
S=Te(ef8 (fOIF, f21. 1 F [P P+ Te (e f P2 5. (FOIF, U, £ 4. 17, P71)

=0
We then define
p+1 X ,
yri= ) D)y
j=0

We have by ; =0.

For fixed f, it follows from the compactness of [0,1] and the assumptions (1) and (2) that
the families {77 (f)}ef0,11, (P (D} rero,1) and {0¢(f)}reo,1) are uniformly bounded. For the sake of
simplicity, we assume that there is only a single point r € R such that #; < r < £,. Then, we form
w € CNPTL(€) by setting

r t.
W(f°®-~®f”“)‘=f wt(f°®-~-®f”“>d'f+f (s e s
3% r
We now have
w(lX()@fO@...@fp)

r t:
=f wt(lxo®f°®---®fp)dt+fZwt(lx[,@f‘]@---@f”)dt
151 r

rfP . . . .
- (Z(—l)fTr(e[g‘,%(f‘))J...[%%(f"l)]ét(ﬂ)[@,%(ff“)]...[9,%(f”)]))dt
I \j=0

f (Z( DI T (e[, H4(fO)) .. |F, A7) [(ff')[?,%(ff“)l...[f/f‘,%(f”)]))dt

j=0
Let¢:[0,1] — Z/lp(%) be the map given by ¢ — ¢;. We now claim that

vy, ®f'®---®fP)= tr¢’(r)(f°®--.®fp)dt+frt2¢>’(t)(f°®---®f")dt

1
Indeed, we have
P (e fP) =£ig5§(¢t+s—¢t)(f°®~-®f”)
=1im(Tr(el (He5(fO) = A (fO) 1 F, s (FI]... | F, ffm(ﬂ’)])
+Tr(e<%”t(f°)[d (Hiss ) = A D) |IF, A (P A A (7))

+Tr(€%(f0 Z, jft(f .. [ (jfﬁs(fp)—%(fp))]))
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By (i), we know that the association t — [F, .7 (f)] is a continuous map for each morphism f € 6.
Therefore, we have

. 1 X ]
£@3(Tr(eﬁi”t(f0)[9,%(fl)]...[ﬂ,ﬁiﬂt(fj—l)] [9:;(%H(ff)_%(ﬂ))]_“[g,%ﬂ(ﬂ)]))
- gil%(_l)j(Tr(e[g»%ﬂt(fo)] W FAFITY)

1 . . ,
<2 (s = A D) \P e (1012, A £
= (1)) Te(elF, A4 (fONF, (). F, A0 (FTNS (FDIF, AT T, H(FP))

From this, we obtain
r L
f (b/(t)(f0®--'®fp)dt+fZ(Pl(t)(f(]@"-@f”)dt
h r

r P X
= | YD Te(elF, A ONEF, A ..

5] j=0
(F, (N6 (fDIF, A (FTO). L F, A () de
+ rtz i(—l)fTr(e[g,%(f°)1[9,%[(]“)1...
i=
(F, A(fTN6 (fDIF, AP F, A (FP))de
=y(x,®f 0o fP)
Hence
U’(IXO®f0®"‘®fp)Z(Ptz(fo®"’®fp)—¢r(f0®"‘®fp)+¢r(f0®"’®fp)—¢tl(f0®”'®fp)
:(Ptz(f()@"'@fp)—¢t1(f0®"'®fp)
Since w(f°®---® fP ® 1x,) = 0, we now have
Boy)(fPe--efP)=ylx,efe-eff)-y(f'e-ofolx)
=, ~pn) (@ o f7)

Since by =0, using Proposition 42 and the fact that ¢, — ¢, € Ker(1 - A1), we have

0=S8By)=S(ABoy) = (p+1)S(pr, — py)
This proves the result. 0

Theorem 44. Let€ beasmallC-category and{p;: € — SHilby} c(0,1] be a family of linear functors
such that for each X € Ob(€), we have p;(X) = p(X) forallt, t' € [0,1]. We put p(X) := p(X) for
all t € [0,1]. Further, for each t € [0,1], let

0 2/(X)

gﬁ::{éZAxn::(gﬂ(X) 0

):p(X)—wO(X)} (70)
Xe0b(6)
with &;(X) = Qt‘l(X) be such that (p;, %;) is a p-summable Fredholm module over the category
€. We set p(X) = p'(X) ® p'(X) € SHilby. We further assume that for some even integer p and for
any f €e Hom¢ (X, Y), we have
() t— p7 () —2:p; ()P is a continuous map from [0,1] to B (p'(X), p'(Y)), where p7 are
the two components of the morphism p; of degree zero.
(i) t — pt*(f) and t — 2.0, ()P, are piecewise strongly ct maps from [0,1] to
SHilb(p'(X), p'(Y)).

Then, the (p + 2)-dimensional character chP*? (o1, Fr) € Hf+2(<€) is independent of t € [0, 1].
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Proof. For each 7€ [0,1], weset 7 := (§ 9 ). Then, 7,71 = (g o ) and &, := 7,.7,9, " = ().
For each ¢ € [0, 1], we also define a linear functor J¢; : ¢ — SHilbz,27 given by
HX)=pX) A =Tip(HT
Then, we have
0 20 (NP —p7 ()
glﬂ% - ( B t t
Fo i DV= o (1) - 200, (12, 0
Therefore, using assumption (i), we see that the map ¢ — [F',74(f)] from [0,1] to
BP (7 (X), 7;(Y)) is continuous for each f € Home (X, Y). Further,

+
- N 0
) = Tipd(HTT = (p ‘ - )
t(f)=Tpe(NT, 0 2,00 (NP,
Therefore, by applying assumption (ii), we see that the map ¢ — % (f) is piecewise strongly C'.
Since trace is invariant under similarity, the result now follows using Proposition 43. d

Theorem 45. Let6 be asmallC-category and{p;: € — SHilby};c(0,1] be a family of linear functors
such that for each X € Ob(€), we have p;(X) = py(X) forallt, t' € [0,1]. We put p(X) := p(X) for
all t € [0,1]. Further, for each t € [0,1] and X € Ob(%¥), let

0 2:X)

F1(X) = (9};()() 0

):p(X) — o(X)

with Qt‘l = 2P; be such that (p;, %;) is a p-summable Fredholm module over the category €. We
further assume that for some even integer p, we have

(i) For any f € Home(X,Y), t — p/f) is a strongly C'-map from [0,1] to
SHilbz/27 (p(X), p(Y)).
(ii) Forany X €€, t— F(X) is a strongly C'-map from [0,1] to SHilbz,27 (o (X), p(X)).

Then, the (p + 2)-dimensional character ch?*?(p,, %,) € HTZ (¥) is independent of t € [0,1].

Proof. By definition, p;(f) = (p+(f) 0 ) and Z;(X) = ( 0 9’00). As such, it is clear that a

0 p~(f) Z(X) 0
system satisfying the assumptions (1) and (2) above also satisfies the assumptions in Theorem 44.
This proves the result. d
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