
Comptes Rendus

Mathématique

Mohammad Al Haj and Régis Monneau

The velocity diagram for traveling waves

Volume 361 (2023), p. 777-782

Published online: 11 May 2023

https://doi.org/10.5802/crmath.433

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.433
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2023, Vol. 361, p. 777-782
https://doi.org/10.5802/crmath.433

Partial differential equations / Équations aux dérivées partielles
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Abstract. In this Note, we consider traveling waves in a reaction-diffusion equation in dimension one.
Motivated by the motion of dislocations in crystals, we introduce an additive parameter σ in the reaction
term, which may be interpreted as an exterior force applied on the crystal. Under certain natural assumptions
and for every value of σ ∈ [σ−,σ+], we show the existence of traveling waves φ of velocity c. The range
σ ∈ (σ−,σ+) corresponds to bistable cases with a unique velocity c = c(σ). On the contrary, the case σ=σ+ is
positively monostable with a branch of velocities c ≥ c+, while the case σ = σ− is negatively monostable
with a branch of velocities c ≤ c−. This study gives rise to a natural connection between bistable cases
and monostable cases in a single velocity diagram. We also give some qualitative properties of the velocity
function σ 7→ c(σ).

Résumé. Dans cette Note, nous considérons des ondes progressives pour une équation de réaction-diffusion
en dimension un. Motivés par le mouvement de dislocations dans les cristaux, nous introduisons un para-
mètre additif σ dans le terme de réaction, qui peut être interprété comme une force extérieure appliquée au
cristal. Sous certaines hypothèses naturelles et pour chaque valeur de σ ∈ [σ−,σ+], nous montrons l’exis-
tence d’ondes progressives φ se déplaçant à la vitesse c. Le domaine σ ∈ (σ−,σ+) correspond aux cas bis-
tables avec une unique vitesse c = c(σ). Au contraire, le cas σ = σ+ est positivement monostable avec une
branche de vitesses c ≥ c+, et le cas σ=σ− est négativement monostable avec une branche de vitesse c ≤ c−.
Cette étude met en évidence un lien naturel entre les cas bistables et les cas monostables au sein d’un unique
diagramme en vitesse. On donne aussi des propriétés qualitatives de la fonction vitesse σ 7→ c(σ).

Manuscript received 2 August 2022, revised and accepted 28 September 2022.

1. Introduction

In this Note, we consider particular solutions u(t , x) to the standard reaction-diffusion equation
with an additional exterior parameter σ ∈R

u(t , x) =φ(x + ct ) satisfying ut = uxx + f (u)+σ for (t , x) ∈R×R (1)

where φ is a traveling wave moving with velocity c. Such a model is for instance inspired from
the dynamics of a dislocation defect in a crystal where σ is the exterior shear stress applied on
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the crystal. From this point of view, equation (1) can be seen as an approximation of the fully
overdamped Frenkel–Kontorova model (see [8]). We assume that the function f satisfies

(Regularity) f is Lipschitz-continuous

(Periodicity) f (v +1) = f (v) for all v ∈R
(Decreasing) f decreasing on (θ,1) for θ ∈ (0,1)

(Stricly increasing) f ′(v) ≥ g (v) > 0
for almost every v ∈ (0,θ) with g : (0,θ) →R continuous

(2)

The graph of f is represented on Figure 1.

0 θ 1

Figure 1. Nonlinearity f

Setting
σ+ :=−min f , σ− :=−max f

we define for each σ ∈ [σ−,σ+], the unique roots mσ and bσ solutions of

f (mσ)+σ= 0, mσ ∈ [θ−1,0] and f (bσ)+σ= 0, bσ ∈ [0,θ]

Here the nonlinearity f σ := f +σ falls in one the following three cases
bistable case σ ∈ (σ−,σ+), f σ < 0 on (mσ,bσ) and f σ > 0 on (bσ,1+mσ)

positive monostable case σ=σ+, f σ
+ > 0 on (mσ+ ,1+mσ+ ) with bσ+ = mσ+ = 0

negative monostable case σ=σ−, f σ
− < 0 on (mσ− ,1+mσ− ) with bσ− = 1+mσ− = θ

Our goal is to connect bistable and monostable types as the parameter σ varies, as it is very
natural from the point of view of the motion of a dislocation defect under the exterior force σ. To
this end, we now consider traveling wavesφ of velocity c associated to the parameterσ ∈ [σ−,σ+],
solutions of

cφ′ =φ′′+ f (φ)+σ on R with φ(−∞) = mσ, φ(+∞) = 1+mσ (3)

Recall here some known results. When f ∈ C 1(R) with f ′(mσ) < 0, the uniqueness of c is known
in [6] in the bistable case. In the positive monostable case, when f ∈C 1([0,1]) with f ′(0) > 0, the
existence of a branch of velocities c ≥ c+ is also known (see [3, 7, 9]).

Then our result is the following velocity diagram.

Theorem 1 (Velocity diagram). Assume that f satisfies (2).

(i) (Bistable case σ ∈ (σ−,σ+)) For every σ ∈ (σ−,σ+), there exists a unique velocity c = c(σ)
and a unique (up to translations) traveling waveφ solution of (3). Moreoverφ is increasing
and the map σ 7→ c(σ) is continuous increasing for σ ∈ (σ−,σ+) with finite limits

c− := lim
σ−<σ→σ− c(σ), c+ := lim

σ+>σ→σ+ c(σ)

There exists also δ> 0 such that 0 < δ≤ c(σ2)−c(σ1)
σ2−σ1

for all σ1,σ2 ∈ (σ−,σ+) with σ1 ̸=σ2.
If moreover f ∈C 1,1(θ,1) with f ′ < 0 on (θ,1), then the mapσ 7→ c(σ) is locally Lipschitz-

continuous inside the interval (σ−,σ+).
(ii) (Positive monostable case σ = σ+) For every c ≥ c+, there exists a unique (up to transla-

tions) traveling wave φ solution of (3). Moreover φ is increasing. For all c < c+, there are
no traveling waves solutions of (3).
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(iii) (Negative monostable case σ = σ−) For every c ≤ c−, there exists a unique (up to transla-
tions) traveling wave φ solution of (3). Moreover φ is increasing. For all c > c−, there are
no traveling waves solutions of (3).

Figure 2. Schematic velocity diagram: the velocity function c(σ) with vertical branches at
σ=σ±.

The result of Theorem 1 is presented in the velocity diagram in Figure 2, and there are cases
where dc

dσ blows up at σ = σ± (see Remark 2). This result allows to understand the branch of
solutions c ≥ c+ in the positive monostable case as a sort of continuation of the increasing
velocity σ 7→ c(σ) for σ ∈ (σ−,σ+). This phenomenon is also related to the fact that for σ ∈
R \ [σ−,σ+], there are no roots of f +σ = 0 and then no possible traveling waves. We see that
Theorem 1 gives the whole picture of the velocity diagram which connects bistable to monostable
cases.

Let us also mention that part of the results stated in Theorem 1 stays true (loosing possibly
the strict monotonicity of the velocity function σ 7→ c(σ) and loosing possibly the uniqueness of
the profile (up to translations)) for traveling waves of discrete reaction-diffusion equations of the
type

u(t , x) =φ(x + ct ) satisfying ut = F (u(t , x + r0), . . . ,u(t , x + rN ))

where r0 = 0 and the ri ∈ R are discrete shifts for i = 1, . . . , N with N ≥ 1, under certain period-
icity and monotonicity assumptions on F (in order to insure a comparison principle, but pos-
sibly loosing the strong comparison principle) joint to the previous assumption (2) on f (v) :=
F (v, . . . , v). The results are given in [2].

2. Sketch of the proof of the theorem

The originality of this Note is probably more in the statement of the theorem than in the proof
itself. Part of the arguments of the proof are classical. Some of those arguments are for instance
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developed in [2] for discrete reaction-diffusion equations, and are simply adapted here. For those
reasons, we only indicate here the sketch of the proof of the theorem.

Step 1: existence and uniqueness for σ ∈ (σ−,σ+). A standard way to build a solution (c,φ) con-
sists to use the method of sub/supersolutions to build a solution on a large finite interval [−R,R]
and to adjust the velocity c in such a way that the transition arises in the middle of the interval for
instance, and finally to pass to the limit as R →+∞ (like in [4] for ignition type nonlinearities).
A different method is used in [1] and is more generally useful to get results on the velocity in the
case of degenerate equations without strong maximum principle. This method consists to solve
the cell problem for homogenization (similarly to what is done in [8]) finding solutions (λp ,hp )
with λp ∈R, associated to a fixed slope p > 0

λp h′
p = h′′

p + f (hp )+σ, hp

(
x + 1

p

)
= hp (x)+1, h′

p ≥ 0

and to define (c,φ) as a limit of (λp ,hp ) as p → 0 (similarly to what is done in [1, 2]). The
strict increasing property of assumption (2) on f insures that the root bσ is unstable, and then
that the limit profile φ does not split in two profiles, one in the range (mσ,bσ) and one in the
range (bσ,1+mσ). This insures that the profile φ is a true transition in the range (mσ,1+mσ).
The decreasing property of assumption (2) insures the comparison principle at infinity. This
allows to prove uniqueness of the velocity denoted c = c(σ). Using moreover the standard sliding
method [5] (based on the strong maximum principle), this allows to get uniqueness (up to
translations) and the monotonicity of the profile φ=:φσ.

Step 2: continuity and monotonicity of c(σ) for σ ∈ (σ−,σ+). The continuity of the map σ 7→
c(σ) follows from the uniqueness of the velocity. The fact that the maps σ 7→ mσ and σ 7→ bσ are
increasing, insures the comparison at infinity of the associated profiles for two values σ1 < σ2,
and this shows that the map σ 7→ c(σ) is nondecreasing. Moreover the strong comparison princi-
ple implies that the map σ 7→ c(σ) is increasing.

Step 3: vertical branch of solutions for large velocities c >> 1 for σ=σ+. Using the solution g
to the ODE g ′ = f (g ) +σ+ ≥ 0, say with g (0) = δ > 0, and using the Lipschitz regularity of f ,
we deduce that g ε(x) := g (εx) satisfies the supersolution inequality for all ε> 0

cεg ′
ε ≥ g ′′

ε + f (g ε)+σ+ with cε = 1

ε
+ε| f ′|L∞(R)

Using the fact that g
ε

:= δ is a subsolution on (0,+∞), we can then build a solution gε,δ on (0,+∞).
Up to translate gε,δ, we can pass to the limit δ→ 0 and get a solution φ := gε associated to the
velocity c := cε, which works for all velocities c ≥ 2

√| f ′|L∞(R).

Step 4: definition of c±. If (c,φ) is a solution for the parameter σ+, then we can compare it to a
solution of velocity c(σ) for σ ∈ (σ−,σ+), and get c(σ) ≤ c. This implies that limσ+>σ→σ+ c(σ) =:
c+ ≤ c. In particular from Step 3, we deduce that c+ < +∞, and that there are no solutions (c,φ)
with c < c+ for the parameter σ+. We get similar results for c−.

Step 5: full vertical branch of solutions for c ≥ c+. Using (c(σ),φσ) the solution given in Step 1
for σ ∈ (σ−,σ+), we can pass to the limit and get φσ→φ+ as σ→σ+, which is a traveling wave of
velocity c+ for σ=σ+. Then for every c ≥ c+, we see that (c,φ+) is a supersolution of the equation
for σ = σ+. Then using a construction as in Step 3, we get the existence of a solution (c,φ) for
σ = σ+, for each c ≥ c+. Finally the decreasing property of f in (2) implies the comparison
principle at x =+∞. Let us consider intervals (aδ,+∞) where φ>φ(aδ) = δ> 0. Using the sliding
method for all δ > 0 small enough with mσ+ = 0, we can easily deduce the monotonicity and
uniqueness of the profile φ (up to translations).
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Step 6: full vertical branch of solutions for c ≤ c−. Proceeding as in Step 5, we get a full branch
of solutions (c,φ) for all c ≤ c−, and no solutions for c > c−.

Step 7: bounds on dc
dσ . Recall that for any σ ∈ (σ−,σ+), we have c− ≤ c(σ) ≤ c+, and the interior

regularity theory for the elliptic equation satisfied by the profile φ=φσ gives a bound |φ′
σ|L∞(R) ≤

δ−1 uniformly in σ ∈ (σ−,σ+), for some δ > 0. Consider σ1,σ2 ∈ (σ−,σ+) with σ1 < σ2, and the
associated solutions (ci ,φi ) for i = 1,2 with ci = c(σi ), φi =φσi and mi = mσi .

Step 7.1: bound from below. We deduce that

c2φ
′
1 ≤φ′′

1 + f (φ1)+σ2 with c2 := c1 +δ(σ2 −σ1)

The comparison implies (up to an initial shift of the profiles) that φ2(x + c2t ) ≥ φ1(x + c2t ) and
then the fact that φ2(−∞) < φ1(+∞) implies that c2 ≥ c1 +δ(σ2 −σ1) which implies the bound
from below on dc

dσ .

Step 7.2: bound from above. For c = c(σ), let us consider the equation cζ′ = ζ′′+ f ′(φσ)ζ satisfied
by ζ := φ′

σ. Using the fact that f ′ < −µ < 0 in a neighborhood of mσ, we can introduce the roots

of λ2 − cλ−µ = 0 which are λ± := c±
p

c2+4µ
2 and show by comparison that ζ(y) ≤ ζ(x)eλ+(y−x)

for y ≤ x and ζ(x) small enough. This gives by integration for φσ(x) − mσ = ∫ x
−∞ dy ζ(y) that

φ′
σ ≥λ+(φσ−mσ) whereφσ−mσ is small enough (using for instance interior estimates for elliptic

equations). Now forσ1 <σ2, we setφ2 :=ψ+m2 withψ :=φ1−m1. Using the fact that f (m2+ψ)−
f (m2)−{

f (m1 +ψ)− f (m1)
}= ∫ 1

0 dt
∫ 1

0 ds
{

f ′′(tψ+m1 + s(m2 −m1))− f ′′(tψ+m1)
}·ψ(m2−m1)

and f ′(mσ) dmσ
dσ =−1 with f ′(mσ) ≤−µ< 0 and λ+ ≥ λ+ > 0 for σ ∈ [σ1,σ2], we get on an interval

(−∞,−R] where ψ is small enough

c+2φ
′
2 ≥φ

′′
2 + f (φ2)+σ2 on (−∞,−R], with c+2 := c1 +

{
| f ′′|L∞(R)

µλ+

}
(σ2 −σ1)

We get a similar inequality on [R,+∞) where 1−ψ is small enough, with some velocity c−2 . Using
Harnack inequality, we can show that there exists some KR > 0 such that φ′

1 ≥ (KR )−1 on [−R,R],
which implies

c0
2φ

′
2 ≥φ

′′
2 + f (φ2)+σ2 on [R,R], with c0

2 := c1 +KR

{
1+ | f ′|L∞(R)

µ

}
(σ2 −σ1)

Using the fact that all the constants can be taken uniformly forσ ∈ [σ1,σ2] ⊂⊂ [σ−,σ+], we deduce
that c2 ≤ max(c−2 ,c0

2,c+2 ) which implies the bound from above on dc
dσ . This ends the sketch of the

proof of the theorem. □

Remark 2. Choosing a normalization like for instance φσ(0) = θ, we can show that ψ := d
dσ (φσ−

mσ) formally satisfies an equation that we can multiply by e−cxφ′
σ(x) and integrate by parts to get

with I1 := ∫
R e−cxφ′2

σdx = ∫
R e−cx (φσ−mσ)( f (φσ)− f (mσ))dx and I2 = ∫

R e−cx
{

1− f ′(φσ)
f ′(mσ)

}
φ′
σdx,

the relation(
dc

dσ

)
· I1 = I2

with I2 :=
{

c
− f ′(mσ)

∫
R e−cx

{
f (φσ)− f (mσ)− (φσ−φσ(∓∞)) f ′(mσ)

}
dx if ± c > 0

1 if c = 0

When f ∈ C 1,1(θ,1) and f ′ < 0 on (θ,1), then we can justify the above computation at least at
every point of differentiability of c. This is the case for instance when we consider the 1-periodic
function f defined by f (v) = 1

2 −|v − 1
2 | for v ∈ [0,1]. Then θ = 1

2 and c+ = 2
√

f ′(0+). Moreover we
can then show that the integral I2 blows up much faster than I1 as σ→ σ+, which implies that
dc
dσ is not bounded as σ→ σ+ (and by symmetry also as σ→ σ−). For general nonlinearities f ,
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it would be interesting to refine the analysis on the behaviour of c at σ = σ± which is out of the
scope of this Note.
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