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Introduction and main results

Let Q be a bounded domain in C”* with smooth boundary bQ. The Cauchy-Riemann operators d
on C” induce the tangential Cauchy-Riemann complex or d;, complex on bQ. On the boundaries
of smooth bounded domains, there are several equivalent ways of defining the ;, complex.
The 5;, complex was first formulated by J. J. Kohn and H. Rossi in [26] for smooth boundaries
to understand the holomorphic extension of CR-functions from the boundaries of complex
manifolds. On a strictly pseudoconvex domain with smooth boundary in C”, the d;-complex
has been studied in several articles (cf. [2,5,8,17,18,27]). In the case of a weakly pseudoconvex
domain with smooth boundary in C", the L? and Sobolev estimates for d;, have been obtained by
M.-C. Shaw in [33] for 1 < g < n—1 and by H. P. Boas and M.-C. Shaw in [3] for g = n— 1 (see also
J. J. Kohn [25]). On the boundary of a weakly pseudoconvex domain, it was pointed out by J. P.
Rosay in [32] that one can combine the results of J. J. Kohn and H. Rossi in [26] with those of J. J.
Kohn in [24] to prove that the global solutions to the equation 0, u = f exists. Other results in this
direction see Andreea C. Nicoara [31] and Phillip S. Harrington and Andrew Raich [14].

When the boundary is only Lipschitz, not every definition can be appropriately extended. On
a Lipschitz boundary of a bounded domain in C", the complex normal vector is defined almost
everywhere on bQ. It was pointed out by D. Sullivan in [39] (see also N. Teleman in [40]) that
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436 Sayed Saber

on a real Lipschitz manifold, g-forms with L? coefficients and the de Rham complex are still well
defined. Thus one can still define (p, q)-forms with L?(bQ) coefficients, denoted by L ,q(D€2). The

oy complex is then well defined as a closed densely defined operator from L; g-1 (bQ) to L%,, ¢(b).

In [13], Phillip S. Harrington has constructed a compact solution operator to the Eb-operator ona
pseudoconvex domain with Lipschitz boundary. On the same domain, the L? existence theorems
of the d),-operator was established by Mei-Chi Shaw in [37]. The first purpose of the paper is to
extend this result to Lipschitz boundaries of g-pseudoconvex domains. Our first main result is
the following:

Theorem 1. LetQ € C" be a bounded q-pseudoconvex domain with Lipschitz boundary bQ and
let1< g< n.Foreveryae L%‘q(bQ), where0 < p<n,1< g<n-1,n=2such that

5;,04 =0 on bQ,

there exists a u € 1> 1 (bQ) satisfying Gh u = « in the distribution sense in bQ). Moreover, there ex-
ists a constant C cfépendmg only on the diameter and the Lipschitz constant of Q but is indepen-
dent of a such that

lulpa < Clalpa-
When g =n—1, foreverya € L%,n_l (bQ) satisfies

f angdS=0, forany(pECfﬁpo(ﬁ)mkera
bQ ’
the same conclusion holds.

The proof of the main theorem consists of three parts: first we prove the existence and the
boundedness of the d-Neumann operator N on Sobolev spaces W™ (Q) for —% <m< % This
yields that the operators AN and d N and the Bergman projection P are bounded operators on
W™ (Q). Second, we study the solvablhty of the 0-problem in the Sobolev space W (Q) with
prescribed support in Q, for —5 < m < 5. Third, by using the jump formula derived from the
Bochner—Martlnelh—Koppelman kernel, the main result follows. _

The closed range property is related to existence and regularity results for d;,. Independently,
when bQ is smooth and weakly pseudoconvex in C", Mei-Chi Shaw in [33] and H. P. Boas and Mei-
Chi Shaw in [3] proved that the range of 5;, was closed on (p, q)-forms of degrees 1 < g<n—-1
and g = n— 1, respectively. On a boundary of strongly pseudoconvex domain, the range of d;,
is closed follows from J. J. Kohn and H. Rossi [26]. If Q is Lipschitz pseudoconvex in C" and if
there exists a plurisubharmonic defining function in a neighborhood of Q, the range of 9y, is
closed follows by Mei-Chi Shaw [37]. Other results in this direction see [31]. In [15], Phillip S.
Harrington and Andrew Raich established sufficient conditions for the closed range of d (and d;)
on not necessarily pseudoconvex domains (and their boundaries) in Stein manifolds. Also, Phillip
S. Harrington and Andrew Raich established sufficient conditions for the closed range of 0 (and
5;7) on domains neither boundedness nor pseudoconvexity in C” (see [16]).

As an application of Theorem 1, we prove that the ranges of 0 and its adjoint 5; are closed for
Lipschitz boundaries of g-pseudoconvex domains.

Theorem 2. LetQ € C" be a bounded q-pseudoconvex domain with Lipschitz boundary bQ) and
let1 < g < n. Then, one obtains
(i) 5b andgz acting on L%,'q(bQ) have closed range for every0 < p<n,1<g<n-1,n>2.
(ii) The space of harmonic forms on the boundary bQ) vanishes, i.e.,

760 (bQ) =10}, for 0<p<n 1<g<n-L

When the unbounded operator is the oy operator, the Hilbert space approach has been
established by J.J. Kohn in [23] for strongly pseudoconvex domains and by L. Hérmander in [21]
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for pseudoconvex domain in a Stein manifold. When the boundary of a pseudoconvex domain
is smooth, the Hodge decomposition on bQ has been obtained by Mei-Chi Shaw in [36] for
1< g < n-1 and by H. P Boas and Mei-Chi Shaw in [3] for ¢ = n—1 (See also Mei-Chi Shaw
in [37] for C! or Lipschitz boundaries).

In the end of the paper, we will prove that the d),-Laplacian, or Kohn Laplacian, [, = 5;,5; +
5;517 has closed range for (p, g)-forms when 0 < p < n,1 < g < n—1, n > 2. Thus there exists a
bounded inverse operator for D p, the d5-Neumann operator N, and we have the decomposition
for 8, on bQ: a = ababNha + ahabNba for any (p, q)-forms a with L?(bQ) coefficients.

Theorem 3. LetQ € C" be a bounded q—pseudoconvex domain with Lipschitz boundary bQ) and
let1 < g < n.Then, foreach0 < p < n,1< g< n-1,n=2, thereexists a bounded linear boundary
operator Nj, : L% q(hQ) — 12 q(bQ) such that
(i) Zang(Np) € DomUl, and U, Np = NbDb = I onDomU[Jy,.
(i) Forae L3  (bQ), we have a = ) ObNba ® abObNha
(iii) abN,, = thb on Dom@b fori<g<n-1.
(iv) ObNb = Nbab on Dom@b for2<g< n.
W) Iface prq(bQ) anddya =0, thenu = abNba is the unique solution to the equationd,u =
which is orthogonal to kerdy,.

1. Notation and preliminaries
1.1. Morrey—Kohn-Hormander

Let Q be a bounded domain in C" with C? boundary bQ) and defining function p so that |0p| = 1
on bQ. Let (z1,...,2,) be the complex coordinates for C”. Any (p, g)-form a on Q can be expressed
as follows:

(X:Z’CZIJ dzI/\dZJ, 1
L

where I = (iy, ..., ip) and J = (ji,..., j4) are multiindices and dz’ = dz;, A--- Adz;,, dZ/ = dz;j, A
--Adz;,. The notation ¥’ means the summation over strictly increasing multiindices. Denote by

C*(C™) the space of complex-valued C* functions on C" and C;’,f’q (C™) the space of complex-

valued differential forms of class C* and of type (p, g) on C", where 0 < p < n,0 < g < n. Let

Coey @ = {ulg|ue cy@n}.

Denote 2(C"), the space of C*°-functions with compact support in C". A form u € C;, (C") is said
to be has compact support in C" if its coefficients belongs to 2(C"). The subspace of C;O (5]
which has compact support in C” is denoted by D, q(C") For u,a € C (C”) the local inner
product (u, @) is denoted by:
wa)=Y"uya,
L
and (u, u) is defined by

2 ' 2
(ww) =ul” =) "lugl°.
L]

The Cauchy-Riemann operator 9 : Cp - 1(Q) — €57, (Q) is defined by

Eazz Z k]dz Adz! AdZ’.
] k=1 0%

6a1
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438 Sayed Saber

Recall that L2(Q) is the space of square-integrable functions on Q with respect to the Lebesgue
measure in C"* and L2 1,q() is the space of (p, ¢)-forms with coeflicients in L2(Q).ffu,aeL? 2,q(Q),
the L2-inner product (u, a)q and norm | ullq are defined by

(u,aq=(u,a); (Q)zf(u,a)dV:f UN*xa
P Q Q
and
lule = lul?, o = (wwo
o Lyq(@ — Y
where dV is the volume element induced by the Hermitian metric and  : C}7 (C") —

Cig,n-p(C™) is the Hodge star operator such that *u = % U (that is % is a real operator) and

*x % u = (=1)P*9y. For u € C°° Q) and a € Dy 4-1(Q), the formal adjoint operator 9 of d:
C°°q_l(Q) — C°° (), with respect to (-,-)q, is defined by

Oa, u)q = (a,uyq.

Thus 9 can be expressed explicitly by

ou
Ju=-pPt Y’ Z I]Kdz adzK. 2
Hi=p j=1
IKl=g-1
The operator 9 defined in (2) satisfies
D=—%0*. 3)

Let 8 : Doma < Lfm(Q) — LZ,qH(Q) be the maximal closed extensions of the original 0 and
3 :Domd c L%'q(Q) — Lé 4- 1(Q) be the Hilbert space adjoint of 0. Let kerd = {a € Domd :
Oa =0} and Zangd = {0a: a € Doma} be the kernel and the range of 3, respectively. The complex

Laplacian D is deﬁned by = 00 +0 0:12 q(Q) — 12 q(Q) onDomO={a¢€ DomdnDomd :
da e Domd andd ae€Dom 6}. The space of harmonic forms #7'9(Q) is defined by
JAP1(Q) ={ae wa(Q) nDomd NDomd :0a=0 a=0}.
Let H : Lf,,q(Q) — ker be the orthogonal projection from the space Lé,q(Q) onto the space
ker[J. The d-Neumann operator
2
N:Lj, () — L,, ¢
is defined as the inverse of the restriction of (1 to (#77(Q))*, i.e
0 if ae#PI(Q),
Na =
u if a=0u, and u L #P9(Q).
In other words, Na is the unlque solution u to the equations Hu = 0, Ju = @ — Ha. The Bergman
projection operator P : [2 g — kerd is the orthogonal projection of L2 4(€) onto kero. For
any0<p<nand1<g< < n, P is represented in terms of N by the Kohn’s formula
P=1-3 0N. 4)

Let a = (ay,..., a,) be a multiindices, that is, a;,..., a, are nonnegative integers. For x € R”, one
defines x* = x{" ... x;;" and D is the operator

Da—(l 0 )”1 (1 0 )“”
“\ioxy) T\iox,)

Denote by . the Schwartz space of rapidly decreasing smooth functions on R”, that is, ¥ con-
sists of all functions u which are smooth on R” with sup ,cgn |x?DPu(x)| < oo for all multiindices
a, b. The Fourier transform # of a function u € . is defined by

ae) = (2m)~"? f u(x) e ¢ dx,
Rn
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where x.§ =Y"_, x, &, and dx =dx; A--- Adx, with x = (x1,..., %) and & = (£y,...,¢p). fue &,
then % € &. The Sobolev space W™ (R"), m € R, is the completion of ¥ under the Sobolev norm

e = [+ P13 de.

Denote by W™ (Q), m > 0, the space of the restriction of all functions u e W™ (C") = W™ (R2") to
Q and

lullwmqy = inf{lallwncrn, a € W™C™), alg = u}
is the W™ (Q)-norm. Let W;"(Q) be the completion of 2(Q) under the W™ (Q)-norm. If Q is a
Lipschitz domain, C®(Q) is dense in W™ (Q) with respect to the W (Q)-norm. If 0 < m < %,
2(Q) is dense in W™ (Q) (cf. [11, Theorem 1.4.2.4]). Thus

wmQ)) = Wom(Q), foro<m<-=
For m >0, one defines W~""(Q) to be the dual of W;"(Q2) and the norm of W~""(Q) is defined by

Ku, a)ql
lullw-m@= sup ———
0@ W (Q) lallwmq
Denote by W’;f’q (), m € R, the Hilbert spaces of (p, g)-forms with W™ (Q)-coefficients and their
norms are denoted by | u|lwm ). Noting that, for a bounded domain Q, the generalized Schwartz
inequality, for u € W™ (Q) and a € W~(Q),
Ku, myal < lullwm@) lallw-m@q) )
holds when —5 < m < ;
Lemma 4 ([4]). Let Q € C" be a bounded domain with C? boundary and p be a C? defining

function of Q. Let ¢ € C?(Q) with ¢ > 0. Then, fora € Co (Q) ADomd with 1 <g<n-1,one
obtains

_ . #s
IvV@dal +11ved al f ¢ @1k Ak dS
v arive o Ly ];1 bQ 6zja x LjKA1LEK
/n Oa” L
+ Z[QO dV +2Re Z Z i dzd @
IJ] k=1YQ & £ 1
n az(p
-z ——apjkarkxdV. (6
LZK j,kZ:szdzJazk IjK @1kK (6)

The case of ¢ = 1 is the classical Kohn—Morrey formula see [21, 23].

1.2. The 8;, complex on Lipschitz domains

In this subsection, we introduce square-integrable (p, g)-forms on a Lipschitz boundary bQ of a
bounded domain Q in C" with distance function p. We equip hQ with the induced metric from
C". A boundary bQ2 of a bounded domain Q € C” is called Lipschitz if locally the boundary bQ
is the graph of a Lipschitz function. Let 9 : R*"~! — R be a function that satisfies the Lipschitz
condition

lw(x) —w(x)| < M|x—x'|, forall x,x" e R?"" 1, @)
The smallest M > 0 in which (7) holds is called the bound of the Lipschitz constant. A boundary
bQ of a bounded domain Q & C”" is called Lipschitz if near every boundary point p € bQ there
exists a neighborhood U of p such that, after a rotation,

QU ={(x,x2,) €U | X200, > ¥ (x)},

C. R. Mathématique, 2020, 358, n° 4, 435-458



440 Sayed Saber

for some Lipschitz function y. By choosing finitely many balls {U;} covering bQ, the Lipschitz
constant for a Lipschitz domain is the smallest M such that the Lipschitz constant is bounded by
M in every ball U;. A Lipschitz function is almost everywhere differentiable (see [7]).

Definition 5. A bounded domain Q with Lipschitz boundary bQ) in C" is said to have a global
Lipschitz defining function if there exists a Lipschitz function p : C" — R such that p <0 in Q,
p >0 outside Q and

c1 <l|dpl<cy a.e on bQ, (8)

where c1, ¢y are positive constants.

We cover bQ2 by finitely many boundary coordinate patches U; where i = 1,...,k. Let r; be a
local defining function on U; which is locally a Lipschitz graph. Let y; € C§°(U;) be a partition of
unity such that }_; y; = 1 in a neighborhood of bQ2. We define p = }_; ;7;. Then p is a defining
function for Q.

Lemma 6 ([37]). Let Q € C" be a bounded domain with Lipschitz boundary bQ). Then Q has
a global Lipschitz defining function p. Furthermore, the distance function to the boundary is
comparable to |p| for any global Lipschitz defining function p near the boundary.

Let C*°(bQ) be the space of the restriction of all smooth functions in C" to bQ). For each m
with 1 < m < oo, one defines f;,’fq(bQ) to be the space of (p, g)-forms in C” such~that each
coefficient of a, when restricted to bQ, is in L™ (bQ). Write a as in (1), then a € L (bQ) if
and only if @y jlpq € L™ (bQ) for each I, ]. Let v be the interior product which is the dual of the
wedge product. Since the boundary is Lipschitz, the normal vector is defined almost everywhere
and satisfies (8). If we fix p € bQ, then for some neighborhood U of p we may locally choose
an orthonormal coordinate patch {dzj,...,dz,} defined almost everywhere in U N Q such that
dz, = 5p (note that |5p| = % because we are using the metric where Idzi | =1, which is half the
SiZ(i induced by the usual Euclidean metric on R"). We define L”f,q (bQ) < LZ? q(bQ) as the space of
all L)', such that~d2n V a = 0 almost everywhere on bQ).

Locally, if ¢ € Lqu(bQ N U), one can express

a= Z’a”dzl A dZ] + Z'audzl N dZ],
L] L
né¢jJ nej
where a; j’s are L (bQn U) functions. Let 7 denote the projection map
.Tm _,qm
7:L, () L, q(b)

defined by
ta=Y"a;;dz! AdZ. 9
ne]
Since changing basis will result in multiplication by L*(bQ n U) functions, the projection 7 is
well-defined since it is independent of the choice of {dz;,...,dZz,—1}.

Let Ap,q(bQ)) denote the restriction of C3, (C") to bQ. Define %),4(bQ) to be the subspace
of L?,f’q(bQ) such that a € %), 4(bQ) if and only if there exists @ € Ay 4(bQ) such that f = 7a.
In other words, we have 7(Ap 4(C")) = 9B, 4(bQ). Obviously, 9,,,(bQ) € L‘;’,‘fq(bQ) S L?,,q(bQ).
Denote by W’;f’q(bQ), 0 < m < 1, the space of forms that are the completion of %), ;(bQ2)-forms
with W (bQ)-norms. This is well defined also for Lipschitz domains since on bQ, w1l (bQ) is well
defined and the boundary value of any function in W!(Q) to the boundary belongs to wz (bQ2)
(see [22]).

Lemma 7 ([30, Lemma 1.4]). Let Q be a bounded domain with Lipschitz boundary bQ in R".
Then C®(bQ) is dense in L (bQ) and Ap,q(bQ) is densein wa(bQ) forevery0<p<n,0<g<n.
Also Bp,4(bQ) is a dense subset in L%,q(bQ) forevery0< p<n0<g<n—-1.
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The Bochner-Martinelli-Koppelman transform on (p, g)-forms is defined as follows. Let
C-2)=C1—2z1,...,Cn—2n),
d¢ =(d(y,...,d ).
Define

(-zd0=Y (;-z)d(j,
j=1

—_— n —_—
(df-dz,d{) = ) (d{;-dz;)d(;.
j=1
The Bochner-Martinelli-Koppelman kernel K((, z) is defined by
— — n-1
1 - _r - _)
KL= €-2d0 A(<dc dz dc>)

@rir |{-2zl? Il - 2|2
n-1

= Z Kq((,z),
q=0

where K;((, z) denote the component of K((, z) thatis a (p, g)-formin zand an (n—p,n—-g-1)-
formin (.

Whenn=1, L@
K((,2) = — ——
€2 2ni (—z

is the Cauchy kernel. As in the Cauchy integral case, for any f € Lf?y ¢(bQ) the Cauchy principal
value integral K}, f is defined as follows:

Kofa= lim [ K @210,
bQ

|{—z|>€
whenever the limit exists. Denote by v, the outward unit normal to bQ} at z. Since bQ2 is Lipschitz,
v, exists almost everywhere on bQ. Then, for z € bQ2, one defines

K;f(Z)=€£r%+beKq(-,z—evz)Af,

K, f(2) zeané+fl)QKq(-,z+euz)Af.

Proposition 8 ([37]). Let Q be a bounded domain in C" with Lipschitz boundary. For a €
Bp,q(bQ),0< g < n-1, the following formula holds for almost every z € bQ.:

a(z)=7 lim (f Kq(-,z—evz)/\a—f Ky(-,z+ev)nal. (10)
e—0" \JpQ bQ

The 5b-operator is defined distributionally as follows: for any u € L%' (b and a € Lf?’ g+1 (bQ)

we say that © is in Domdy, and d,u = a if and only if:
f uUNdPdS = (—1)1”'1[ angds, forevery peC2, . 1 (C").
bQ bQ '
Since 52 =0, it follows that 5?, =0. Thus dj is a complex and we have the following:
0— 12,6 2 12 (b)) 2 12, (b 2 20 12 () —o.

Proposition 9 ([35]). Let Q be a bounded domain in C" with Lipschitz boundary bQ. The 5;,

. . 2 2
operator is a closed, densely defined, linear operator from L, g1 (b)) to Ly, ,(bSY), whereO < p < n,
1<g<n-1.

We need to define 52, the 2 adjoint of 5;,. Again, we first define its domain:

C. R. Mathématique, 2020, 358, n° 4, 435-458
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Definition 10. Domgz is the subset of Lé, ¢(bQY) composed of all forms a for which there exists a
constant ¢ > 0 such that

(e, 0p )l < Cllullpa,
for all u € Domay,.

Foralla € Domgz, let 5Za be the unique form in L%,l q(bQ) satisfying
@, ) pa = (@, Op U o,
for all u € Doma,,.
Definition 11. Let(, =3, 6b +6b0h Dome — L ¢(bQ) the 6b-Laplaczan operator defined on

DomUJ, = {a € L5, ,(bQ): a(—:DomameomOb ObaeDomab anddhaeDomah}

Proposition 12 ([35, Proposition 1.3]). The Gb—Laplacian operator is a closed, densely defined
self-adjoint operator.

Let Jflf "7(bQ)) denote the space of harmonic forms on the boundary b, i.e.,
Jf;"q(bQ) ={a € Dom[],: aba = 52a =0}

The space Jéf'q(hﬂ) is a closed subspace of Dom[J;, since [Jj, is a closed operator. One defines
the boundary operator or the ,-Neumann operator

.72 2
Np: Lp,q(bQ) — Lp‘q(bQ),
as the inverse of the restriction of [, to (Jﬁ; b))t ie.,

0 if ae )b,
Nb(X: . p.q
u if a=0,u, and uJ_Jfb’ (bQ)).

In other words, Ny« is the unique solution u to the equations a¢ = Oj,u with @ L Jflf 9 (bQ) and
we extend N, by linearity.

1.3. g-pseudoconvex domains

In this subsection, we recall the following definition of g-subharmonic functions which has
been introduced by H. Ahn and N. Q. Dieu in [1] (also see Lop-Hing Ho [20]). For a real valued
C? function u defined on U < C", Lop-Hing Ho [20] first defined g-subharmonicity of u on
U and using this g-subharmonic function, he introduce the notion of weak g-convexity for
domains with smooth boundaries. As Theorem 1.4 in [20], Ahn and Dieu [1] investigated a natural
extension of these notions to the class of upper semicontinuous functions and g-pseudoconvex
domains with non-smooth boundaries.

Definition 13 ([1]). Let u be an upper semicontinuous function on Q. Then we say that u is q-
subharmonic on Q if for every q-complex dimension space H and for every compact setD € HNQ,
the following holds: if h is a continuous harmonic function on D and h > u on the boundary of D,
then h > uonD.

Definition 14 ([11). The function u is called strictly q-subharmonic if for every U € Q there exists
a constant Cyy > 0 such that u— Cylz|® is q-subharmonic.

The following results gives some basic properties of g-subharmonic functions, follows the
same lines as for plurisubharmonic functions, that will be used later (see [1,20]).
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Proposition 15. LetQ be a domain inC" and let1 < q < n. Then we have
(@) Ifiuy}y2, is a decreasing sequence of q-subharmonic functions then u = limy ., Uy is a
q-subharmonic function.
(ii) Let x(2) € C3°(C") be a function such that y >0, [cn x(2)dV = 1, x(2) depends only on |z
and vanishes when |z| > 1. Set y,,(z) = e;znx(z/ev) fore, | 0. If u is a q-subharmonic
function, then

Ue,(2) = u* xe,(2) =f9u(()xgv(z—()dV(C)

is smooth q-subharmonic on Q, = {z € Q: d(z,bQ) > €,}. Moreover, u,, | uasey | 0.

(iii) Ifu € C?(Q) such that azaizalfz z(2)=0forall j # k and z € Q. Then u is q-subharmonic if and

only iij,ke] %(z) >0, forall|]|=q and forallz€ Q.

Proof. The proof of this proposition follows from properties of subharmonic functions. The
proof of (ii) is exact as Proposition 1.2 in [1]. Similarly, it is easy to see that (i) and (iii) hold because
these properties are true for subharmonic functions. O

Proposition 16. Let Q be a bounded domain in C" and let q be an integer with 1 < q < n. Let
u € C?(Q). Then the q-subharmonicity of u is equivalent to
B i ajxarg =0
~aor %k @kk 20,
IKI:q—l j,k=1 aZ]aZk

forall (0,q)-formsa= Y. a;dz’.
IJ1=q

Proof. By Theorem 1.4 and Lemma 1.2 in [20], it is easy to see that this fact is true if u € C?(Q). In
the case u is arbitrary we note that the assertion is true for u,. Let € \, 0 we obtain the assertion
for u and the proof follows. g

The following examples of a g-subharmonic function which is not plurisubharmonic.

Example 17. One of the most typical examples of g-subharmonic function which is not
plurisubharmonic is

q-1 n
ui@ ==Y laf+@-1 Y lzl
v=1 v=q

Indeed, for g = 2, we have

(62u )_ 01--00
0zJ9zk
0 0--01
Then, following Proposition 15 (iii), u is 2-subharmonic. More precisely
n n aZu n ) n ) n n )
ﬂajlaklzz —layl®+ Y lajul*| = Y lajl® >0,
l:lj,k:laz 0z =1 j=2 1=2j=2

for all (0,2)-forms a = Z;JI=2 ajy dz’ (because a;;=0,1=1,2,...,n). Thus, u is 2-subharmonic.

Example 18. Letd >1and 1< g < d. Consider the function

d

2 2 2 2 d

u(@) =zl = qlzi> = 3_ 12| — qlz1|°, zeC.
j=1

q %u
Jj=10z/0z]
However, u is not plurisubharmonic. Indeed, let L = {(z;,0,...,0)} C%bea complex line. Then
ur=»1-qlzn |2 is not subharmonic, and the desired conclusion follows.

It is easy to see that }_ (z) = 0 and by Proposition 15 it follows that u is g-subharmonic.
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Example 19 ([12]). Let g be an integer with 1 < g < n and let Ay, k = 1,2,...,g, are complex
numbers such that Zk:l [Akl>>0and Ay #0, for k= g +1,..., n. Then the function

2
q n
u(z) = Z{Re ( > )Lkzk) } + Y Azl
k=1 k=qg+1
is 1-subharmonic and strictly g-subharmonic on C". Moreover, if g > 1 then u is not strictly
(g — 1)-subharmonic on any open set of C".

According to Lop-Hing Ho (see [20, Definition 2.1]), a smoothly bounded domain  is called
weakly g-convex if Q has a defining function p such that for every z € bQ2 one obtains
p
!

———ajx k=0,
(dt froziozk ™ ~

for every (0, g)-forms @ = ¥ a;dz’ such that
=g

= 0p
Za_ jk=0forall [K|=

Definition 20. A (Lipschitz) domain Q € C" is said to be q-pseudoconvex if there exists q-
subharmonic exhaustion (Lipschitz) function on Q. Moreover, a C*> smooth bounded domain Q is
called strictly q-convex if it admits a C*> smooth defining function which is strictly q-subharmonic
on a neighbourhood of Q.

Remark 21.

(i) Note that Q is pseudoconvex if and only if it is 1-pseudoconvex, since 1-subharmonic
function is just plurisubharmonic.
(ii) By Theorem 2.4 in Lop-Hing Ho [20], every weakly g-convex domain (see [20, Defini-
tion 2.1]) is g-pseudoconvex.
(iii) If Q@ € C" is a g-pseudoconvex domain, 1 < g < n, and if bQ is of class C?, then Q is
weakly g-convex (see Lop-Hing Ho [20]).
(iv) Let QO € C" be a bounded domain satisfy the Z(q) condition. Thus Q is strictly g-
pseudoconvex.
(v) Every n-dimensional connected non compact complex manifold has a strongly subhar-
monic exhaustion function with respect to any hermitian metric w. Thus, every open set
in C" is n-pseudoconvex (see Greene and Wu [10]).

2. Existence of the -Neumann operator
This section deals with the existence of the 3-Neumann operator N on g-pseudoconvex domains
inC".

Lemma 22 ([1, 12]). Let Q € C" be a q-pseudoconvex domain, 1 < q < n. Then Q has a
C*™-smooth strictly q-subharmonic exhaustion function. More precisely, there are strictly q-
pseudoconvex domains, Q,’s, v =1,2,..., with smooth boundary satisfying

Q=u32,Qy, QyEQys1 €Q forallv.

Proof. Let u be g-subharmonic exhaustion function for Q. By induction one can choose a
sequence {ay}y>1 1 oo such that the open sets U, := {u < a,} satisty U, € Uy+1 € Q. Next, for
each v we choose ¢, > 0 so small that

d(Uy-1,bUy) > €y, dUy,bUy41) > €y, Uys1 €Qy,,
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where Q,, ={z:d(z,bQ)) > &,}. Put

1y (2) = fQ U e, 2~ DAV, ¥ z€ Q.
Since u < u, on Q,, we deduce that
Q,=1{z€Q¢, 1 uy(2) > ay} c U, EUyy1 EQe, <.

We claim that U,_; < Q,. Indeed, let z € U,,_;. Then we have B(z, ¢,) < U, and, hence,
uv(z)=f u(l) xe, (z—0)dV () < ay.
B(z,ev)

This proves the claim, and therefore Q = UJ2,Q,, Finally, it is easy to see that Q, is a g-
pseudoconvex domain with the smooth strictly g-subharmonic exhaustion function ¢, (z) :=
e el O

Following Lemmas 6 and 22, as Lemma 2.1 in [29], we prove the following lemma:

Lemma 23. Let Q @ C" be a bounded q-pseudoconvex domain with Lipschitz boundary bQ).
There exists an exhaustion {Q,} of Q such that
(i) there exists a Lipschitz function p : C" — R such that p < 0 in Q, p > 0 outside Q and
satisfies (8).
(i) {Qy} is an increasing sequence of relatively compact subsets of Q and Q = U, Q,,.
(iii) Each Qy, v = 1,2,..., is strictly q-pseudoconvex domains, i.e., each Q, has a C* strictly
q-subharmonic defining function p, on a neighbourhood of Q, such that
I aZPv

— 2

~——— ALjK A1 kK 2= Cola]
‘ jozk v '

LIKI k02

o€ C;’,f’q(ﬁv) n Domg:: with g > 1 and ¢ is independent of v.
(iv) There exist positive constants c1, ¢z such that ¢; < |Vn,| < ¢2 on bQ,, where cy, ¢, are
independent of v.

Proof. Using Lemma 6, there exists a global Lipschitz defining function p for Q satisfying (8) and
p is obtained as above by a partition of unity of defining functions r; which is a Lipschitz graph.
Choose a function x(z) € C§°(C") as in Proposition 15. Let 6, be a sequence of small numbers
with §,, \ 0. For each §,, one defines

Qs, =1z€Qlp(2) < -6,

Then Qg is a sequence of relatively compact open subsets of Q) with union equal to Q. For each
0y, one defines, for 0 <e <6, and z€ Q5 ,

pe(2) =p* xe(2) = fp(z—ef)x(()dv(().

Then, p. € C*(Qs,) and p, \, p on Qs . Since p is g-subharmonic, it follows that, from Proposi-
tion 15, that p, is g-subharmonic.

Each p¢, is well defined if 0 <€, < 041 for z€ Qs . Let co = supq |Vpl, then for €, sufficiently
small, one obtains

p(2) < pe,(2) <p(2) + c26y on Qs ;.
For each v we choose 1
€y =—(0y-1—0y) and t, € (5y41 —04).
2¢o
Define
Q, ={zeC"| pe, <—1}.

Since p(2) < pe, (2) < —t, < —b6y41, we have that Qs ,, > Q,. Also, if z € Q5,_,, then p, (2) <
p(2) + c2ey < =6y < —t,. Thus we have Qs ., > Q, > Qs,_, and (ii) is satisfied.
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Each Q, is defined by n, = p, + t, which is strictly g-subharmonic in Q, and (iii) is satisfied.
That the subdomain Q, has smooth boundary will follow from (iv).

To prove (iv), it is easy to see that |[Vn,| < ¢z in bQ, . To show that |Vn, | is uniformly bounded
from below, we note bQ2 satisfies the uniform interior cone property. Then there exists a conic
neighborhood I" with vertex 0 € C” such that for any unit vector ¢ € T + {p}, —(Vp, $)p>cpae. in
U n bQ, where ¢ is a positive constant independent of p if U is sufficiently small. There exist a
finite covering {V}1 <ugk of bQ, a finite set of unit vectors {{,}1 <u<k and ¢; > 0 such that the
inner product (Vp, &) > ¢1 >0 a.e. for z€ V,, 1 < u < K. Since this is preserved by convolution,
(iv) is proved. Thus the proof follows. O

Theorem24. LetQ &€C" beaq- pseudoconvex domain, 1 < g < n. Then, forany1 < q < n, there
exists a bounded linear operator N : L2 g — L2 1,q () which satisfies the following properties:
(i) ZangN € DomU, NO=1 onDomD
(i) Foranyae L2 ¢(Q), we have a = 90 Na®0d oNa.
(iii) ON No 0nDom6 1<g<n-1,n=2.
(iv) 8 N=Nd onDomd ,2< q<
(V) If0 is the diameter of Q, we have the following estimates:

e 2
||Na||9<7”a”ﬂ,

- [ eb?

[ONalq < —q lallq, (1)
—% 962
0 Nala < \/7”@"9-

Proof. We first prove the theorem for Q with C? boundary. Let 13 be the defining function of Q.
Following Definitions 14 and 20, there exists a € C;; (Q) nDomd with q = 1, such that

'’y &p

——ajy ik arxdS>0.
I_ZK j%:jfhg dzigzk  DIKTIEK

If we replace ¢ by 1 —e¥, where v is an arbitrary twice continuously differentiable non-positive

function, and after applying the Cauchy-Schwarz inequality (5), for m = 0, to the term in (6)

involving first derivatives of ¢, we find

—_ —% n
IvVgoals+Ived ald=>> ">

e oAk
LK jk=1 Q 0zJ0z

2
— 125
arjk @ dV —le?'20 alq.

Since ¢ + e¥ =1 and ¢ < 1, it follows that

_ _ n 62
2 * 02 / vy OVW —
I0alg+10 alg > ) fe ——— anjk @k dV,
Q Q/[,K ]chzl o 6z16zk J ,

for all a € C;‘fq(ﬁ) ADomd and for qg>1.1fzp € Q and w(z) = -1+ |z — 2|*/62, where
8 =sup, ,cqlz—2Z'| is the diameter of the bounded domain Q, then the preceding inequality
implies

652 — —%
lal < (7) (18l + 13" ).

This estimate was derived when a is continuous and differential on Q. Thus, by density it holds
for all square-integrable forms @ € Domd NDomd . Thus, for g > 1, one obtains

eb?
||C¥||Q<(7)||DOK||Q- (12)
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For a general g-pseudoconvex domain, from Lemma 22, one can exhaust Q by a sequence of
strictly g-pseudoconvex domains with C* boundary bQ. We write Q = U, Q,, where each Q, is
a bounded strictly g-pseudoconvex domains with C* boundary and Q, € Q,,; € Q for each v.

Let 6, be the diameter of Q, and let [J, be the complex Laplacian on each Q,. Thus (12) holds on
each Q,. That is, there exists a a,, € C°° Q) n Domd with g > 1, such that

ed2 ed?
lavla, < (7V) 10vayla, < (7) Hallq.

We can choose a subsequence of a., still denoted by a,, such that a, — « weakly in 12 q(Q)
Furthermore, « satisfies the estimate

ed? 262
IIaIIQ<hmmf( p )IID ayvla, < ( p )IIDaIIQ. (13)

Since [ is a linear closed densely defined operator, then, from Theorem 1.1.1 in [21], Zang (L) is
closed. Thus, from (1.1.1) in [21] and the fact that [J is self adjoint, one obtains

2 ,(@) =00 Dom&3d dDomLl.

Since UJ: DomU — Zang () = Li, ¢(€) is one to one on Dom[] from (13), there exists a unique
bounded inverse operator N : Zang(L]) — DomU[] such that NOa = a on Dom0U. Also, from
the definition of NV, one obtains LJN = I on Lf,yq(Q). Thus (i) and (ii) are satisfied. To show that

ON = N0 on Dom5, by using (ii), we have da = %*EN(X, for @ € Doma. Thus

Noa=N3d 0Na=N@ 0+00 )dNa =0Na.
And, by similar argument, 8 N=No onDomd for2< q < n. By using ( (111) and the condition
ona, 6(1 0, we have 0Na = Noa =0. Then, by using (ii), one obtains a = 90 Na.Thus the form

u=0 Na satisfies the equation du = a. Since Zang N c DomU[], then by applying (13) to Na
instead of «, (11) follows. Thus the proof follows. O

3. Sobolev estimates for the 9-Neumann problem

Let Q be a domain with C'-boundary bQ, and let p be a C'-defining function of Q. Assume that
&p,q(bQ) is the space of the restriction to bQ of all (p, g)-forms with C 1(Q)-coefficients which are
pointwise orthogonal to the ideal generated by 5p and [ ,4(bQ) is the space of the restriction
to bQ of all (p, q)-forms that are multiples of dp. Denote by T, the projection T; : Cll,’ q(ﬁ) —
&p,q(bQ) and Ty, the projection Ty : C}w(ﬁ) — F ,¢(bQ). In particular, 7T; & T, = 7T, where Tis
simply the restriction map from C}j, q(ﬁ) to the boundary. If Q has only Lipschitz boundary bQ,
the operators 1; and T are also defined almost everywhere on bQ.

Lemma 25 ([30]). LetQ be a domain with C! -boundary b2, and let p be a C'-defining function
of Q. Forany f € L2 7,q(Q), the restrlctlon maps T@ON), TP and 1@ N) can be extended as bounded

operators from L? 0q() oW, 1(bQ) w, 0, 2(bQ) and W ; 1(bQ), respectively.

P, q+
Denote by %; and %, the restriction maps of 8 N and 0N to bQ, respectively. For any
ae Lf,,q(Q), R1f="10 Na)and %, f = 1(0Na). From Lemma 25, one obtains
1
.72 2
R1: Ly 0 (Q) — W, 2, (bQ)
and .
.72 T2
R Ly, 5(Q) — Wp’f]“(bﬂ).
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Let Ty : (bQ)) — L2 (Q) be the dual of £; and be defined as follows: For a fixed a €

P q-1
q 1(bQ) and for any u € 12 1,q(€), we have, using Lemma 25, that

—*
<
bQ(O Nu,a)dS'\CII:%"WIIW,%WQ)II ”wz(m) < Clulg,

where C depends on a. Thus there exists an element g = Tha € L%,' ¢(€) such that

f (5*]\]”, a)dS=(u, ha)q, forany ue L?, PI(O3R
bQ '

1 1
Let T> : W;qﬂ (bQ) — Lf,yq(Q) be the dual of %,, such that for any a € sz,q+1 (bQY)

(5Nu, a)dS =(u, a)q, forany ue L?, q(Q).
bQ ’

Lemma 26 ([30, Lemma 4.3]). Let Q be a domain l]Uiﬂl C*-boundary such that Q has a C*-
plurisubharmonic defining function p. For any a € W; -1 (bQ),0< p< n, 1< g< n, wehavethe
following estimate:
f(—p)|T1a|2dV<Cf la|?dS. (14)
Q bQ
1

Also foranya e W p g+1

(bQ),0< p< n 1< g< n, oneobtains

[ cormatav<c| atds, (15)
Q bQ
where C is a constant depending only on the Lipschitz constant of Q and the diameter of Q2.

Theorem 27. Let Q) € C" be a bounded q-pseudoconvex domain wzth a Lipschitz boundary bQ
andletl1 < qg<n.Then, for0<p<n l1l<qg<n and—— <m< 2, the operators N, 0N, o'N
and the Bergman projection P are bounded on Wy, () and satisfies the following estimates: there
exists C > 0 such that for any a € Wy, (Q),

INallwm @ < Cllallwr @)
||5N06||Wm L@t 15" Nallwm L@ S Clalwe @) (16)
I1Pallwmr @ < C||06||W'" Q>
where C depends only on the Lipschitz constant and the diameter of 2, but is independent of .
Proof. To prove (16) for m = %, we approximate Q) as Lemma 23 by a sequence of subdomains
Q, = {p < —€,} such that each Q, is strictly g-pseudoconvex domains with C* smooth boundary,
i.e, each Q, has a C* strictly g-subharmonic defining function p, such that (ii) and (iii) in

Lemma 23. Thus, we can apply Lemma 26 on each Q,. We use T}, T}, %}, %;, and N, to
denote the corresponding operators on each Q. By applying (14) and (15) to Ty, T, for any

aEqu 1(b€2,), where 0 < p < n, 1< g < n, we have

(oI T al?dV, <C f lalds,, a7
Q, bQy

1
where C can be chosen independent of v. Also for any «a € W;qﬂ(bﬂv), where 0 < p < 1,

1 < g < n, one obtains

f (I TYal?dVy < C f laf2ds, (18)
Q, bQy
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_1
Using Lemma 26, T} is bounded from Lf?’ q_l(va) to Wp‘f,_l(ﬂv) and T, is bounded from
1

Lz q +1(bQy) to W;_ Z(QV). Also, the bounds depend only on the Lipschitz constant and the

1
diameter of the domain. Thus, from (17) and (18) we have from duality, for any a € sz' q(QV),
1% al <Cleall 1 ) (19)
1L g (0020 W,,%,,(QV)
and
, (20)

1
2

2] all ;2 <Clal
1 Lp,qﬂ(va) =~ p,q(QV)

1
where C is a constant independent of v. For any a € W, ;(Q,) and by using the trace theorem for
elliptic equations (cf. [22,38]), from (19) and (20), one obtains

10Nl , <Clal ) 1)
W2, (@) W2, (Qy)
and B
IONYal 1 <Cleall 1 ) (22)
g+l @) any-"i Q)
where C is a constant independent of v. Passing to the limit, one obtains from (21) and (22) that
—*
0 Nall 1 <Cllel 1+ (23)
-1 Wiy.q(Q)
and B
[ONall 1 <Clel 1+ (24)
a1 @ W2q(Q)
Using Theorem 24 (iii) and (iv), one can write
N=@d +0 O)N>=(@N)@ N)+@ N)@N).
It follows from (23) and (24) that
INal 1 <Cllall 1 (25)
pq (€D Wyg(@)
By virtue of Kohn's formula (4), we have
(26)

IPal 1 <CIfI
W2, (Q)

1
2
ol Wy,

(
q
1
This proves the continuity of P in W, (Q). Thus (16) follows for m = % Using duality, the
estimates (23) to (26) also hold for m = -3 The other cases follow from interpolation. O

4. The L? 3-Cauchy problem

Using the duality relations pertaining to the d-Neumann problem, one can solve the Cauchy
problem for 8 on g-pseudoconvex domains. This method was first used in [26] for smooth
forms on strongly pseudo-convex domains. As Theorem 9.1.2 in [6] (cf. [34, Proposition 2.7]),
the following result is proved:

Theorem 28. Let Q € C" be a bounded q-pseudoconvex domain with a Lipschitz boundary bQ

and let1 < g < n. Then, for every a € L%,,q(C”) which is supported in Q such that

da=0, for 1I<g<n-1, @7

2

onecan findue L,

g-1 (C") such that du = « in the distribution sense in C" with u supported inQ
and

luller < Cliallen,
where C depends only on the Lipschitz constant and the diameter of Q, but is independent of «.
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Proof. Let a € Livq(C”) which is supported in Q, then a € L%,yq(Q). From Theorem 24, the 8-

Neumann operator Ny, 4 exists for n—q > 1. Since Ny p g = D;lp'n_q on Zangl,_pn—q

and ZangN,_p -4 < DomU,_p 4, then Ny_p g x @ € Domlly,—p g < L%_p’n_q(Q), for
q < n-1.Thus, one candefine ue L2, () by
U=—% 0Np_pn_q *@. 28)

Extending u to C" by defining u=0in C" \ Q. We want to prove that the extended form u satisfies
the equation du = « in the distribution sense in C". To do that we need first clear that

5*(*5) =0 on Q.
For € Domad c LG_p,n_q_l (Q), one obtains
(0, * @y = f ONA**a= (—1)(F’+‘7)(P+‘7‘”f andn= (DP9 a,*x0m)q.
Q Q
Since 9= on Dp,q(Q), when 9 acts in the distribution sense and 2, 4(€2) is dense in Doma N
Domd in the graph norm (cf. [21]), then from (3) one obtains
@n,*@a =(a,0 *Men = (@a,*en =0
because a is supported in Q. It follows that 9 (x@=00nQ. Using Theorem 24 (iv), one obtains
5* Np-pn-q(x @) = Nn—p,n—q—lé* (xa)=0.

Thus, from (3) and (28), one obtains

0u=-0% 0Ny ppq*x@

= (DP9 % % 0 % ONp_p g * @

=(-1)P"9%0 ONp_pu-g*xa@ 29)

= (~DP*% (@ 0+00 ) Ny-pn_g * @
— (_1)P+qm
=a
in the distribution sense in Q. Since u =0in C"\ Q, then for g € Domd < L%,'q((:”), and from (3)
and (29), one obtains . .
(u,0 gyen =(u,0 gHa
= (% %, * U)o
= —(k*O% g, *W)q
= (-DPH(xg, 0 * Mo
= (0u, g)a
={(a, §a
= (a,g}cn.
Thus du = a in the distribution sense in C”. d

As Proposition 9.1.3 in [6], the following result is proved:

Proposition 29. LetQ € C" be a bounded q-pseudoconvex domain with a Lipschitz boundary bQ
and let 1 < g < n. Then, for —% <m< % and for any a € L%M(C”) such that a is supported in Q
and

f ang=0 forany ge L%L—p,O(Q) nkerd, (30)
Q
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onecanfindue Lfmfl (C™ such that du = a in the distribution sense in C"" with u is supported in
Q and

lullcr < Cllalicr,
where C depends only on the Lipschitz constant and the diameter of 2, but is independent of .
Proof. To prove this result we need to prove that condition (30) is equivalent to da = 0. Fist, we
see that (30) implies (27). To see that, if we take g = O B forsome g€ C*_ .. (C") in (30). Itis clear
that g € kerd. By (30) and the fact 8 x 8 € kerd, we see that

<a,5*ﬁ>¢n=f a/\*(é*ﬁ)z(—l)f””“f aAO(*p) =
Q

pn+l(

forany f € CP o +1(C™), where we used the equality x(xa) = (=1)P*"a for u = dxfeC™  (Ch).

This implies that da = 0 in the distribution sense in C". _
If O has Lipschitz boundary, C;l"ip,l(Q) is dense in dom 9 in the graph norm. This follows

pn+1(

essentially from Friedrichs lemma (see [21, Proposition 1.2.3]). From the definition of 5*, one
o " z
obtains that x& € Domd and 8 (xa) = 0. For any g € Ln pun— q(Q) Nkerd, using Theorem 28

(since 1 < g < n), there exist u € Ln pn—q— 1(€) such that ou= g in Q. This implies that

f grhna=(xa,g) = (*a,5u> = (5* *a,u) =0,
Q

forany g e 12 Q)N kerd. Thus « satisfies (30). Thus the proof follows. O

n—-p,n—q

As Proposition 3.4 in [37], we prove the following result:

Lemma 30. LetQ € C" be a bounded q-pseudoconvex domain with Lipschitz boundary bQ and
let1 < g < n. The set of 0-closed forms in L?,y ¢(€" with support in Q is dense in the set of 0-closed

forms in Wy, (C") with support in Q.

Proof. By this we mean that if f € W, (C") with f is supported in Qand d f =0on Q, one
can construct a sequence f, € p’q(C”) w1th support in Q such that f, — f in W, ng(C") and
df, — df in ng’q +1(C™). This is possible by the well-known method of Friedrichs (see [9] or [21]
or [6, Appendix D]) as follows: first assume that the domain Q is star-shaped and 0 € Q. Since Q is
Lipschitz, locally it is star-shaped. This can be done from the usual regularization by convolution.
We approximate f first by dilation componentwise. Let Q¢ = {(1+¢€)z | z € Q} and

r=f=),

1+e
where the dilation is performed for each component of f. Then Q € Q° and f€ € Wy, (Q).
Also 0f¢ — df in Wm +1(C”) Choose a function y(z) € C§°(C") as in Proposition 15. Extend

few,,@Cn kerd to be 0 outside Q. By regularizing f¢ componentwise as before, one can find
a family of fie) € W) ., (C") defined by

Jo(2) = f( * X5 = ff(w)mf( )de,

where 6, \ 0 as € \ 0 and d. is chosen sufﬁc1ently small. The convolution is performed on each
component of f. In the first integral defining f;, we can differentiate under the integral sign to
show that fj is C*(C™). From Young’s inequality for convolution, we have

Ifel <IfI.

Since f¢) — f uniformly when f € C§° (C™), a dense subset of W™ (C"), we have that
fio — f inW™(C") forevery fe W™(C™.
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Obviously, this implies that fi;) — f in W;f’q @M.
Let 6, be a sequence of small numbers with §, \ 0. For each §,, we define

Qs5,={z€Q|p(2) < -0}

Then Qs is a sequence of relatively compact open subsets of Q with union equal to Q. When

the boundary is Lipschitz, one can use a partition of unity {¢ V}f/vzl, with each {, supported in an

open set Uy such that U, N Q is star-shaped. We then regularize ¢, f in U, as before. Thus, there
exists a sequence ay € C’,(Q2) with compact support in Q such that @, — f and day, — 0 in

W™ (C"). Applying Theorem 28 to each da,, we obtain u, € Lf,y ¢(€") which is supported in Qand
5uv = 5av in C". Also using Theorem 28, we have

luylwm@q,) < Clloaylwmq,).

Letting h, = a, — u,, we have that h, € L%'q(C”), which is supported in Q, 5hv =0in C" and
hy, — f in the W™ (C") norm. Thus the proof follows. O

Theorem 31. LetQ € C" be a bounded q-pseudoconvex domain with Lipschitz boundary bQ) and
iet 1< g < n. Then, for —% <m< % and for every a € Wl;f’q (ch wllich is supported in Q such that
0a=0, for1<qg<n-1,onecanfinduec WrTq—l(Cn) such that 0u = « in the distribution sense
in C" with u supported in Q and

[lull wm € < Clledlwm, ey, (31
where C depends only on the Lipschitz constant and the diameter of 2, but is independent of a.

Proof. For m =0, Theorem 31 follows from Theorem 28. Since Q has Lipschitz boundary, there
is a bounded extension operator from W (Q) — W™(C") for 0 < m < % (see e.g. [11]). Let
ace Wl;’fq (C™ be the extension of a so that @&|g = a with

lallwmecry < Cllallwm ).

This is obviously true for m = 0. Notice that this is not true for m = % (see [28]).

We show that there is a bounded extension operator from W~"(Q) — W~ ""(C") for0 < m < %
by using the fact that 2(Q) is dense in W™ (Q). Thus, from (5), for any g € W~™(Q) and for
0<m< %,wehave

- [{a,gcn | [{a,8)al

< = llallw-m@).
gewo(@ I8llwmem ~ gewoq) 18llwm

Then forany a € W™ (Q), —% <m< %, @ can be identified as a distribution in W™ (C") by setting
a =0 outside Q.

Assume that a € WrTq (C™) be any d-closed form with support in Q and 0 < m < % Let u be
defined by (28). Using Theorem 27, one obtains

lullwm@qy < Cll * allwmgq) = Cllallwmq),

where C depends only on the Lipschitz constant and the diameter of Q, but is independent of a.

Setting u = 0 outside Q. It follows that u is in W™ (C") and u satisfies (31) for any a € W, (C")

with0< m< 3.
To show that 0u = a in C", one use an approximation argument of Lemma 30. Let o, — a in

W;,%(C") such that the support of a,, is in Q. Set

_{—* ONy_pn-g *@y if z€Q, 32)

Uy =
0 if zeC™\Q.
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Then, for each j, by applying Theorem 27 to obtain a (p, ¢ — 1)-form u, such that Ouy = a, inC".
From Lemma 30, u, converges to uin W;’fq_l (Q). Extending u to be zero outside Q, u satisfies (31)

and du = f in the distribution sense in C". This proves the theorem for 0 < m < 2

= S 2
Now, we prove the theorem for any d-closed a € W/ (C") with support in Q, -1 < m <0, by

g
pq
appr0x1mate a by d-closed forms a,, in L% ¢(€" such that ay has support in Q and ay — ain

Wy, (). Set u and uy as in (28) and (32). For each j, applying Theorem 28 to obtain a (p,q —1)-

form u, such that 6uv = a, in C". Using Theorem 27, one obtains
lullwm@) < Cl* allwmq) = Clallwnmq),

where C depends only on the Lipschitz constant and the diameter of Q, but is independent of
a. From Lemma 30, u, converges to u in W™ - 1(©). Extending u to be zero outside Q. Then u

satisfies (31) and du = a in the distribution sense in C”. Thus the proof follows. 0

As Proposition 3.5 in [37], we prove the following result:

Proposition 32. LetQ € C" be a bounded q- pseudoconvex domain with Lipschitz boundary bQ
and let1 < g < n. Then, foranya e W, ,n(C”), “l<me< —, such that « is supported in Q and

faAg 0 forany geC;? pO(Q)nkera (33)
Q

onecan findue W = 1(C™) such that du = a in the distribution sense in C" with u supported in
Q and
lullwmecny < Cllallwmcn, (34)
where C depends only on the Lipschitz constant and the diameter of Q, but is independent of «.
Proof. Leta € Wp’fn (C™) such that « is supported in Q and «a satisfies (33). Define u as in (28) as
follows
U=—* ONp_p g *@. (35)
Now, we extend u to C” by defining u = 0 in C" \ Q. From Theorem 28, u € W™ fi (€™ and
satisfies (34). From Lemma 30, we have CZEP‘O(Q) nkerd is dense in n—p,O(q:n) n ker(a). Thus,
Condition (33) im_plies that P,_p0 * @ =0.
To show that du = « in C", we use an approximation argument as before. Let @y — «a in
W), (C") such that the support of ay is in Q. Let
hy =ay—*Py_po*ay.

Using Lemma 30, h, converges to a in W, (Q). Each h, isin Lfm(Q) and satisfies

n p,0
f hyAg=0 forany ge L’ ,,(Q)nkerd.
Q
Define

= —*5N,,_,,,O*EV if ze Q,
Y 0 if zeC™M\Q.

Then, for each j, by applying Proposition 29 to obtain a (p, n — 1)-form u, such that du, = h, in
C" and

luy llwmcry < Cllhayllwmcny.
From Lemma 30, u, converges to u in W,;nn—l (Q). Extending u to be zero outside Q, u satisfies (34)

and du = a in the distribution sense in C". Thus the proof follows. d
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5. Proof of the main theorems

Following the construction in [37, Lemma 4.1]. Let B be a large ball in C” such that Q € B. Let
Q* = B\Qand Q™ = Q. In [19], a Martinelli-Bochner—Koppelman type kernel is constructed, and
in [36] it is shown that the transformation induced by this kernel satisfies a jump formula (10). As
aresult, there exists an integral kernel K, (, z) of type (p, q) in zand (n—p,n—q—1) in { satisfying
a Martinelli-Bochner—-Koppelman formula

/‘ K2 Aad) at(z) ifzeQt,
yZ =
ba 7 a(z) ifzeQ,

where at(z) = KTa(z) if z €_Q+ and a”(z) = K~ a(z) if z € Q (see [19, Section 2.3]). Let a €
L%,'q(bQ), 0<g<n-1,and dpa = 0 in bQ. If, we extend a* (z) and a~(z) to bQ by considering
non-tangential limits, we have the jump formula

(@™ (2)—a (2)) = a(z) on bQ, (36)
where 7 is defined in (9). Sir}ce a® and @™ have 1non-tangential boundary values in L?, then from
Lemma 4.11in [37], a* € Wp?’q(Q*) and a” € qu(Q) such that da* =0in Q* and da™ = 0in Q.
Furthermore, we have

at < Cllalpa, 37
l ”W% b lal (37)
and
a < Cllallpa, 38
™| %( ) lallpa (38)

where the constant C depends only on the Lipschitz constant of Q but is independent of a.
Since QF is a bounded Lipschitz domain, there exists a continuous linear operator E from
w™m(Q") into W™ (C"), for any m > 0, such that for any g € W™ (Q™),

Eglo+ =g
(see Stein [38, Chapter 6] or Grisvard [11]).

Extend a™ from Q to Ea* componentwise on B such that

Ea™ <Clla* )
I IIW%(B)\ I IIW%(m

Since da* =0 on Q*, we have 0Ea* =00n Q*. Set f =dEa* in Q and zero outside. Then df = 0
and f is supported in Q. Furthermore, we have

< + < + .
IIfIIW_%(Q) < CllEa IIW%(B) <Clla ”w%(m) (39)
When 1 < g < n—2, one defines
h= ~*0ONy pngxf if zeQ, (40)
0 if zeC"\Q.
It follows, from Theorem 31, that 94 = f and h is supported in Q.
Also from (16) and (39), one obtains

(41)

+
||h||W,%(Q) < Cllfllw,%(m <Cla ||W%(Q+).
Set
@*=FEa*-hin B.
Then @™ = a*—h=a® in Q*. Since f = 0Eat in Q, we have 0@* = 0 in B. Then from (41) and
Theorem 27, one obtains
la*|

W“% (Q))

<c( Ea* +1lh
Wi S I ||W1 : Al
<C

la™ 1
Wz (QF)
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for some constant C independent of a. Thus, for 1 < g < n—2, one obtains

la* ”w*%(s) <Cla®| 42)

W%(m)'

When ¢ = n— 1, notice that da~ = 0 in Q. By using the jump formula (10), for every ¢ €

G po (Q) nkerd, one obtains

fgf/\¢:f95(Ea+A¢)
=thK;;a/\(p
:beKga/\¢+fmaA¢>
=f95a‘/\¢>+fma/\<p
=0.

This implies that f = OEa™ satisfies Condition (33). Defining h as in (40) and using Proposition 32,
one obtains that 0k = f in C” and h is supported in Q. Repeating the arguments as before, thus
estimate (42) holds also for g = n—1. Thus, for 1 < g < n -1, one obtains
~+ < + .
la IIW,%(B) <Cla "W%(m)
Then, from (37) and for 1 < g < n—1, one obtains

la* IIW_%(B) < Cleallpo. (43)

Since a satisfies (36) and da* = 0in Q* and da~ = 0in Q, then d,a = 0 in bQ. Let
u=u"—u" on bQ.
First we solve du™ = a* on Q*. To do that, we use the canonical solution operator to define
ut =0 NBat.
Then du™ = @* = 0 in B. Using the interiolr regularity for N5, u* gains a derivative on compact

subsets of B, so u* has components in Wz (bQ) ona neighborhood of Q. From (43), we have for
any ¢ € 2(B) such that ¢ =1 in a neighborhood of Q,

+ < + <
Eu IIW%(B)\CIIOL IIW,%(B)\CIIaIIhQ, (44)

for some constant C independent of a. Restricting u* to bQ, using (44) and the trace theorem
again, one obtains

Tl < Cliéa” <C ) 45
lu"lpo < CliSa ”w%ua) lellpo (45)

for some constant C independent of a.
To solve 0u~ = a~ on Q, one defines

u = 5* N%a~.
Then du~ = a". It follows from (38) and Theorem 27 that
- < - <
170, g SClaTly o < Clalbg

for some constant C independent of a.
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Since u~ satisfies a system of elliptic equations, it can be treated like harmonic functions.
Thus 1~ has boundary value in L2 (bQ). Restricting 1~ to b, using the trace theorem for smooth
domains (see [22]), we have

lu llpo < Cllu IIW%(Q)écllalle- (46)

Then Ebu = v on bQ. Also from (45) and (46), we have

lullpo < Cllallpo

for some constant C independent of a. Thus the proof of Theorem 1 follows.

Now, we prove Theorems 2 and 3. The proof of (i) in Theorem 2 follows directly from the main
theorem and Theorem 1.1.1 in [21]. To prove (ii) in Theorem 2, we need to claim that, for all
0S<psnl<gsn-2,

76 (bQ) = kerd, nkerd, = {0}. 47)
To prove (47), let a € Jff’q(bQ) = ker5;J N keréz. Then a = éhu for some u € Li,q_l(bﬂ) by the

—*
main theorem. Since «a € kerd,,, then

(@, @) po, = Bpt, @) poy = (1,0 x) py = 0.

We have 7} (bQ) = {0}.
From Theorem 2, t}lg range of d;,, denoted by Zangd,, is closed in every degree. Then, one
obtains kerd, = Zang0d,, and the following orthogonal decomposition:

Li'q(bQ) =kerdy, @ ,%anggz = %ang5z ® .%"angaz.
Repeating the arguments of Theorem 8.4.10 in [6], one can prove that for every a € Domadj, N
Domd,,
lal3g < C(18paldn + 135al)

= C{Upa, @) po

< Clbpalllallpa,
ie.,

lallpa < ClUpallpa- (48)

Since [, is a linear closed densely defined operator, then, from Theorem 1.1.1 in [21], Zangl],
is closed. Thus, from (1.1.1) in [21] and the fact that [, is self adjoint, we have the Hodge
decomposition

12 ,(bQ) = Zang[ly ® 7} (bQ) = 3,3, Dom (]}, 8,3, Dom .
Since [y, is one to one on Dom[];, from (48), then there exists a unique bounded inverse operator
Ny, : Zang[dj, — DomO, n ()7 (b)) *

such that Np[pa = a on Dom[];,. We can write N[, = I on Dom[l, N (Jflf’q(bﬂ))J-. From the
definition of N}, extend Nj, to Li,yq(bQ) to obtain (Jy N, = I on Lr‘,;,,q(bQ). Thus N}, satisfies (i)
and (ii). . . . . e —x
To show that 0, N, = N0, on Domd,,. By using (ii), we have d,a = 0,0,0,Npa, for a €
Doméz. Thus
Nbgza = NbézabEZNba = Nb(ézgh +5b5;)52Nba = EZNb(X.

A similar arguments shows that 9N}, = N3, on Doma,,. Thus the proof of Theorem 3 follows.
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