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1. Introduction

In combinatorics, if a convex polytope equals the convex hull of its integer points, we say that it is
a lattice polytope. Studying lattice polytopes is important because of their connections in many
other domains. For instance, in mathematical optimization, if a system of linear inequalities
defines a polytope, then we can use linear programming to solve integer programming problems
for this system (see [1]). In algebraic geometry, lattice polytopes are used to study projective toric
varieties (see [4, 7]). The Newton polytope is a lattice polytope associated with a polynomial: it is
the convex hull of exponent vectors. The Newton polytope is a central object in tropical geometry
(see [9]), and they are used to characterizing Grobner bases (see [22]).
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Lattice polytopes are studied by Ehrhart polynomials (see [6]). Important properties of Ehrhart
polynomials such as unimodality and log-concavity are related to the integer decomposition
property (IDP) of the lattice polytope (see [3,13,15]). In [2], the authors studied the Newton poly-
tope of inflated symmetric Grothendieck polynomials. The saturated property (SNP) of inflated
symmetric Grothendieck polynomials in [2] generalizes the SNP of symmetric Grothendieck
polynomials in [5]. The SNP of the inflated symmetric Grothendieck polynomials is an impor-
tant point to derive the IDP of their Newton polytope.

In this paper, we introduce a general class of symmetric polynomials that has SNP with New-
ton polytope has IDP (see Theorem 7 and Corollary 8). Our class covers symmetric polynomi-
als in [2, 5, 11, 12]: symmetric Grothendieck polynomials, inflated symmetric Grothendieck poly-
nomials, Stembridge’s symmetric polynomials associated with totally nonnegative matrices, cy-
cle index polynomials, Reutenauer’s symmetric polynomials, Schur P-polynomials and Schur Q-
polynomials, Stanley’s symmetric polynomials, chromatic symmetric polynomials of co-bipartite
graphs, indifference graphs of Dyck paths, incomparability graphs of (3+1)-free posets. It also
covers other symmetric polynomials, for instance, dual Grothendieck polynomials in [10].
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2. Newton polytope

A polytope P in Rm is the convex hull Conv(v1, . . . , vk ) of finite many points v1, . . . , vk ∈ Rm . The
vertex set of P is the minimal set V in Rm such that P = Conv(V ). Algebraically, a point v ∈P is a
vertex if, v = t w + (1− t )u for some w,u ∈P , t ∈ (0,1) implies w = u = v . We say that P is a lattice
polytope if V is a subset of Zm .

Example 1. The convex hull P of twelve points in R3 below is a lattice polytope.

(3,1,0), (3,0,1), (1,0,3), (0,1,3), (0,3,1), (1,3,0),

(2,2,0), (2,0,2), (0,2,2),

(2,1,1), (1,1,2), (1,2,1).

The permutations of (3,1,0) are vertices of the polytope P . In the picture below, P is the blue
hexagon.
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Let P be a lattice polytope. For a positive integer t , let tP = {t v | v ∈ P }. We say that P has
integer decomposition property (IDP) if, for any positive integer t and p ∈ tP ∩Zm , there are t
points v1, . . . , vt ∈P ∩Zm such that p = v1 +·· ·+ vt .

Example 2. Let P be the lattice polytope in Example 1. It is known that P has IDP ([2,
Proposition 11]). For instance, 3P is the convex hull of six points

(9,3,0), (9,0,3), (3,0,9), (0,3,9), (0,9,3), (3,9,0).

We see that (9,2,1) ∈ 3P ∩Z3 and is the sum of three points in P ∩Z3.

(9,2,1) = (3,1,0)+ (3,1,0)+ (3,0,1).

Example 3. Let G be convex hull of four points

(0,0,0), (1,0,0), (0,0,1), (1,2,1).

The elements in G ∩Z3 are

(0,0,0), (1,0,0), (0,0,1), (1,2,1).

We have (1,1,1) ∈ 2G ∩Z3, but it can not be written as a sum of two points in G ∩Z3. So G does
not have IDP.

Let f (x) =�
α∈Zm

≥0
cαxα ∈C[x1, . . . , xm]. The support of f is defined by

Supp( f ) = {α ∈Zm
≥0 | cα �= 0}.

The Newton polytope of f is defined by

Newton( f ) = Conv(Supp( f )).

We say that f has satured Newton polytope (SNP) if Newton( f )∩Zm = Supp( f ).

Example 4. Let f (x1, x2, x3) be the polynomial

x(3,1,0) +x(3,0,1) +x(1,0,3) +x(0,1,3) +x(0,3,1) +x(1,3,0)

+x(2,2,0) +x(2,0,2) +x(0,2,2)

+2x(2,1,1) +2x(1,1,2) +2x(1,2,1).

The set Supp( f ) contains twelve points in Example 1. Then Newton( f ) is the polytope P in
Example 1. Since Newton( f )∩Z3 = Supp( f ), f has SNP.
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3. Schur polynomials

A partition with at most m parts is a sequence of weakly decreasing nonnegative integers λ =
(λ1, . . . ,λm). The size of partition λ is defined by |λ| = ∑m

i=1λi . Each partition λ is presented by a
Young diagram Y (λ) that is a collection of boxes such that the leftmost boxes of each row are in a
column, and the numbers of boxes from the top row to bottom row are λ1,λ2, . . . , respectively.
A semistandard Young tableau of shape λ with entries from {1, . . . ,m} is a filling of the Young
diagram Y (λ) by the ordered alphabet {1 < ·· · < m} such that the entries in each column are
strictly increasing from top to bottom, and the entries in each row are weakly increasing from left
to right. A Young tableau T is said to have content α= (α1,α2, . . . ) if αi is the number of entries i
in the tableau T . We write

xT = xα = xα1
1 xα2

2 . . . .

For each partition λ with at most m parts, the Schur polynomial sλ(x1, . . . , xm) is defined as the
sum of xT , where T runs over the semistandard Young tableaux of shape λ with filling from
{1, . . . ,m}.



770 Duc-Khanh Nguyen, Nguyen Thi Ngoc Giao, Dang Tuan Hiep and Do Le Hai Thuy

Example 5. Vector (3,1,0) is a partition. The Young diagram of (3,1,0) is

The following filling is a semistandard tableau of shape (3,1,0) and content (1,2,1).

1 2 3

2

Schur polynomial s(3,1,0)(x1, x2, x3) is the polynomial f in Example 4.

4. Good symmetric polynomials

Let α and β be partitions with at most m parts. We say β is bigger than α and write β ≥ α if and
only ifβi ≥αi for all i . Ifα,β are partitions of the same size, we sayβ dominates α and writeβ⊵α

if
∑ j

i=1βi ≥∑ j
i=1αi for all j ≥ 1.

Example 6. (3,1,0) < (3,3,3) and (3,2,0)⊵ (3,1,1).

Let F (x1, . . . , xm) be a linear combination of Schur polynomials associated to partitions with at
most m parts. We can collect Schur polynomials appearing in F associated with partitions of the
same size to a bracket. We say that F is good if it satisfies the following conditions:

(a) The support of each bracket equals the union of supports of its Schur elements.
(b) Suppose that there are l +1 brackets in condition (a). In each bracket, there is a unique

⊵-maximum partition. These ⊵-maximum partitions have a form

α=λ0 < ·· · <λl =β, (1)

where α ≤ β are fixed partitions and for each i > 0, λi is obtained from λi−1 by adding
a box in the northmost row of λi−1 such that the addition gives a Young diagram,
α<λi ≤β.

Theorem 7. Let F be a good linear combination of Schur polynomials. Then F has SNP and
Newton(F ) has IDP.

Corollary 8. Let F be a linear combination of Schur polynomials such that the condition (a) is
replaced by (a′) or the condition (b) is replaced by (b′) below:

(a′) any two Schur polynomials in the same bracket of F have the same sign,
(b′) there exists partitions λ, λ̂ so that sµ appears in F if and only if λ≤µ≤ λ̂.

Then F is a good polynomial. In particular, F has SNP and Newton(F ) has IDP.

Proof. The condition (a′), (b′) are particular cases of condition (a), (b), respectively. Moreover,
the partitions α,β in (b′) are λ, λ̂, respectively. □

Example 9. Let F (x1, x2, x3) be

s(3,1,0) − (3s(3,2,0) +6s(3,1,1))+ (3s3,3,0 +18s(3,2,1))− (18s(3,3,1) +4s(3,2,2))+44s(3,3,2) −55s(3,3,3).

Schur polynomials in the same bracket have the same sign. The ⊵-maximum partitions λi for
i = 0, . . . ,5 chosen from brackets have form

α= (3,1,0) < (3,2,0) < (3,3,0) < (3,3,1) < (3,3,2) < (3,3,3) =β.

Hence, F is a good symmetric polynomial. Newton(F ) is the convex hull of six different color
polygons in the picture below. Each polygon is the Newton polytope of each bracket. In fact,
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F is the inflated symmetric Grothendieck polynomial G2,(3,1,0) in [2]. Hence, F has SNP and
Newton(F ) has IDP by [2, Proposition 21, Theorem 27].
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The following examples tell us that when Theorem 7 does not apply, we may not have a definite
affirmation of SNP and IDP.

Example 10. When the condition (a) fails, for instance:

• Let F (x1, x2, x3) be s(3,1,0)− s(2,2,0). Then F does not have SN P because (2,2,0) �∈ Supp(F ),
but Newton(F ) = Newton(s(3,1,0)) still has IDP.

When adding blocks to α in a wrong order in (b), for instance:

• Let chooseα= (3,1,0) < (3,1,1) < (3,2,1) =β and let F (x1, x2, x3) be s(3,1,0)+s(3,1,1)+s(3,2,1).
Then F has SN P .

• Let choose α = (6,4,0) < (6,4,1) < (6,4,2) < (6,4,3) < (6,5,3) < (6,6,3) = β and let
F (x1, x2, x3) be s(6,4,0)+s(6,4,1)+s(6,4,2)+s(6,4,3)+s(6,5,3)+s(6,6,3). Since (6,5,2) ∈ Newton(F )∩
Z3 \ Supp( f ), then F does not has SN P .

We are not sure if there exists a symmetric polynomial that has SNP, but its Newton polytope does
not have IDP.

We need the following facts to prove Theorem 7.

Proposition 11 ([14, Proposition 2.5]). Letα,β be partitions of the same size. Then, Newton(sα) ⊆
Newton(sβ) if and only if α�β.

The following examples tell us that when Theorem 7 does not apply, we may not have a definite
affirmation of SNP and IDP.

Example 10. When the condition (a) fails, for instance:

• Let F (x1, x2, x3) be s(3,1,0) − s(2,2,0). Then F does not have SN P because (2,2,0) ̸∈ Supp(F ),
but Newton(F ) = Newton(s(3,1,0)) still has IDP.

When adding blocks to α in a wrong order in (b), for instance:

• Let chooseα= (3,1,0) < (3,1,1) < (3,2,1) =β and let F (x1, x2, x3) be s(3,1,0)+s(3,1,1)+s(3,2,1).
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• Let choose α = (6,4,0) < (6,4,1) < (6,4,2) < (6,4,3) < (6,5,3) < (6,6,3) = β and let
F (x1, x2, x3) be s(6,4,0)+s(6,4,1)+s(6,4,2)+s(6,4,3)+s(6,5,3)+s(6,6,3). Since (6,5,2) ∈ Newton(F )∩
Z3 \ Supp( f ), then F does not has SN P .

We are not sure if there exists a symmetric polynomial that has SNP, but its Newton polytope does
not have IDP.

We need the following facts to prove Theorem 7.

Proposition 11 ([14, Proposition 2.5]). Letα,β be partitions of the same size. Then, Newton(sα) ⊆
Newton(sβ) if and only if α⊴β.

Lemma 12 ([5, Theorem 0.1]). Let α be a partition with at most m parts. Then sα has SNP with
Newton polytope being the convex hull of the Sm-orbit of α.

Proof of Theorem 7. We first prove that F has SNP.
We use the trick from [5].

(1) Let F =∑
µCµsµ with Cµ ̸= 0. By condition (a) of F , we have

Supp(F ) =⋃
µ

Supp(sµ). (2)

Then

Newton(F ) = Conv

(⋃
µ

Supp(sµ)

)
. (3)
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Let α = λ0 < λ1 < ·· · < λl = β be the ⊵-maximum partitions in condition (b) of F . By
Proposition 11, the right-hand side of (2) is⋃

µ
Supp(sµ) =

l⋃
i=0

Supp(sλi ). (4)

Therefore, by (2), (4),

Supp(F ) =
l⋃

i=0
Supp(sλi ). (5)

By Proposition 11,

Conv(Supp(sµ)) = Newton(sµ) ⊆ Newton(sλi ) = Conv(Supp(sλi ))

for some i . It implies that the right-hand side of (3) is

Conv

(⋃
µ

Supp(sµ)

)
= Conv

(
l⋃

i=0
Newton(sλi )

)
. (6)

Hence by (3), (6), we have

Newton(F ) = Conv

(
l⋃

i=0
Newton(sλi )

)
. (7)

(2) Let p be a point in Newton(F ) ∩Zm . By (7), p has form p = ∑l
i=0 ci v i for some v i ∈

Newton(sλi ), and some ci ∈ R≥0,
∑l

i=1 ci = 1. We see that v i is not a partition in general.
However, if we denote the sum of its coordinates by |v i |, then |v i | = |λi |. Then |p| =∑l

i=0 ci |λi | is between |λ0| and |λl |, because of (1). Thus |p| = |λ j | for some j ∈ [0, l ],
because λi is obtained from λi−1 by adding a box. Let p be

∑l
i=0 ciλ

i and p↓ be the
rearrangement of the components of p into decreasing order. It was proven in [5] that
p↓ ⊴ (p)↓ (Claim B) and (p)↓ ⊴λ j (Claim C). So p↓ ⊴λ j . By Lemma 12, Proposition 11, p
is a point in

Newton(sp↓ )∩Zm ⊆ Newton(sλ j )∩Zm = Supp(sλ j ) ⊆ Supp(F ). (8)

Therefore we conclude that F has SNP.

Now we show that Newton(F ) has IDP.
We use the trick from [2].

(1) We have proven that F has SNP. Then by (5), Lemma 12, we have

Newton(F )∩Zm = Supp(F ) =
l⋃

i=0
Supp(sλi ) =

l⋃
i=0

Newton(sλi )∩Zm . (9)

(2) Suppose that α = (α1, . . . ,αm) and β = (β1, . . . ,βm). For i = 1, . . . ,m − 1, set λ(i ) =
(β1, . . . ,βi ,αi+1, . . . ,αm). Set λ(0) = α, λ(m) = β. Then α = λ(0) < ·· · < λ(m) = β is a sub-
chain of (1). We have

Newton(F ) = Conv

(
m⋃

i=0
Newton(sλ(i ) )

)
. (10)

Indeed, Newton(F ) is the convex hull of its vertex set. We can get (10) from (7) by showing
that a partition λ j not of form λ(i ) is not a vertex of Newton(F ). It is trivial because
λ j = 1

2 (λ j−1 +λ j+1).
(3) For a positive integer t , we construct a chain of form (1)

tα=Λ0 < ·· · <ΛL = tβ. (11)
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Set Ft = ∑L
i=0 sΛi . Then Ft is a good linear combination of Schur polynomials and Λ(i ) =

tλ(i ) for each i = 0, . . . ,m. By (10), we have

Newton(Ft ) = Conv

(
m⋃

i=0
Newton(sΛ(i ) )

)

= tConv

(
m⋃

i=0
Newton(sλ(i ) )

)
= t Newton(F ).

(12)

(4) Let p a point in t Newton(F )∩Zm . By (12), p is a point in Newton(Ft )∩Z. Since Ft has SNP,
by (9), it is a point in Newton(sΛi )∩Z for someΛi in (11). Hence, p is the content of some
semistandard tableau T of shape Λi with filling from {1, . . . ,m}. For j = 1, . . . , t , let T j be
the semistandard tableau obtained by taking j ′-th column of T for j ′ ≡ j mod t . Let θ( j )
be the shape of tableau T j . Let v j be the content of tableau T j . Then p = v1 +·· ·+ vt . We
also have α≤ θ( j ) ≤ β. So there is a unique partition λk in chain (1) such that θ( j ) ⊴ λk .
Then by Proposition 11, v j is a point in

Newton(sθ( j ))∩Zm ⊆ Newton(sλk )∩Zm .

So by (9), v j is a point of Newton(F )∩Zm . Therefore we conclude that Newton(F ) has
IDP. □

Example 13. In Example 9, the subchain λ(i ) for i = 0, . . . ,3 in the proof of Theorem 7 is

α= (3,1,0) = (3,1,0) < (3,3,0) < (3,3,3) =β.

In this case, λ(0) = λ(1). The vertex set of Newton(F ) is the union of S3-orbits of partitions
(3,1,0), (3,3,0), (3,3,3).
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that a partition λ j not of form λ(i ) is not a vertex of Newton(F ). It is trivial because
λ j = 1

2 (λ j−1 +λ j+1).
3. For a positive integer t , we construct a chain of form (1)

tα=Λ0 < ·· · <ΛL = tβ. (11)

Set Ft =
�L

i=0 sΛi . Then Ft is a good linear combination of Schur polynomials and Λ(i ) =
tλ(i ) for each i = 0, . . . ,m. By (10), we have

Newton(Ft ) = Conv(
m�

i=0
Newton(sΛ(i ) ))

= tConv(
m�

i=0
Newton(sλ(i ) ))

= t Newton(F ).

(12)

4. Let p a point in t Newton(F )∩Zm . By (12), p is a point in Newton(Ft )∩Z. Since Ft has SNP,
by (9), it is a point in Newton(sΛi )∩Z for someΛi in (11). Hence, p is the content of some
semistandard tableau T of shape Λi with filling from {1, . . . ,m}. For j = 1, . . . , t , let T j be
the semistandard tableau obtained by taking j �-th column of T for j � ≡ j mod t . Let θ( j )
be the shape of tableau T j . Let v j be the content of tableau T j . Then p = v1 +·· ·+ vt . We
also have α≤ θ( j ) ≤ β. So there is a unique partition λk in chain (1) such that θ( j ) � λk .
Then by Proposition 11, v j is a point in

Newton(sθ( j ))∩Zm ⊆ Newton(sλk )∩Zm .

So by (9), v j is a point of Newton(F )∩Zm . Therefore we conclude that Newton(F ) has
IDP.

�

Example 13. In Example 9, the subchain λ(i ) for i = 0, . . . ,3 in the proof of Theorem 7 is

α= (3,1,0) = (3,1,0) < (3,3,0) < (3,3,3) =β.

In this case, λ(0) = λ(1). The vertex set of Newton(F ) is the union of S3-orbits of partitions
(3,1,0), (3,3,0), (3,3,3).

O

e1

e2

e3

(3,1,0)

(3,0,1)

(1,0,3)

(0,1,3)

(0,3,1)

(1,3,0)

(3,0,3)

(0,3,3)

(3,3,0)

(3,3,3)

5. Applications

Theorem 7, Corollary 8 cover the following cases. Known results are:

• SNP and IDP of inflated symmetric Grothendieck polynomials Gh,λ (see [5, Theorem 0.1],
[2, Proposition 21, Theorem 27]). Indeed, by definition

Gh,λ =
∑
µ

(−1)|µ/λ|bh,λµsµ,

where bh,λµ is the number of fillings satisfying certain conditions. So, all Schur elements
in the same bracket with sµ have the same sign (−1)|µ/λ|, and then the condition (a)
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is valid. By [2, Lemma 18(c)], bh,λµ is nonzero if and only if λ ≤ µ ≤ λ(N ). Hence, by
Corollary 8, the condition (b) is valid with α=λ and β=λ(N ).

• SNP and IDP of the following symmetric polynomials in [12]: Stembridge’s symmet-
ric polynomials associated with totally nonnegative matrices (Theorem 2.28), cycle in-
dex polynomials (Theorem 2.30), Reutenauer’s symmetric polynomials (Theorem 2.32),
Schur P-polynomials and Schur Q-polynomials (Proposition 3.5), Stanley’s symmetric
polynomials (Theorem 5.8). They are particular cases of [12, Prositions 2.5(III)]. The
proposition considers homogenous symmetric polynomials of degree d

f = ∑
|µ|=d

cµsµ

with suppose that there exists λ so that cλ ̸= 0, cµ ̸= 0 only if µ⊴ λ, and cµ ≥ 0 for all µ.
So, condition (a) is valid. The condition (b) is valid with α = β = λ. More precisely, the
Schur expansion of those polynomials have nonnegative coefficients by [21], [18, p. 396],
[12, p. 12], [20], [16, Theorems 3.2, 4.1], respectively. The condition (b) is valid with α=β

and they can be found in the proofs of corresponding theorems in [12].
• SNP and IDP of the following symmetric polynomials in [11]: chromatic symmet-

ric polynomials of co-bipartite graphs (Proposition 3.1), indifference graphs of Dyck
paths (Proposition 4.1), incomparability graphs of (3+1)-free posets (Theorem 5.7). They
are also particular cases of [12, Proposition 2.5(III)] above. More precisely, the Schur-
expansion of those polynomials have nonnegative coefficients by [17, Corollary 3.6], [19],
[8], respectively. Hence, condition (a) is valid. The condition (b) is valid with α = β and
they are λ(G),λg r (d),λg r (P ), respectively.

Unknown results are:

• SNP and IDP of dual Grothendieck polynomials gλ in [10]. Indeed, [10, Theorem 9.8]
states that

gλ =
∑
µ

f µ
λ

sµ,

where f µ
λ

is the number of semistandard tableaux of the skew shape λ/µ with entries
of the i -th row lie in [1, i − 1]. So, all nonzero coefficients f µ

λ
have same sign, and then

the condition (a) is valid. Moreover, f µ
λ

is nonzero if and only if (λ1) ≤ µ ≤ λ. Hence, by
Corollary 8, the condition (b) is valid with α= (λ1) and β=λ.

Remark 14. Though Theorem 7 covers [2, Theorem 27], inside the proofs we do not need to
choose Ft as a generalization of Gth,tλ. The key point is to choose a set-up for Ft so that it has
SNP and Newton(Ft ) = t Newton(F ) for any t . For this purpose, there are many choices for Ft , for
instance

∑L
i=0 sΛi , or

∑L
i=0(−1)i sΛi , or Gth,tλ when F = Gh,λ, etc. Our first choice Ft = ∑L

i=0 sΛi is
the simplest.
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