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Abstract. On a bounded q-pseudoconvex domain Ω in Cn with Lipschitz boundary bΩ, we prove the L2

existence theorems of the ∂b -operator on bΩ. This yields the closed range property of ∂b and its adjoint
∂
∗
b . As an application, we establish the L2-existence theorems and regularity theorems for the ∂b -Neumann

operator.
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Introduction and main results

LetΩ be a bounded domain in Cn with smooth boundary bΩ. The Cauchy–Riemann operators ∂
on Cn induce the tangential Cauchy–Riemann complex or ∂b complex on bΩ. On the boundaries
of smooth bounded domains, there are several equivalent ways of defining the ∂b complex.
The ∂b complex was first formulated by J. J. Kohn and H. Rossi in [26] for smooth boundaries
to understand the holomorphic extension of CR-functions from the boundaries of complex
manifolds. On a strictly pseudoconvex domain with smooth boundary in Cn , the ∂b-complex
has been studied in several articles (cf. [2, 5, 8, 17, 18, 27]). In the case of a weakly pseudoconvex
domain with smooth boundary in Cn , the L2 and Sobolev estimates for ∂b have been obtained by
M.-C. Shaw in [33] for 16 q < n −1 and by H. P. Boas and M.-C. Shaw in [3] for q = n −1 (see also
J. J. Kohn [25]). On the boundary of a weakly pseudoconvex domain, it was pointed out by J. P.
Rosay in [32] that one can combine the results of J. J. Kohn and H. Rossi in [26] with those of J. J.
Kohn in [24] to prove that the global solutions to the equation ∂bu = f exists. Other results in this
direction see Andreea C. Nicoara [31] and Phillip S. Harrington and Andrew Raich [14].

When the boundary is only Lipschitz, not every definition can be appropriately extended. On
a Lipschitz boundary of a bounded domain in Cn , the complex normal vector is defined almost
everywhere on bΩ. It was pointed out by D. Sullivan in [39] (see also N. Teleman in [40]) that
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on a real Lipschitz manifold, q-forms with L2 coefficients and the de Rham complex are still well
defined. Thus one can still define (p, q)-forms with L2(bΩ) coefficients, denoted by L2

p,q (bΩ). The

∂b complex is then well defined as a closed densely defined operator from L2
p,q−1(bΩ) to L2

p,q (bΩ).

In [13], Phillip S. Harrington has constructed a compact solution operator to the ∂b-operator on a
pseudoconvex domain with Lipschitz boundary. On the same domain, the L2 existence theorems
of the ∂b-operator was established by Mei-Chi Shaw in [37]. The first purpose of the paper is to
extend this result to Lipschitz boundaries of q-pseudoconvex domains. Our first main result is
the following:

Theorem 1. Let ΩbCn be a bounded q-pseudoconvex domain with Lipschitz boundary bΩ and
let 16 q 6 n. For every α ∈ L2

p,q (bΩ), where 06 p 6 n, 16 q < n −1, n> 2 such that

∂bα= 0 on bΩ,

there exists a u ∈ L2
p,q−1(bΩ) satisfying ∂bu =α in the distribution sense in bΩ. Moreover, there ex-

ists a constant C depending only on the diameter and the Lipschitz constant of Ω but is indepen-
dent of α such that

‖u‖bΩ6C‖α‖bΩ.

When q = n −1, for every α ∈ L2
p,n−1(bΩ) satisfies∫

bΩ
α∧φ dS = 0, for any φ ∈C∞

n−p,0(Ω)∩ker∂

the same conclusion holds.

The proof of the main theorem consists of three parts: first we prove the existence and the
boundedness of the ∂-Neumann operator N on Sobolev spaces W m(Ω) for − 1

2 6 m 6 1
2 . This

yields that the operators ∂N and ∂
∗

N and the Bergman projection P are bounded operators on
W m(Ω). Second, we study the solvability of the ∂-problem in the Sobolev space W m(Ω) with
prescribed support in Ω, for − 1

2 6 m 6 1
2 . Third, by using the jump formula derived from the

Bochner–Martinelli–Koppelman kernel, the main result follows.
The closed range property is related to existence and regularity results for ∂b . Independently,

when bΩ is smooth and weakly pseudoconvex inCn , Mei-Chi Shaw in [33] and H. P. Boas and Mei-
Chi Shaw in [3] proved that the range of ∂b was closed on (p, q)-forms of degrees 16 q < n −1
and q = n − 1, respectively. On a boundary of strongly pseudoconvex domain, the range of ∂b

is closed follows from J. J. Kohn and H. Rossi [26]. If Ω is Lipschitz pseudoconvex in Cn and if
there exists a plurisubharmonic defining function in a neighborhood of Ω, the range of ∂b is
closed follows by Mei-Chi Shaw [37]. Other results in this direction see [31]. In [15], Phillip S.
Harrington and Andrew Raich established sufficient conditions for the closed range of ∂ (and ∂b)
on not necessarily pseudoconvex domains (and their boundaries) in Stein manifolds. Also, Phillip
S. Harrington and Andrew Raich established sufficient conditions for the closed range of ∂ (and
∂b) on domains neither boundedness nor pseudoconvexity in Cn (see [16]).

As an application of Theorem 1, we prove that the ranges of ∂b and its adjoint ∂
∗
b are closed for

Lipschitz boundaries of q-pseudoconvex domains.

Theorem 2. Let ΩbCn be a bounded q-pseudoconvex domain with Lipschitz boundary bΩ and
let 16 q 6 n. Then, one obtains

(i) ∂b and ∂
∗
b acting on L2

p,q (bΩ) have closed range for every 06 p 6 n, 16 q 6 n −1, n> 2.
(ii) The space of harmonic forms on the boundary bΩ vanishes, i.e.,

H
p,q
b (bΩ) = {0}, for 06 p 6 n 16 q < n −1.

When the unbounded operator is the ∂b operator, the Hilbert space approach has been
established by J.J. Kohn in [23] for strongly pseudoconvex domains and by L. Hörmander in [21]
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for pseudoconvex domain in a Stein manifold. When the boundary of a pseudoconvex domain
is smooth, the Hodge decomposition on bΩ has been obtained by Mei-Chi Shaw in [36] for
1 6 q < n − 1 and by H. P. Boas and Mei-Chi Shaw in [3] for q = n − 1 (See also Mei-Chi Shaw
in [37] for C 1 or Lipschitz boundaries).

In the end of the paper, we will prove that the ∂b-Laplacian, or Kohn Laplacian, �b = ∂b∂
∗
b +

∂
∗
b∂b has closed range for (p, q)-forms when 06 p 6 n, 16 q 6 n −1, n > 2. Thus there exists a

bounded inverse operator for�b , the ∂b-Neumann operator Nb , and we have the decomposition
for ∂b on bΩ: α= ∂b∂

∗
b Nbα+∂∗b∂b Nbα for any (p, q)-forms α with L2(bΩ) coefficients.

Theorem 3. Let ΩbCn be a bounded q-pseudoconvex domain with Lipschitz boundary bΩ and
let 16 q 6 n. Then, for each 06 p 6 n, 16 q 6 n−1, n> 2, there exists a bounded linear boundary
operator Nb : L2

p,q (bΩ) −→ L2
p,q (bΩ) such that

(i) Rang (Nb)bDom�b and�b Nb = Nb�b = I on Dom�b .
(ii) For α ∈ L2

p,q (bΩ), we have α= ∂b ∂
∗
b Nbα⊕∂∗b∂b Nbα.

(iii) ∂b Nb = Nb∂b on Dom∂b , for 16 q 6 n −1.
(iv) ∂

∗
b Nb = Nb∂

∗
b on Dom∂

∗
b , for 26 q 6 n.

(v) Ifα ∈ L2
p,q (bΩ) and ∂bα= 0, then u = ∂∗b Nbα is the unique solution to the equation ∂bu =α

which is orthogonal to ker∂b .

1. Notation and preliminaries

1.1. Morrey–Kohn–Hörmander

Let Ω be a bounded domain in Cn with C 2 boundary bΩ and defining function ρ so that |∂ρ| = 1
on bΩ. Let (z1, . . . , zn) be the complex coordinates forCn . Any (p, q)-formα onΩ can be expressed
as follows:

α=∑
I ,J

′
αI ,J dz I ∧dz̄ J , (1)

where I = (i1, . . . , ip ) and J = ( j1, . . . , jq ) are multiindices and dz I = dzi1 ∧ ·· ·∧dzip , dz̄ J = dz̄ j1 ∧
·· ·∧dz̄ jq . The notation

∑′ means the summation over strictly increasing multiindices. Denote by
C∞(Cn) the space of complex-valued C∞ functions on Cn and C∞

p,q (Cn) the space of complex-
valued differential forms of class C∞ and of type (p, q) on Cn , where 06 p 6 n, 06 q 6 n. Let

C∞
p,q (Ω) =

{
u |Ω

∣∣∣u ∈C∞
p,q (Cn)

}
.

Denote D(Cn), the space of C∞-functions with compact support inCn . A form u ∈C∞
p,q (Cn) is said

to be has compact support in Cn if its coefficients belongs to D(Cn). The subspace of C∞
p,q (Cn)

which has compact support in Cn is denoted by Dp,q (Cn). For u,α ∈ C∞
p,q (Cn), the local inner

product (u,α) is denoted by:

(u,α) =∑
I ,J

′
uI ,J αI ,J

and (u,u) is defined by

(u,u) = |u|2 =∑
I ,J

′ |uI ,J |2.

The Cauchy–Riemann operator ∂ : C∞
p,q−1(Ω) −→C∞

p,q (Ω) is defined by

∂α=∑
I ,J

′ n∑
k=1

∂αI ,J

∂z̄k
dz̄k ∧dz I ∧dz̄ J .
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Recall that L2(Ω) is the space of square-integrable functions on Ω with respect to the Lebesgue
measure inCn and L2

p,q (Ω) is the space of (p, q)-forms with coefficients in L2(Ω). If u,α ∈ L2
p,q (Ω),

the L2-inner product 〈u,α〉Ω and norm ‖u‖Ω are defined by

〈u,α〉Ω = 〈u,α〉L2
p,q (Ω) =

∫
Ω

(u,α)dV =
∫
Ω

u ∧?α
and

‖u‖2
Ω = ‖u‖2

L2
p,q (Ω)

= 〈u,u〉Ω,

where dV is the volume element induced by the Hermitian metric and ? : C∞
p,q (Cn) −→

C∞
n−q,n−p (Cn) is the Hodge star operator such that ?u = ?u (that is ? is a real operator) and

?? u = (−1)p+q u. For u ∈ C∞
p,q (Ω) and α ∈ Dp,q−1(Ω), the formal adjoint operator ϑ of ∂ :

C∞
p,q−1(Ω) −→C∞

p,q (Ω), with respect to 〈 · , · 〉Ω, is defined by

〈∂α,u〉Ω = 〈α,ϑu〉Ω.

Thus ϑ can be expressed explicitly by

ϑu = (−1)p−1
∑

|I |=p

′

|K |=q−1

n∑
j=1

∂uI , j K

∂z j
dz I ∧dz̄K . (2)

The operator ϑ defined in (2) satisfies
ϑ=−? ∂? . (3)

Let ∂ : Dom∂ ⊂ L2
p,q (Ω) −→ L2

p,q+1(Ω) be the maximal closed extensions of the original ∂ and

∂
∗

: Dom∂
∗ ⊂ L2

p,q (Ω) −→ L2
p,q−1(Ω) be the Hilbert space adjoint of ∂. Let ker∂ = {α ∈ Dom∂ :

∂α= 0} and Rang∂= {∂α : α ∈ Dom∂}, be the kernel and the range of ∂, respectively. The complex
Laplacian� is defined by�= ∂∂∗+∂∗∂ : L2

p,q (Ω) −→ L2
p,q (Ω) on Dom�= {α ∈ Dom∂∩Dom∂

∗
:

∂α ∈ Dom∂
∗

and ∂
∗
α ∈ Dom∂}. The space of harmonic forms H p,q (Ω) is defined by

H p,q (Ω) = {α ∈ L2
p,q (Ω) ∩Dom∂ ∩Dom∂

∗
: ∂α= ∂∗α= 0}.

Let H : L2
p,q (Ω) −→ ker� be the orthogonal projection from the space L2

p,q (Ω) onto the space

ker�. The ∂-Neumann operator
N : L2

p,q (Ω) −→ L2
p,q (Ω)

is defined as the inverse of the restriction of� to (H p,q (Ω))⊥, i.e.,

Nα=
{

0 if α ∈H p,q (Ω),

u if α=�u, and u ⊥H p,q (Ω).

In other words, Nα is the unique solution u to the equations Hu = 0,�u =α−Hα. The Bergman
projection operator P : L2

p,q (Ω) −→ ker∂ is the orthogonal projection of L2
p,q (Ω) onto ker∂. For

any 06 p 6 n and 16 q 6 n, P is represented in terms of N by the Kohn’s formula

P = I −∂∗∂N . (4)

Let a = (a1, . . . , an) be a multiindices, that is, a1, . . . , an are nonnegative integers. For x ∈ Rn , one
defines xa = xa1

1 . . . xan
n and Da is the operator

Da =
(

1

i

∂

∂x1

)a1

. . .

(
1

i

∂

∂xn

)an

.

Denote by S the Schwartz space of rapidly decreasing smooth functions on Rn , that is, S con-
sists of all functions u which are smooth on Rn with supx∈Rn |xaDbu(x)| <∞ for all multiindices
a, b. The Fourier transform û of a function u ∈S is defined by

û(ξ) = (2π)−n/2
∫
Rn

u(x)e−i x.ξdx,
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where x.ξ = ∑n
ν=1 xν ξν and dx = dx1 ∧·· ·∧dxn with x = (x1, . . . , xn) and ξ= (ξ1, . . . ,ξn). If u ∈ S ,

then û ∈S . The Sobolev space W m(Rn), m ∈R, is the completion of S under the Sobolev norm

‖u‖2
W m (Rn ) =

∫
Rn

(1+|ξ|2)m |û|2 dξ.

Denote by W m(Ω), m> 0, the space of the restriction of all functions u ∈W m(Cn) =W m(R2n) to
Ω and

‖u‖W m (Ω) = inf
{‖α‖W m (Cn ), α ∈W m(Cn),α|Ω = u

}
is the W m(Ω)-norm. Let W m

0 (Ω) be the completion of D(Ω) under the W m(Ω)-norm. If Ω is a
Lipschitz domain, C∞(Ω) is dense in W m(Ω) with respect to the W m(Ω)-norm. If 0 6 m 6 1

2 ,
D(Ω) is dense in W m(Ω) (cf. [11, Theorem 1.4.2.4]). Thus

W m(Ω) =W m
0 (Ω), for 06m6

1

2
.

For m > 0, one defines W −m(Ω) to be the dual of W m
0 (Ω) and the norm of W −m(Ω) is defined by

‖u‖W −m (Ω) = sup
0 6=α∈W m

0 (Ω)

|〈u,α〉Ω|
‖α‖W m (Ω)

.

Denote by W m
p,q (Ω), m ∈ R, the Hilbert spaces of (p, q)-forms with W m(Ω)-coefficients and their

norms are denoted by ‖u‖W m (Ω). Noting that, for a bounded domainΩ, the generalized Schwartz
inequality, for u ∈W m(Ω) and α ∈W −m(Ω),

|〈u,α〉Ω|6 ‖u‖W m (Ω) ‖α‖W −m (Ω) (5)

holds when − 1
2 6m6 1

2 .

Lemma 4 ([4]). Let Ω b Cn be a bounded domain with C 2 boundary and ρ be a C 2 defining
function of Ω. Let ϕ ∈ C 2(Ω) with ϕ> 0. Then, for α ∈ C∞

p,q (Ω) ∩Dom∂
∗

with 16 q 6 n −1, one
obtains

‖pϕ∂α‖2
Ω+‖pϕ∂∗α‖2

Ω =∑
I ,J

′ n∑
j ,k=1

∫
bΩ
ϕ

∂2ρ

∂z j∂z̄k
αI , j K αI ,kK dS

+∑
I ,J

′ n∑
k=1

∫
Ω
ϕ

∣∣∣∣∂αI ,J

∂z̄k

∣∣∣∣2

dV +2Re

(∑
I ,K

′ n∑
j=1

∂ϕ

∂z j
αI , j K dz̄K ,∂

∗
α

)

−∑
I ,K

′ n∑
j ,k=1

∫
Ω

∂2ϕ

∂z j∂z̄k
αI , j K αI ,kK dV. (6)

The case of ϕ≡ 1 is the classical Kohn–Morrey formula see [21, 23].

1.2. The ∂b complex on Lipschitz domains

In this subsection, we introduce square-integrable (p, q)-forms on a Lipschitz boundary bΩ of a
bounded domain Ω in Cn with distance function ρ. We equip bΩ with the induced metric from
Cn . A boundary bΩ of a bounded domain Ωb Cn is called Lipschitz if locally the boundary bΩ
is the graph of a Lipschitz function. Let ψ : R2n−1 −→ R be a function that satisfies the Lipschitz
condition

|ψ(x)−ψ(x ′)|6M |x −x ′|, for all x, x ′ ∈R2n−1. (7)

The smallest M > 0 in which (7) holds is called the bound of the Lipschitz constant. A boundary
bΩ of a bounded domain Ωb Cn is called Lipschitz if near every boundary point p ∈ bΩ there
exists a neighborhood U of p such that, after a rotation,

Ω∩U = {(x, x2n) ∈U | x2n >ψ(x)},
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for some Lipschitz function ψ. By choosing finitely many balls {Ui } covering bΩ, the Lipschitz
constant for a Lipschitz domain is the smallest M such that the Lipschitz constant is bounded by
M in every ball Ui . A Lipschitz function is almost everywhere differentiable (see [7]).

Definition 5. A bounded domain Ω with Lipschitz boundary bΩ in Cn is said to have a global
Lipschitz defining function if there exists a Lipschitz function ρ : Cn −→ R such that ρ < 0 in Ω,
ρ > 0 outsideΩ and

c1 < |dρ| < c2 a.e. on bΩ, (8)

where c1, c2 are positive constants.

We cover bΩ by finitely many boundary coordinate patches Ui where i = 1, . . . ,k. Let ri be a
local defining function on Ui which is locally a Lipschitz graph. Let χi ∈C∞

0 (Ui ) be a partition of
unity such that

∑
i χi = 1 in a neighborhood of bΩ. We define ρ = ∑

i χi ri . Then ρ is a defining
function forΩ.

Lemma 6 ([37]). Let Ω b Cn be a bounded domain with Lipschitz boundary bΩ. Then Ω has
a global Lipschitz defining function ρ. Furthermore, the distance function to the boundary is
comparable to |ρ| for any global Lipschitz defining function ρ near the boundary.

Let C∞(bΩ) be the space of the restriction of all smooth functions in Cn to bΩ. For each m
with 1 6 m 6 ∞, one defines L̃m

p,q (bΩ) to be the space of (p, q)-forms in Cn such that each
coefficient of α, when restricted to bΩ, is in Lm(bΩ). Write α as in (1), then α ∈ L̃m

p,q (bΩ) if
and only if αI ,J |bΩ ∈ Lm(bΩ) for each I , J . Let ∨ be the interior product which is the dual of the
wedge product. Since the boundary is Lipschitz, the normal vector is defined almost everywhere
and satisfies (8). If we fix p ∈ bΩ, then for some neighborhood U of p we may locally choose
an orthonormal coordinate patch {dz1, . . . ,dzn} defined almost everywhere in U ∩Ω such that
dzn = ∂ρ (note that |∂ρ| = 1

2 because we are using the metric where |dz j | = 1, which is half the
size induced by the usual Euclidean metric on Rn). We define Lm

p,q (bΩ) ⊂ L̃m
p,q (bΩ) as the space of

all L̃m
p,q such that dzn ∨α= 0 almost everywhere on bΩ.

Locally, if α ∈ L̃m
p,q (bΩ∩U ), one can express

α=∑
I ,J

′

n∉J

αI ,J dz I ∧dz̄ J +∑
I ,J

′

n∈J

αI ,J dz I ∧dz̄ J ,

where αI ,J ’s are Lm(bΩ∩U ) functions. Let τ denote the projection map

τ : L̃m
p,q (bΩ) −→ Lm

p,q (bΩ)

defined by
τα=∑

I ,J

′

n∉J

αI ,J dz I ∧dz̄ J . (9)

Since changing basis will result in multiplication by L∞(bΩ∩U ) functions, the projection τ is
well-defined since it is independent of the choice of {dz̄1, . . . ,dz̄n−1}.

Let Λp,q (bΩ) denote the restriction of C∞
p,q (Cn) to bΩ. Define Bp,q (bΩ) to be the subspace

of L∞
p,q (bΩ) such that α ∈ Bp,q (bΩ) if and only if there exists α̃ ∈ Λp,q (bΩ) such that f = τα̃.

In other words, we have τ(Λp,q (Cn)) = Bp,q (bΩ). Obviously, Bp,q (bΩ) b L∞
p,q (bΩ) b L2

p,q (bΩ).
Denote by W m

p,q (bΩ), 06m 6 1, the space of forms that are the completion of Bp,q (bΩ)-forms
with W m(bΩ)-norms. This is well defined also for Lipschitz domains since on bΩ, W 1(bΩ) is well
defined and the boundary value of any function in W 1(Ω) to the boundary belongs to W

1
2 (bΩ)

(see [22]).

Lemma 7 ([30, Lemma 1.4]). Let Ω be a bounded domain with Lipschitz boundary bΩ in Rn .
Then C∞(bΩ) is dense in L2(bΩ) andΛp,q (bΩ) is dense in L̃2

p,q (bΩ) for every 06 p 6 n, 06 q 6 n.
Also Bp,q (bΩ) is a dense subset in L2

p,q (bΩ) for every 06 p 6 n, 06 q 6 n −1.
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The Bochner–Martinelli–Koppelman transform on (p, q)-forms is defined as follows. Let

(ζ− z) = (ζ1 − z1, . . . ,ζn − zn),

dζ= (dζ1, . . . ,dζn).

Define

〈ζ− z̄,dζ〉 =
n∑

j=1
(ζ j − z̄ j )dζ j ,

〈dζ−dz̄,dζ〉 =
n∑

j=1
(dζ j −dz̄ j )dζ j .

The Bochner–Martinelli–Koppelman kernel K (ζ, z) is defined by

K (ζ, z) = 1

(2πi )n

〈ζ− z̄,dζ〉
|ζ− z|2 ∧

(
〈dζ−dz̄,dζ〉

|ζ− z|2
)n−1

=
n−1∑
q=0

Kq (ζ, z),

where Kq (ζ, z) denote the component of K (ζ, z) that is a (p, q)-form in z and an (n −p,n −q −1)-
form in ζ.

When n = 1,

K (ζ, z) = 1

2πi

dζ

ζ− z
is the Cauchy kernel. As in the Cauchy integral case, for any f ∈ L2

p,q (bΩ) the Cauchy principal
value integral Kb f is defined as follows:

Kb f (z) = lim
ε−→0+

∫
bΩ

|ζ−z|>ε

Kq (ζ, z)∧ f (ζ),

whenever the limit exists. Denote by νz the outward unit normal to bΩ at z. Since bΩ is Lipschitz,
νz exists almost everywhere on bΩ. Then, for z ∈ bΩ, one defines

K −
b f (z) = lim

ε−→0+

∫
bΩ

Kq ( · , z −ευz )∧ f ,

K +
b f (z) = lim

ε−→0+

∫
bΩ

Kq ( · , z +ευz )∧ f .

Proposition 8 ([37]). Let Ω be a bounded domain in Cn with Lipschitz boundary. For α ∈
Bp,q (bΩ), 06 q 6 n −1, the following formula holds for almost every z ∈ bΩ:

α(z) = τ lim
ε−→0+

(∫
bΩ

Kq ( · , z −ευz )∧α−
∫

bΩ
Kq ( · , z +ευz )∧α

)
. (10)

The ∂b-operator is defined distributionally as follows: for any u ∈ L2
p,q (bΩ) and α ∈ L2

p,q+1(bΩ)

we say that u is in Dom∂b and ∂bu =α if and only if:∫
bΩ

u ∧∂φ dS = (−1)p+q
∫

bΩ
α∧φ dS, for every φ ∈C∞

n−p,n−q−1(Cn).

Since ∂
2 = 0, it follows that ∂

2
b = 0. Thus ∂b is a complex and we have the following:

0 −→ L2
p,0(bΩ)

∂b−→ L2
p,1(bΩ)

∂b−→ L2
p,2(bΩ)

∂b−→ . . .
∂b−→ L2

p,n−1(bΩ) −→ 0.

Proposition 9 ([35]). Let Ω be a bounded domain in Cn with Lipschitz boundary bΩ. The ∂b

operator is a closed, densely defined, linear operator from L2
p,q−1(bΩ) to L2

p,q (bΩ), where 06 p 6 n,
16 q 6 n −1.

We need to define ∂
∗
b , the L2 adjoint of ∂b . Again, we first define its domain:
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Definition 10. Dom∂
∗
b is the subset of L2

p,q (bΩ) composed of all forms α for which there exists a
constant c > 0 such that

|〈α,∂bu〉bΩ|6C‖u‖bΩ,

for all u ∈ Dom∂b .

For all α ∈ Dom∂
∗
b , let ∂

∗
bα be the unique form in L2

p,q (bΩ) satisfying

〈∂∗bα,u〉bΩ = 〈α,∂bu〉bΩ,

for all u ∈ Dom∂b .

Definition 11. Let�b = ∂b ∂
∗
b +∂

∗
b∂b : Dom�b −→ L2

p,q (bΩ) the ∂b-Laplacian operator defined on

Dom�b = {α ∈ L2
p,q (bΩ) :α ∈ Dom∂b ∩Dom∂

∗
b : ∂bα ∈ Dom∂

∗
b and ∂

∗
bα ∈ Dom∂b}.

Proposition 12 ([35, Proposition 1.3]). The ∂b-Laplacian operator is a closed, densely defined
self-adjoint operator.

Let H
p,q
b (bΩ) denote the space of harmonic forms on the boundary bΩ, i.e.,

H
p,q
b (bΩ) = {α ∈ Dom�b : ∂bα= ∂∗bα= 0}.

The space H
p,q
b (bΩ) is a closed subspace of Dom�b since �b is a closed operator. One defines

the boundary operator or the ∂b-Neumann operator

Nb : L2
p,q (bΩ) −→ L2

p,q (bΩ),

as the inverse of the restriction of�b to (H p,q
b (bΩ))⊥, i.e.,

Nbα=
{

0 if α ∈H
p,q
b (bΩ),

u if α=�bu, and u ⊥H
p,q
b (bΩ).

In other words, Nbα is the unique solution u to the equations α =�bu with α⊥ H
p,q
b (bΩ) and

we extend Nb by linearity.

1.3. q-pseudoconvex domains

In this subsection, we recall the following definition of q-subharmonic functions which has
been introduced by H. Ahn and N. Q. Dieu in [1] (also see Lop-Hing Ho [20]). For a real valued
C 2 function u defined on U ⊆ Cn , Lop-Hing Ho [20] first defined q-subharmonicity of u on
U and using this q-subharmonic function, he introduce the notion of weak q-convexity for
domains with smooth boundaries. As Theorem 1.4 in [20], Ahn and Dieu [1] investigated a natural
extension of these notions to the class of upper semicontinuous functions and q-pseudoconvex
domains with non-smooth boundaries.

Definition 13 ([1]). Let u be an upper semicontinuous function on Ω. Then we say that u is q-
subharmonic onΩ if for every q-complex dimension space H and for every compact set D bH ∩Ω,
the following holds: if h is a continuous harmonic function on D and h> u on the boundary of D,
then h> u on D.

Definition 14 ([1]). The function u is called strictly q-subharmonic if for every U bΩ there exists
a constant CU > 0 such that u −CU |z|2 is q-subharmonic.

The following results gives some basic properties of q-subharmonic functions, follows the
same lines as for plurisubharmonic functions, that will be used later (see [1, 20]).
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Proposition 15. Let Ω be a domain in Cn and let 16 q 6 n. Then we have

(i) If {uν}∞ν=1 is a decreasing sequence of q-subharmonic functions then u = limν→+∞ uν is a
q-subharmonic function.

(ii) Let χ(z) ∈C∞
0 (Cn) be a function such that χ> 0,

∫
Cn χ(z)dV = 1, χ(z) depends only on |z|

and vanishes when |z| > 1. Set χεν (z) = ε−2n
ν χ(z/εν) for εν ↓ 0. If u is a q-subharmonic

function, then

uεν (z) = u ∗χεν (z) =
∫
Ω

u(ζ)χεν (z −ζ)dV (ζ)

is smooth q-subharmonic onΩεν = {z ∈Ω : d(z,bΩ) > εν}. Moreover, uεν ↓ u as εν ↓ 0.
(iii) If u ∈C 2(Ω) such that ∂2u

∂z j ∂z̄k (z) = 0 for all j 6= k and z ∈Ω. Then u is q-subharmonic if and

only if
∑

j ,k∈J
∂2u

∂z j ∂z̄k (z)> 0, for all |J | = q and for all z ∈Ω.

Proof. The proof of this proposition follows from properties of subharmonic functions. The
proof of (ii) is exact as Proposition 1.2 in [1]. Similarly, it is easy to see that (i) and (iii) hold because
these properties are true for subharmonic functions. �

Proposition 16. Let Ω be a bounded domain in Cn and let q be an integer with 1 6 q 6 n. Let
u ∈C 2(Ω). Then the q-subharmonicity of u is equivalent to∑′

|K |=q−1

n∑
j ,k=1

∂2u

∂z j∂z̄k
α j K αkK > 0,

for all (0, q)-forms α= ∑
|J |=q

αJ dz̄ J .

Proof. By Theorem 1.4 and Lemma 1.2 in [20], it is easy to see that this fact is true if u ∈C 2(Ω). In
the case u is arbitrary we note that the assertion is true for uε. Let ε↘ 0 we obtain the assertion
for u and the proof follows. �

The following examples of a q-subharmonic function which is not plurisubharmonic.

Example 17. One of the most typical examples of q-subharmonic function which is not
plurisubharmonic is

u(z) =−
q−1∑
ν=1

|zν|2 + (q −1)
n∑

ν=q
|zν|2.

Indeed, for q = 2, we have

(
∂2u

∂z j∂z̄k

)
=


−1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 1

 .

Then, following Proposition 15(iii), u is 2-subharmonic. More precisely
n∑

l=1

n∑
j ,k=1

∂2u

∂z j∂z̄k
α j l αkl =

n∑
l=1

(
−|α1l |2 +

n∑
j=2

|α j l |2
)
=

n∑
l=2

n∑
j=2

|α j l |2> 0,

for all (0,2)-forms α=∑′
|J |=2αJ dz̄ J (because αl l = 0, l = 1,2, . . . ,n). Thus, u is 2-subharmonic.

Example 18. Let d > 1 and 1 < q 6 d . Consider the function

u(z) = |z|2 −q |z1|2 =
d∑

j=1
|z j |2 −q|z1|2, z ∈Cd .

It is easy to see that
∑q

j=1
∂2u

∂z j ∂z̄ j (z) = 0 and by Proposition 15 it follows that u is q-subharmonic.

However, u is not plurisubharmonic. Indeed, let L = {(z1,0, . . . ,0)} ⊂ Cd be a complex line. Then
u|L = (1−q)|z1|2 is not subharmonic, and the desired conclusion follows.
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Example 19 ([12]). Let q be an integer with 1 6 q 6 n and let λk , k = 1,2, . . . , q , are complex
numbers such that

∑q
k=1 |λk |2 > 0 and λk 6= 0, for k = q +1, . . . ,n. Then the function

u(z) = 2

{
Re

(
q∑

k=1
λk zk

)}2

+
n∑

k=q+1
|λk zk |2

is 1-subharmonic and strictly q-subharmonic on Cn . Moreover, if q > 1 then u is not strictly
(q −1)-subharmonic on any open set of Cn .

According to Lop-Hing Ho (see [20, Definition 2.1]), a smoothly bounded domain Ω is called
weakly q-convex ifΩ has a defining function ρ such that for every z ∈ bΩ one obtains∑

|K |
′ ∑

j ,k

∂2ρ

∂z j∂z̄k
α j K αkK > 0,

for every (0, q)-forms α= ∑
|J |=q

αJ dz̄ J such that

n∑
j=1

∂ρ

∂z j
α j K = 0 for all |K | = q −1.

Definition 20. A (Lipschitz) domain Ω b Cn is said to be q-pseudoconvex if there exists q-
subharmonic exhaustion (Lipschitz) function on Ω. Moreover, a C 2 smooth bounded domain Ω is
called strictly q-convex if it admits a C 2 smooth defining function which is strictly q-subharmonic
on a neighbourhood ofΩ.

Remark 21.

(i) Note that Ω is pseudoconvex if and only if it is 1-pseudoconvex, since 1-subharmonic
function is just plurisubharmonic.

(ii) By Theorem 2.4 in Lop-Hing Ho [20], every weakly q-convex domain (see [20, Defini-
tion 2.1]) is q-pseudoconvex.

(iii) If Ω b Cn is a q-pseudoconvex domain, 1 6 q 6 n, and if bΩ is of class C 2, then Ω is
weakly q-convex (see Lop-Hing Ho [20]).

(iv) Let Ω b Cn be a bounded domain satisfy the Z (q) condition. Thus Ω is strictly q-
pseudoconvex.

(v) Every n-dimensional connected non compact complex manifold has a strongly subhar-
monic exhaustion function with respect to any hermitian metric ω. Thus, every open set
in Cn is n-pseudoconvex (see Greene and Wu [10]).

2. Existence of the ∂-Neumann operator

This section deals with the existence of the ∂-Neumann operator N on q-pseudoconvex domains
in Cn .

Lemma 22 ([1, 12]). Let Ω b Cn be a q-pseudoconvex domain, 1 6 q 6 n. Then Ω has a
C∞-smooth strictly q-subharmonic exhaustion function. More precisely, there are strictly q-
pseudoconvex domains,Ων’s, ν= 1,2, . . . , with smooth boundary satisfying

Ω=∪∞
ν=1Ων, ΩνbΩν+1bΩ for all ν.

Proof. Let u be q-subharmonic exhaustion function for Ω. By induction one can choose a
sequence {aν}ν>1 ↑ ∞ such that the open sets Uν := {u < aν} satisfy Uν bUν+1 b Ω. Next, for
each ν we choose εν > 0 so small that

d(Uν−1,bUν) > εν, d(Uν,bUν+1) > εν, Uν+1bΩεν ,

C. R. Mathématique, 2020, 358, n 4, 435-458



Sayed Saber 445

whereΩεν = {z : d(z,bΩ) > εν}. Put

uν(z) =
∫
Ω

u(ζ)χεν (z −ζ)dV (ζ), ∀ z ∈Ωεν .

Since u < uν onΩεν we deduce that

Ων = {z ∈Ωεν : uν(z) > aν} ⊂UνbUν+1bΩεν ⊂Ω.

We claim that Uν−1 ⊂Ων. Indeed, let z ∈Uν−1. Then we have B(z,εν) ⊂Uν and, hence,

uν(z) =
∫
B(z,εν)

u(ζ)χεν (z −ζ)dV (ζ) < aν.

This proves the claim, and therefore Ω = ∪∞
ν=1Ων, Finally, it is easy to see that Ων is a q-

pseudoconvex domain with the smooth strictly q-subharmonic exhaustion function ϕν(z) :=
1

aν−uν(z) +|z|2. �

Following Lemmas 6 and 22, as Lemma 2.1 in [29], we prove the following lemma:

Lemma 23. Let Ω b Cn be a bounded q-pseudoconvex domain with Lipschitz boundary bΩ.
There exists an exhaustion {Ων} ofΩ such that

(i) there exists a Lipschitz function ρ : Cn −→ R such that ρ < 0 in Ω, ρ > 0 outside Ω and
satisfies (8).

(ii) {Ων} is an increasing sequence of relatively compact subsets ofΩ andΩ=∪νΩν.
(iii) Each Ων, ν = 1,2, . . . , is strictly q-pseudoconvex domains, i.e., each Ων has a C∞ strictly

q-subharmonic defining function ρν on a neighbourhood ofΩ, such that∑
I ,|K |

′ ∑
j ,k

∂2ρν

∂z j∂z̄k
αI , j K αI ,kK > c0|α|2

α ∈C∞
p,q (Ων) ∩Dom∂

∗
ν with q > 1 and c0 is independent of ν.

(iv) There exist positive constants c1, c2 such that c1 6 |∇ην| 6 c2 on bΩν, where c1, c2 are
independent of ν.

Proof. Using Lemma 6, there exists a global Lipschitz defining function ρ forΩ satisfying (8) and
ρ is obtained as above by a partition of unity of defining functions ri which is a Lipschitz graph.
Choose a function χ(z) ∈ C∞

0 (Cn) as in Proposition 15. Let δν be a sequence of small numbers
with δν↘ 0. For each δν, one defines

Ωδν = {z ∈Ω |ρ(z) <−δν}.

Then Ωδν is a sequence of relatively compact open subsets of Ω with union equal to Ω. For each
δν, one defines, for 0 < ε< δν and z ∈Ωδν ,

ρε(z) = ρ∗χε(z) =
∫
ρ(z −εζ)χ(ζ)dV (ζ).

Then, ρε ∈C∞(Ωδν ) and ρε ↘ ρ on Ωδν . Since ρ is q-subharmonic, it follows that, from Proposi-
tion 15, that ρε is q-subharmonic.

Each ρεν is well defined if 0 < εν < δν+1 for z ∈Ωδν+1 . Let c2 = supΩ |∇ρ|, then for εν sufficiently
small, one obtains

ρ(z) < ρεν (z) < ρ(z)+ c2εν on Ωδν+1 .

For each ν we choose
εν = 1

2c2
(δν−1 −δν) and tν ∈ (δν+1 −δν).

Define
Ων = {z ∈Cn | ρεν <−tν}.

Since ρ(z) < ρεν (z) < −tν < −δν+1, we have that Ωδν+1 ⊃ Ων. Also, if z ∈ Ωδν−1 , then ρεν (z) <
ρ(z)+ c2εν <−δν <−tν. Thus we haveΩδν+1 ⊃Ων ⊃Ωδν−1 and (ii) is satisfied.
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Each Ων is defined by ην = ρεν + tν which is strictly q-subharmonic in Ων and (iii) is satisfied.
That the subdomainΩν has smooth boundary will follow from (iv).

To prove (iv), it is easy to see that |∇ην|6 c2 in bΩν. To show that |∇ην| is uniformly bounded
from below, we note bΩ satisfies the uniform interior cone property. Then there exists a conic
neighborhood Γ with vertex 0 ∈ Cn such that for any unit vector ξ ∈ Γ+ {p}, −〈∇ρ,ξ〉p > c0 a.e. in
U ∩bΩ, where c0 is a positive constant independent of p if U is sufficiently small. There exist a
finite covering {Vµ}16µ6K of bΩ, a finite set of unit vectors {ξµ}16µ6K and c1 > 0 such that the
inner product 〈∇ρ,ξµ〉> c1 > 0 a.e. for z ∈ Vµ, 16 µ6 K . Since this is preserved by convolution,
(iv) is proved. Thus the proof follows. �

Theorem 24. Let ΩbCn be a q-pseudoconvex domain, 16 q 6 n. Then, for any 16 q 6 n, there
exists a bounded linear operator N : L2

p,q (Ω) −→ L2
p,q (Ω) which satisfies the following properties:

(i) Rang N bDom�, N�= I on Dom�.
(ii) For any α ∈ L2

p,q (Ω), we have α= ∂∂∗Nα ⊕ ∂
∗
∂Nα.

(iii) ∂N = N∂ on Dom∂, 16 q 6 n −1, n> 2.
(iv) ∂

∗
N = N∂

∗
on Dom∂

∗
, 26 q 6 n.

(v) If δ is the diameter ofΩ, we have the following estimates:

‖Nα‖Ω6 e δ2

q
‖α‖Ω,

‖∂Nα‖Ω6
√

e δ2

q
‖α‖Ω,

‖∂∗Nα‖Ω6
√

e δ2

q
‖α‖Ω.

(11)

Proof. We first prove the theorem for Ω with C 2 boundary. Let ρ be the defining function of Ω.
Following Definitions 14 and 20, there exists α ∈C∞

p,q (Ω) ∩Dom∂
∗

with q > 1, such that∑
I ,K

′ n∑
j ,k=1

∫
bΩ

∂2ρ

∂z j∂z̄k
αI , j K αI ,kK dS> 0.

If we replace ϕ by 1− eψ, where ψ is an arbitrary twice continuously differentiable non-positive
function, and after applying the Cauchy–Schwarz inequality (5), for m = 0, to the term in (6)
involving first derivatives of ϕ, we find

‖pϕ ∂α‖2
Ω+‖pϕ ∂∗α‖2

Ω>
∑
I ,K

′ n∑
j ,k=1

∫
Ω

eψ
∂2ψ

∂z j∂z̄k
αI , j K αI ,kK dV −‖eψ/2∂

∗
α‖Ω.

Since ϕ+eψ = 1 and ϕ6 1, it follows that

‖∂α‖2
Ω+‖∂∗α‖2

Ω>
∑
I ,K

′ n∑
j ,k=1

∫
Ω

eψ
∂2ψ

∂z j∂z̄k
αI , j K αI ,kK dV ,

for all α ∈ C∞
p,q (Ω) ∩ Dom∂

∗
and for q > 1. If z0 ∈ Ω, and ψ(z) = −1 + |z − z0|2/δ2, where

δ = supz,z ′∈Ω |z − z ′| is the diameter of the bounded domain Ω, then the preceding inequality
implies

‖α‖2
Ω6

(
eδ2

q

)(
‖∂α‖2

Ω+‖∂∗α‖2
Ω

)
.

This estimate was derived when α is continuous and differential on Ω. Thus, by density it holds
for all square-integrable forms α ∈ Dom∂ ∩Dom∂

∗
. Thus, for q > 1, one obtains

‖α‖Ω6
(

eδ2

q

)
‖�α‖Ω. (12)
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For a general q-pseudoconvex domain, from Lemma 22, one can exhaust Ω by a sequence of
strictly q-pseudoconvex domains with C∞ boundary bΩ. We write Ω = ∪νΩν, where each Ων is
a bounded strictly q-pseudoconvex domains with C∞ boundary and Ων bΩν+1 bΩ for each ν.
Let δν be the diameter ofΩν and let�ν be the complex Laplacian on eachΩν. Thus (12) holds on
eachΩν. That is, there exists a αν ∈C∞

p,q (Ων) ∩Dom∂
∗
ν with q > 1, such that

‖αν‖Ων 6
(

eδ2
ν

q

)
‖�ναν‖Ων 6

(
eδ2

q

)
‖�α‖Ω.

We can choose a subsequence of αν, still denoted by αν, such that αν −→ α weakly in L2
p,q (Ω).

Furthermore, α satisfies the estimate

‖α‖Ω6 liminf

(
eδ2

ν

q

)
‖�ναν‖Ων 6

(
eδ2

q

)
‖�α‖Ω. (13)

Since� is a linear closed densely defined operator, then, from Theorem 1.1.1 in [21], Rang(�) is
closed. Thus, from (1.1.1) in [21] and the fact that� is self adjoint, one obtains

L2
p,q (Ω) = ∂∂∗ Dom�⊕∂∗∂Dom�.

Since� : Dom�−→Rang(�) = L2
p,q (Ω) is one to one on Dom� from (13), there exists a unique

bounded inverse operator N : Rang(�) −→ Dom� such that N�α = α on Dom�. Also, from
the definition of N , one obtains �N = I on L2

p,q (Ω). Thus (i) and (ii) are satisfied. To show that

∂N = N∂ on Dom∂, by using (ii), we have ∂α= ∂∂∗∂N α, for α ∈ Dom∂. Thus

N∂α= N∂∂
∗
∂Nα= N (∂

∗
∂+∂∂∗)∂Nα= ∂Nα.

And, by similar argument, ∂
∗

N = N∂
∗

on Dom∂
∗

for 26 q 6 n. By using (iii) and the condition
onα, ∂α= 0, we have ∂Nα= N∂α= 0. Then, by using (ii), one obtainsα= ∂∂∗Nα. Thus the form
u = ∂

∗
Nα satisfies the equation ∂u = α. Since Rang N ⊂ Dom�, then by applying (13) to Nα

instead of α, (11) follows. Thus the proof follows. �

3. Sobolev estimates for the ∂-Neumann problem

Let Ω be a domain with C 1-boundary bΩ, and let ρ be a C 1-defining function of Ω. Assume that
Ep,q (bΩ) is the space of the restriction to bΩ of all (p, q)-forms with C 1(Ω)-coefficients which are
pointwise orthogonal to the ideal generated by ∂ρ and zp,q (bΩ) is the space of the restriction
to bΩ of all (p, q)-forms that are multiples of ∂ρ. Denote by k1, the projection k1 : C 1

p,q (Ω) −→
Ep,q (bΩ) and k2, the projection k2 : C 1

p,q (Ω) −→zp,q (bΩ). In particular, k1 ⊕k2 =k, where k is

simply the restriction map from C 1
p,q (Ω) to the boundary. If Ω has only Lipschitz boundary bΩ,

the operators k1 and k2 are also defined almost everywhere on bΩ.

Lemma 25 ([30]). Let Ω be a domain with C 1-boundary bΩ, and let ρ be a C 1-defining function
ofΩ. For any f ∈ L2

p,q (Ω), the restriction maps k(∂N ), kP and k(∂
∗

N ) can be extended as bounded

operators from L2
p,q (Ω) to W

− 1
2

p,q+1(bΩ), W
− 1

2
p,q (bΩ) and W

− 1
2

p,q−1(bΩ), respectively.

Denote by R1 and R2, the restriction maps of ∂
∗

N and ∂N to bΩ, respectively. For any
α ∈ L2

p,q (Ω), R1 f =k(∂
∗

Nα) and R2 f = τ(∂Nα). From Lemma 25, one obtains

R1 : L2
p,q (Ω) −→W

− 1
2

p,q−1(bΩ)

and

R2 : L2
p,q (Ω) −→W

− 1
2

p,q+1(bΩ).
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Let T1 : W
1
2

p,q−1(bΩ) −→ L2
p,q (Ω) be the dual of R1 and be defined as follows: For a fixed α ∈

W
1
2

p,q−1(bΩ) and for any u ∈ L2
p,q (Ω), we have, using Lemma 25, that∣∣∣∣∫

bΩ
(∂

∗
Nu,α)dS

∣∣∣∣6C‖R1u‖
W − 1

2 (bΩ)
‖α‖

W
1
2 (bΩ)

6C‖u‖Ω,

where C depends on α. Thus there exists an element g = T1α ∈ L2
p,q (Ω) such that∫

bΩ
(∂

∗
Nu,α)dS = 〈u,T1α〉Ω, for any u ∈ L2

p,q (Ω).

Let T2 : W
1
2

p,q+1(bΩ) −→ L2
p,q (Ω) be the dual of R2, such that for any α ∈W

1
2

p,q+1(bΩ)∫
bΩ

(∂Nu,α)dS = 〈u,T2α〉Ω, for any u ∈ L2
p,q (Ω).

Lemma 26 ([30, Lemma 4.3]). Let Ω be a domain with C∞-boundary such that Ω has a C∞-

plurisubharmonic defining function ρ. For any α ∈W
1
2

p,q−1(bΩ), 06 p 6 n, 16 q 6 n, we have the
following estimate: ∫

Ω
(−ρ)|T1α|2dV 6C

∫
bΩ

|α|2dS. (14)

Also for any α ∈W
1
2

p,q+1(bΩ), 06 p 6 n, 16 q 6 n, one obtains∫
Ω

(−ρ)|T2α|2dV 6C
∫

bΩ
|α|2dS, (15)

where C is a constant depending only on the Lipschitz constant ofΩ and the diameter ofΩ.

Theorem 27. Let Ωb Cn be a bounded q-pseudoconvex domain with a Lipschitz boundary bΩ
and let 1 6 q 6 n. Then, for 0 6 p 6 n, 1 6 q 6 n and − 1

2 6m 6 1
2 , the operators N , ∂N , ∂

∗
N

and the Bergman projection P are bounded on W m
p,q (Ω) and satisfies the following estimates: there

exists C > 0 such that for any α ∈W m
p,q (Ω),

‖Nα‖W m
p,q (Ω)6C‖α‖W m

p,q (Ω),

‖∂Nα‖W m
p,q+1(Ω) +‖∂∗Nα‖W m

p,q−1(Ω)6C‖α‖W m
p,q (Ω),

‖Pα‖W m
p,q (Ω)6C‖α‖W m

p,q (Ω),

(16)

where C depends only on the Lipschitz constant and the diameter ofΩ, but is independent of α.

Proof. To prove (16) for m = 1
2 , we approximate Ω as Lemma 23 by a sequence of subdomains

Ων = {ρ <−εν} such that eachΩν is strictly q-pseudoconvex domains with C∞ smooth boundary,
i.e, each Ων has a C∞ strictly q-subharmonic defining function ρν such that (ii) and (iii) in
Lemma 23. Thus, we can apply Lemma 26 on each Ων. We use T ν

1 , T ν
2 , Rν

1 , Rν
2 , and Nν, to

denote the corresponding operators on each Ων. By applying (14) and (15) to T ν
1 , T ν

2 , for any

α ∈W
1
2

p,q−1(bΩν), where 06 p 6 n, 16 q 6 n, we have∫
Ων

(−ρν)|T ν
1 α|2dVν6C

∫
bΩν

|α|2dSν, (17)

where C can be chosen independent of ν. Also for any α ∈ W
1
2

p,q+1(bΩν), where 0 6 p 6 n,
16 q 6 n, one obtains ∫

Ων

(−ρν)|T ν
2 α|2dVν6C

∫
bΩν

|α|2dSν. (18)
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Using Lemma 26, T ν
1 is bounded from L2

p,q−1(bΩν) to W
− 1

2
p,q−1(Ων) and T ν

2 is bounded from

L2
p,q+1(bΩν) to W

− 1
2

p,q (Ων). Also, the bounds depend only on the Lipschitz constant and the

diameter of the domain. Thus, from (17) and (18) we have from duality, for any α ∈W
1
2

p,q (Ων),

‖Rν
1α‖L2

p,q−1(bΩν)6C‖α‖
W

1
2

p,q (Ων)
, (19)

and
‖Rν

1α‖L2
p,q+1(bΩν)6C‖α‖

W
1
2

p,q (Ων)
, (20)

where C is a constant independent of ν. For any α ∈W
1
2

p,q (Ων) and by using the trace theorem for
elliptic equations (cf. [22, 38]), from (19) and (20), one obtains

‖∂∗Nνα‖
W

1
2

p,q−1(Ων)
6C‖α‖

W
1
2

p,q (Ων)
, (21)

and
‖∂Nνα‖

W
1
2

p,q+1(Ων)
6C‖α‖

W
1
2

p,q (Ων)
, (22)

where C is a constant independent of ν. Passing to the limit, one obtains from (21) and (22) that

‖∂∗Nα‖
W

1
2

p,q−1(Ω)
6C‖α‖

W
1
2

p,q (Ω)
, (23)

and
‖∂Nα‖

W
1
2

p,q+1(Ω)
6C‖α‖

W
1
2

p,q (Ω)
, (24)

Using Theorem 24(iii) and (iv), one can write

N = (∂∂
∗+∂∗∂)N 2 = (∂N )(∂

∗
N )+ (∂

∗
N )(∂N ).

It follows from (23) and (24) that

‖Nα‖
W

1
2

p,q (Ω)
6C‖α‖

W
1
2

p,q (Ω)
. (25)

By virtue of Kohn’s formula (4), we have

‖Pα‖
W

1
2

p,q (Ω)
6C‖ f ‖

W
1
2

p,q (Ω)
. (26)

This proves the continuity of P in W
1
2

p,q (Ω). Thus (16) follows for m = 1
2 . Using duality, the

estimates (23) to (26) also hold for m =− 1
2 . The other cases follow from interpolation. �

4. The L2 ∂-Cauchy problem

Using the duality relations pertaining to the ∂-Neumann problem, one can solve the Cauchy
problem for ∂ on q-pseudoconvex domains. This method was first used in [26] for smooth
forms on strongly pseudo-convex domains. As Theorem 9.1.2 in [6] (cf. [34, Proposition 2.7]),
the following result is proved:

Theorem 28. Let Ωb Cn be a bounded q-pseudoconvex domain with a Lipschitz boundary bΩ
and let 16 q 6 n. Then, for every α ∈ L2

p,q (Cn) which is supported inΩ such that

∂α= 0, for 16 q 6 n −1, (27)

one can find u ∈ L2
p,q−1(Cn) such that ∂u =α in the distribution sense in Cn with u supported inΩ

and
‖u‖Cn 6C‖α‖Cn ,

where C depends only on the Lipschitz constant and the diameter ofΩ, but is independent of α.
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Proof. Let α ∈ L2
p,q (Cn) which is supported in Ω, then α ∈ L2

p,q (Ω). From Theorem 24, the ∂-
Neumann operator Nn−p,n−q exists for n −q > 1. Since Nn−p,n−q =�−1

n−p,n−q on Rang�n−p,n−q

and Rang Nn−p,n−q ⊂ Dom�n−p,n−q , then Nn−p,n−q ? α ∈ Dom�n−p,n−q ⊂ L2
n−p,n−q (Ω), for

q 6 n −1. Thus, one can define u ∈ L2
p,q−1(Ω) by

u =−? ∂Nn−p,n−q ?α. (28)

Extending u to Cn by defining u = 0 in Cn \Ω. We want to prove that the extended form u satisfies
the equation ∂u =α in the distribution sense in Cn . To do that we need first clear that

∂
∗

(?α) = 0 on Ω.

For η ∈ Dom∂⊂ L2
n−p,n−q−1(Ω), one obtains

〈∂η,?α〉Ω =
∫
Ω
∂η∧??α= (−1)(p+q)(p+q−1)

∫
Ω
α∧∂η= (−1)p+q 〈α,?∂η〉Ω.

Since ϑ = ∂
∗

on Dp,q (Ω), when ϑ acts in the distribution sense and Dp,q (Ω) is dense in Dom∂ ∩
Dom∂

∗
in the graph norm (cf. [21]), then from (3) one obtains

〈∂η,?α〉Ω = 〈α,∂
∗
?η〉Cn = 〈∂α,?η〉Cn = 0

because α is supported inΩ. It follows that ∂
∗

(?α) = 0 onΩ. Using Theorem 24(iv), one obtains

∂
∗

Nn−p,n−q (?α) = Nn−p,n−q−1∂
∗

(?α) = 0.

Thus, from (3) and (28), one obtains

∂u =−∂ ? ∂Nn−p,n−q ?α

= (−1)p+q+1?? ∂ ? ∂Nn−p,n−q ?α

= (−1)p+q?∂
∗
∂Nn−p,n−q ?α

= (−1)p+q? (∂
∗
∂+∂∂∗) Nn−p,n−q ?α

= (−1)p+q??α

=α

(29)

in the distribution sense in Ω. Since u = 0 in Cn \Ω, then for g ∈ Dom∂
∗ ⊂ L2

p,q (Cn), and from (3)
and (29), one obtains

〈u,∂
∗

g 〉Cn = 〈u,∂
∗

g 〉Ω
= 〈?∂∗g ,?u〉Ω
=−〈??∂? g ,?u〉Ω
= (−1)p+q 〈?g , ∂

∗
? u〉Ω

= 〈∂u, g 〉Ω
= 〈α, g 〉Ω
= 〈α, g 〉Cn .

Thus ∂u =α in the distribution sense in Cn . �

As Proposition 9.1.3 in [6], the following result is proved:

Proposition 29. LetΩbCn be a bounded q-pseudoconvex domain with a Lipschitz boundary bΩ
and let 16 q 6 n. Then, for − 1

2 6m < 1
2 and for any α ∈ L2

p,n(Cn) such that α is supported in Ω
and ∫

Ω
α∧ g = 0 for any g ∈ L2

n−p,0(Ω)∩ker∂, (30)
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one can find u ∈ L2
p,n−1(Cn) such that ∂u =α in the distribution sense in Cn with u is supported in

Ω and
‖u‖Cn 6C‖α‖Cn ,

where C depends only on the Lipschitz constant and the diameter ofΩ, but is independent of α.

Proof. To prove this result we need to prove that condition (30) is equivalent to ∂α = 0. Fist, we
see that (30) implies (27). To see that, if we take g = ∂?β for some β ∈C∞

p,n+1(Cn) in (30). It is clear

that g ∈ ker∂. By (30) and the fact ∂?β ∈ ker∂, we see that

〈α,∂
∗
β〉Cn =

∫
Ω
α∧?(∂

∗
β) = (−1)p+n+1

∫
Ω
α∧∂(?β) = 0

for any β ∈C∞
p,n+1(Cn), where we used the equality ?(?α) = (−1)p+nα for u = ∂?β ∈C∞

p,n+1(Cn).

This implies that ∂α= 0 in the distribution sense in Cn .
If Ω has Lipschitz boundary, C∞

n−p,1(Ω) is dense in dom ∂ in the graph norm. This follows

essentially from Friedrichs lemma (see [21, Proposition 1.2.3]). From the definition of ∂
∗

, one
obtains that ?α ∈ Dom∂

∗
and ∂

∗
(?α) = 0. For any g ∈ L2

n−p,n−q (Ω)∩ ker∂, using Theorem 28

(since 16 q < n), there exist u ∈ L2
n−p,n−q−1(Ω) such that ∂u = g inΩ. This implies that∫

Ω
g ∧α= 〈?α, g 〉 = 〈?α,∂u〉 = 〈∂∗?α,u〉 = 0,

for any g ∈ L2
n−p,n−q (Ω)∩ker∂. Thus α satisfies (30). Thus the proof follows. �

As Proposition 3.4 in [37], we prove the following result:

Lemma 30. Let Ωb Cn be a bounded q-pseudoconvex domain with Lipschitz boundary bΩ and
let 16 q 6 n. The set of ∂-closed forms in L2

p,q (Cn) with support in Ω is dense in the set of ∂-closed

forms in W m
p,q (Cn) with support in Ω.

Proof. By this we mean that if f ∈ W m
p,q (Cn) with f is supported in Ω and ∂ f = 0 on Ω, one

can construct a sequence fν ∈ L2
p,q (Cn) with support in Ω such that fν −→ f in W m

p,q (Cn) and

∂ fν −→ ∂ f in W m
p,q+1(Cn). This is possible by the well-known method of Friedrichs (see [9] or [21]

or [6, Appendix D]) as follows: first assume that the domainΩ is star-shaped and 0 ∈Ω. SinceΩ is
Lipschitz, locally it is star-shaped. This can be done from the usual regularization by convolution.
We approximate f first by dilation componentwise. LetΩε = {(1+ε)z | z ∈Ω} and

f ε = f
( z

1+ε
)

,

where the dilation is performed for each component of f . Then Ω b Ωε and f ε ∈ W m
p,q (Ωε).

Also ∂ f ε −→ ∂ f in W m
p,q+1(Cn). Choose a function χ(z) ∈ C∞

0 (Cn) as in Proposition 15. Extend

f ∈W m
p,q (Cn)∩ker∂ to be 0 outside Ω. By regularizing f ε componentwise as before, one can find

a family of f(ε) ∈W m
p,q+1(Cn) defined by

f(ε)(z) = f
( z

1+ε
)
∗χδε =

∫
Cn

f (w)χδε

( z −w

1+ε
)

dVw ,

where δε ↘ 0 as ε↘ 0 and δε is chosen sufficiently small. The convolution is performed on each
component of f . In the first integral defining f j , we can differentiate under the integral sign to
show that f j is C∞(Cn). From Young’s inequality for convolution, we have

‖ f(ε)‖6 ‖ f ‖.

Since f(ε) −→ f uniformly when f ∈C∞
0 (Cn), a dense subset of W m(Cn), we have that

f(ε) −→ f in W m(Cn) for every f ∈W m(Cn).

C. R. Mathématique, 2020, 358, n 4, 435-458



452 Sayed Saber

Obviously, this implies that f(ε) −→ f in W m
p,q+1(Cn).

Let δν be a sequence of small numbers with δν↘ 0. For each δν, we define

Ωδν = {z ∈Ω | ρ(z) <−δν}.

Then Ωδν is a sequence of relatively compact open subsets of Ω with union equal to Ω. When
the boundary is Lipschitz, one can use a partition of unity {ζν}N

ν=1, with each ζν supported in an
open set Uν such that Uν∩Ω is star-shaped. We then regularize ζν f in Uν as before. Thus, there
exists a sequence αν ∈ C∞

p,q (Ω) with compact support in Ω such that αν −→ f and ∂αν −→ 0 in

W m(Cn). Applying Theorem 28 to each ∂αν, we obtain uν ∈ L2
p,q (Cn) which is supported inΩ and

∂uν = ∂αν in Cn . Also using Theorem 28, we have

‖uν‖W m (Ων)6C‖∂αν‖W m (Ων).

Letting hν = αν −uν, we have that hν ∈ L2
p,q (Cn), which is supported in Ω, ∂hν = 0 in Cn and

hν −→ f in the W m(Cn) norm. Thus the proof follows. �

Theorem 31. LetΩbCn be a bounded q-pseudoconvex domain with Lipschitz boundary bΩ and
let 16 q 6 n. Then, for − 1

2 6m < 1
2 and for every α ∈W m

p,q (Cn) which is supported in Ω such that

∂α= 0, for 16 q 6 n −1, one can find u ∈ W m
p,q−1(Cn) such that ∂u = α in the distribution sense

in Cn with u supported inΩ and

‖u‖W m
p,q−1(Cn )6C‖α‖W m

p,q (Cn ), (31)

where C depends only on the Lipschitz constant and the diameter ofΩ, but is independent of α.

Proof. For m = 0, Theorem 31 follows from Theorem 28. Since Ω has Lipschitz boundary, there
is a bounded extension operator from W m(Ω) −→ W m(Cn) for 0 6 m < 1

2 (see e.g. [11]). Let
α̃ ∈W m

p,q (Cn) be the extension of α so that α̃|Ω =α with

‖α̃‖W m (Cn )6C‖α‖W m (Ω).

This is obviously true for m = 0. Notice that this is not true for m = 1
2 (see [28]).

We show that there is a bounded extension operator from W −m(Ω) −→W −m(Cn) for 0 < m6 1
2

by using the fact that D(Ω) is dense in W m(Ω). Thus, from (5), for any g ∈ W −m(Ω) and for
0 < m6 1

2 , we have

‖α̃‖W −m (Cn ) = sup
g∈W 0(Ω)

| 〈α̃, g 〉Cn |
‖g‖W m (Cn )

6 sup
g∈W 0(Ω)

| 〈α, g 〉Ω |
‖g‖W m (Ω)

= ‖α‖W −m (Ω).

Then for anyα ∈W −m(Ω), − 1
2 6m < 1

2 , α̃ can be identified as a distribution in W m(Cn) by setting
α= 0 outsideΩ.

Assume that α ∈ W m
p,q (Cn) be any ∂-closed form with support in Ω and 0 6m < 1

2 . Let u be
defined by (28). Using Theorem 27, one obtains

‖u‖W m (Ω)6C‖? α‖W m (Ω) =C‖α‖W m (Ω),

where C depends only on the Lipschitz constant and the diameter of Ω, but is independent of α.
Setting u = 0 outside Ω. It follows that u is in W m(Cn) and u satisfies (31) for any α ∈ W m

p,q (Cn)
with 06m < 1

2 .
To show that ∂u =α in Cn , one use an approximation argument of Lemma 30. Let αν −→α in

W m
p,q (Cn) such that the support of αν is inΩ. Set

uν =
{
−? ∂Nn−p,n−q ?αν if z ∈Ω,

0 if z ∈Cn\Ω.
(32)
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Then, for each j , by applying Theorem 27 to obtain a (p, q −1)-form uν such that ∂uν =αν in Cn .
From Lemma 30, uν converges to u in W m

p,q−1(Ω). Extending u to be zero outsideΩ, u satisfies (31)

and ∂u = f in the distribution sense in Cn . This proves the theorem for 06m < 1
2 .

Now, we prove the theorem for any ∂-closed α ∈ W m
p,q (Cn) with support in Ω, − 1

2 6m < 0, by

approximate α by ∂-closed forms αν in L2
p,q (Cn) such that αν has support in Ω and αν −→ α in

W m
p,q (Ω). Set u and uν as in (28) and (32). For each j , applying Theorem 28 to obtain a (p, q −1)-

form uν such that ∂uν =αν in Cn . Using Theorem 27, one obtains

‖u‖W m (Ω)6C‖? α‖W m (Ω) =C‖α‖W m (Ω),

where C depends only on the Lipschitz constant and the diameter of Ω, but is independent of
α. From Lemma 30, uν converges to u in W m

p,q−1(Ω). Extending u to be zero outside Ω. Then u

satisfies (31) and ∂u =α in the distribution sense in Cn . Thus the proof follows. �

As Proposition 3.5 in [37], we prove the following result:

Proposition 32. Let Ωb Cn be a bounded q-pseudoconvex domain with Lipschitz boundary bΩ
and let 16 q 6 n. Then, for any α ∈W m

p,n(Cn), − 1
2 6m < 1

2 , such that α is supported inΩ and∫
Ω
α∧ g = 0 for any g ∈C∞

n−p,0(Ω)∩ker∂ (33)

one can find u ∈ W m
p,n−1(Cn) such that ∂u = α in the distribution sense in Cn with u supported in

Ω and

‖u‖W m (Cn )6C‖α‖W m (Cn ), (34)

where C depends only on the Lipschitz constant and the diameter ofΩ, but is independent of α.

Proof. Let α ∈ W m
p,n(Cn) such that α is supported in Ω and α satisfies (33). Define u as in (28) as

follows

u =−? ∂Nn−p,n−q ?α. (35)

Now, we extend u to Cn by defining u = 0 in Cn \Ω. From Theorem 28, u ∈ W m
p,n−1(Cn) and

satisfies (34). From Lemma 30, we have C∞
n−p,0(Ω)∩ ker∂ is dense in W m

n−p,0(Cn)∩ ker(∂). Thus,
Condition (33) implies that Pn−p,0?α= 0.

To show that ∂u = α in Cn , we use an approximation argument as before. Let αν −→ α in
W m

p,n(Cn) such that the support of αν is inΩ. Let

hν =αν−?Pn−p,0?αν.

Using Lemma 30, hν converges to α in W m
n−p,0(Ω). Each hν is in L2

p,n(Ω) and satisfies∫
Ω

hν∧ g = 0 for any g ∈ L2
n−p,0(Ω)∩ker∂.

Define

uν =
{
−?∂Nn−p,0?hν if z ∈Ω,

0 if z ∈Cn\Ω.

Then, for each j , by applying Proposition 29 to obtain a (p,n −1)-form uν such that ∂uν = hν in
Cn and

‖uν‖W m (Cn )6C‖hν‖W m (Cn ).

From Lemma 30, uν converges to u in W m
p,n−1(Ω). Extending u to be zero outsideΩ, u satisfies (34)

and ∂u =α in the distribution sense in Cn . Thus the proof follows. �
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5. Proof of the main theorems

Following the construction in [37, Lemma 4.1]. Let B be a large ball in Cn such that Ω b B . Let
Ω+ = B \Ω andΩ− =Ω. In [19], a Martinelli–Bochner–Koppelman type kernel is constructed, and
in [36] it is shown that the transformation induced by this kernel satisfies a jump formula (10). As
a result, there exists an integral kernel Kq (ζ, z) of type (p, q) in z and (n−p,n−q−1) in ζ satisfying
a Martinelli–Bochner–Koppelman formula∫

bΩ
Kq (ζ, z)∧α(ζ) =

{
α+(z) if z ∈Ω+,

α−(z) if z ∈Ω−,

where α+(z) = K +α(z) if z ∈ Ω+ and α−(z) = K −α(z) if z ∈ Ω (see [19, Section 2.3]). Let α ∈
L2

p,q (bΩ), 0 < q 6 n −1, and ∂bα = 0 in bΩ. If, we extend α+(z) and α−(z) to bΩ by considering
non-tangential limits, we have the jump formula

τ(α+(z)−α−(z)) =α(z) on bΩ, (36)

where τ is defined in (9). Since α+ and α− have non-tangential boundary values in L2, then from

Lemma 4.1 in [37], α+ ∈ W
1
2

p,q (Ω+) and α− ∈ W
1
2

p,q (Ω) such that ∂α+ = 0 in Ω+ and ∂α− = 0 in Ω.
Furthermore, we have

‖α+‖
W

1
2 (Ω+)

6C‖α‖bΩ, (37)

and
‖α−‖

W
1
2 (Ω)
6C‖α‖bΩ, (38)

where the constant C depends only on the Lipschitz constant ofΩ but is independent of α.
Since Ω+ is a bounded Lipschitz domain, there exists a continuous linear operator E from

W m(Ω+) into W m(Cn), for any m> 0, such that for any g ∈W m(Ω+),

E g |Ω+ = g

(see Stein [38, Chapter 6] or Grisvard [11]).
Extend α+ fromΩ+ to Eα+ componentwise on B such that

‖Eα+‖
W

1
2 (B)
6C‖α+‖

W
1
2 (Ω+)

.

Since ∂α+ = 0 on Ω+, we have ∂Eα+ = 0 on Ω+. Set f = ∂Eα+ in Ω and zero outside. Then ∂ f = 0
and f is supported inΩ. Furthermore, we have

‖ f ‖
W − 1

2 (Ω)
6C‖Eα+‖

W
1
2 (B)
6C‖α+‖

W
1
2 (Ω+)

. (39)

When 16 q 6 n −2, one defines

h =
{
−?∂Nn−p,n−q ? f if z ∈Ω,

0 if z ∈Cn\Ω.
(40)

It follows, from Theorem 31, that ∂h = f and h is supported inΩ.
Also from (16) and (39), one obtains

‖h‖
W − 1

2 (Ω)
6C‖ f ‖

W − 1
2 (Ω)
6C‖α+‖

W
1
2 (Ω+)

. (41)

Set
α̃+ = Eα+−h in B.

Then α̃+ = α+−h = α+ in Ω+. Since f = ∂Eα+ in Ω, we have ∂α̃+ = 0 in B . Then from (41) and
Theorem 27, one obtains

‖α̃+‖
W − 1

2 (B)
6C

(
‖Eα+‖

W − 1
2 (B)

+‖h‖
W − 1

2 (Ω)

)
6C‖α+‖

W
1
2 (Ω+)

,
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for some constant C independent of α. Thus, for 16 q 6 n −2, one obtains

‖α̃+‖
W − 1

2 (B)
6C‖α+‖

W
1
2 (Ω+)

. (42)

When q = n − 1, notice that ∂α− = 0 in Ω. By using the jump formula (10), for every φ ∈
C∞

n−p,0(Ω)∩ker∂, one obtains ∫
Ω

f ∧φ=
∫
Ω
∂(Eα+∧φ)

=
∫

bΩ
K +

b α∧φ

=
∫

bΩ
K −

b α∧φ+
∫

bΩ
α∧φ

=
∫
Ω
∂α−∧φ+

∫
bΩ
α∧φ

=
∫

bΩ
α∧φ

= 0.

This implies that f = ∂Eα+ satisfies Condition (33). Defining h as in (40) and using Proposition 32,
one obtains that ∂h = f in Cn and h is supported in Ω. Repeating the arguments as before, thus
estimate (42) holds also for q = n −1. Thus, for 16 q 6 n −1, one obtains

‖α̃+‖
W − 1

2 (B)
6C‖α+‖

W
1
2 (Ω+)

.

Then, from (37) and for 16 q 6 n −1, one obtains

‖α̃+‖
W − 1

2 (B)
6C‖α‖bΩ. (43)

Since α satisfies (36) and ∂α+ = 0 inΩ+ and ∂α− = 0 inΩ, then ∂bα= 0 in bΩ. Let

u = u+−u− on bΩ.

First we solve ∂u+ =α+ onΩ+. To do that, we use the canonical solution operator to define

u+ = ∂∗N B α̃+.

Then ∂u+ = α̃+ = 0 in B . Using the interior regularity for N B , u+ gains a derivative on compact
subsets of B , so u+ has components in W

1
2 (bΩ) on a neighborhood of Ω. From (43), we have for

any ξ ∈D(B) such that ξ= 1 in a neighborhood ofΩ,

‖ξu+‖
W

1
2 (B)
6C‖α+‖

W − 1
2 (B)
6C‖α‖bΩ, (44)

for some constant C independent of α. Restricting u+ to bΩ, using (44) and the trace theorem
again, one obtains

‖u+‖bΩ6C‖ξα+‖
W

1
2 (B)
6C‖α‖bΩ, (45)

for some constant C independent of α.
To solve ∂u− =α− onΩ, one defines

u− = ∂∗NΩα−.

Then ∂u− =α−. It follows from (38) and Theorem 27 that

‖u−‖
W

1
2 (Ω)
6C‖α−‖

W
1
2 (Ω)
6C‖α‖bΩ

for some constant C independent of α.
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Since u− satisfies a system of elliptic equations, it can be treated like harmonic functions.
Thus u− has boundary value in L2(bΩ). Restricting u− to bΩ, using the trace theorem for smooth
domains (see [22]), we have

‖u−‖bΩ6C‖u−‖
W

1
2 (Ω)
6C‖α‖bΩ. (46)

Then ∂bu = v on bΩ. Also from (45) and (46), we have

‖u‖bΩ6C‖α‖bΩ

for some constant C independent of α. Thus the proof of Theorem 1 follows.
Now, we prove Theorems 2 and 3. The proof of (i) in Theorem 2 follows directly from the main

theorem and Theorem 1.1.1 in [21]. To prove (ii) in Theorem 2, we need to claim that, for all
06 p 6 n, 16 q 6 n −2,

H
p,q
b (bΩ) = ker∂b ∩ker∂

∗
b = {0}. (47)

To prove (47), let α ∈ H
p,q
b (bΩ) = ker∂b ∩ ker∂

∗
b . Then α = ∂bu for some u ∈ L2

p,q−1(bΩ) by the

main theorem. Since α ∈ ker∂
∗
b , then

〈α,α〉bΩ = 〈∂bu,α〉bΩ = 〈u,∂
∗
bα〉bΩ = 0.

We have H
p,q
b (bΩ) = {0}.

From Theorem 2, the range of ∂b , denoted by Rang∂b , is closed in every degree. Then, one
obtains ker∂b =Rang∂

∗
b and the following orthogonal decomposition:

L2
p,q (bΩ) = ker∂b ⊕Rang∂

∗
b =Rang∂

∗
b ⊕Rang∂

∗
b .

Repeating the arguments of Theorem 8.4.10 in [6], one can prove that for every α ∈ Dom∂b ∩
Dom∂

∗
b ,

‖α‖2
bΩ6C

(
‖∂bα‖2

bΩ+‖∂∗bα‖2
bΩ

)
=C〈�bα,α〉bΩ

6C‖�bα‖‖α‖bΩ,

i.e.,

‖α‖bΩ6C‖�bα‖bΩ. (48)

Since �b is a linear closed densely defined operator, then, from Theorem 1.1.1 in [21], Rang�b

is closed. Thus, from (1.1.1) in [21] and the fact that �b is self adjoint, we have the Hodge
decomposition

L2
p,q (bΩ) =Rang�b ⊕H

p,q
b (bΩ) = ∂b ∂

∗
b Dom�b ⊕∂

∗
b∂b Dom�b .

Since�b is one to one on Dom�b from (48), then there exists a unique bounded inverse operator

Nb : Rang�b −→ Dom�b ∩ (H p,q
b (bΩ))⊥

such that Nb�bα = α on Dom�b . We can write Nb�b = I on Dom�b ∩ (H p,q
b (bΩ))⊥. From the

definition of Nb , extend Nb to L2
p,q (bΩ) to obtain �b Nb = I on L2

p,q (bΩ). Thus Nb satisfies (i)
and (ii).

To show that ∂
∗
b Nb = Nb∂

∗
b on Dom∂

∗
b . By using (ii), we have ∂

∗
bα = ∂

∗
b∂b ∂

∗
b Nbα, for α ∈

Dom∂
∗
b . Thus

Nb∂
∗
bα= Nb∂

∗
b ∂b ∂

∗
b Nbα= Nb(∂

∗
b ∂b +∂b ∂

∗
b )∂

∗
b Nbα= ∂∗b Nbα.

A similar arguments shows that ∂b Nb = Nb ∂b on Dom∂b . Thus the proof of Theorem 3 follows.
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