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Abstract. Let ρ be a symmetric measure of Lebesgue type, i.e.,

ρ = 1

2
(µ×δ0 +δ0 ×µ),

where the component measure µ is the Lebesgue measure supported on [t , t +1] for t ∈Q\{− 1
2 } and δ0 is the

Dirac measure at 0. We prove that ρ is a spectral measure if and only if t ∈ 1
2Z. In this case, L2(ρ) has a unique

orthonormal basis of the form {
e2πi (λx−λy) :λ ∈Λ0

}
,

where Λ0 is the spectrum of the Lebesgue measure supported on [−t −1,−t ]∪ [t , t +1]. Our result answers
some questions raised by Lai, Liu and Prince [JFA, 2021].
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1. Introduction

Letµ be a Borel probability measure onRn . We callµ a spectral measure if there exists a countable
discrete set Λ ⊂ Rn such that E(Λ) := {e2πi 〈λ,x〉 : λ ∈ Λ} forms an orthogonal basis for the Hilbert
space L2(µ), and the Λ is called the spectrum of µ. The research about spectral measures was
initiated by Fuglede [7], whose famous conjecture claimed thatΩ is a spectral set onRn if and only
ifΩ is a translational tile onRn . Although the conjecture is disproved in dimension three or higher
by Tao et al. [9, 13, 15], it is still an open problem in dimension 1 and 2. In 1998, Jorgensen and
Pedersen [8] found the first singular and non-atomic spectral measure (1/4-Cantor measure), and
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the research about spectral measures was developed toward the field of fractal by this discovery.
For the details and recent advances, one can refer to [2–4] and so on.

Besides spectral measures, people are also interested in looking for measures that admit
exponential frames (also called Fourier frames) and exponential Riesz bases [1, 5, 6, 14]. In
2018, Lev [12] studied the addition of two measures supported respectively on two orthogonal
subspaces embedded in the ambient space Rn and showed that these measures admit Fourier
frames. Recently, Lai, Liu and Prince [10] studied the Riesz bases and orthogonal bases for these
measures. In this paper, we continue the line of research into the spectrality of the addition
of measures supported on two orthogonal subspaces and extend some results of Lai, Liu and
Prince [10].

Recall that a Borel measure µ on R is continuous if µ({x}) = 0 for all x ∈ R. Let µ and ν be
two continuous Borel probability measures on R. We embed them into the x and y axes in R2

respectively. The additive space for µ and ν is the space L2(ρ), where ρ is the measure

ρ = 1

2
(µ×δ0 +δ0 ×ν), (1)

andδ0 is the Dirac measure at 0. We will refer to the compact support ofµ andν as the component
spaces of the measure ρ. If µ = ν, we say that ρ is symmetric. If 0 ∉ supp(µ)∩ supp(ν), we call ρ
non-overlapping (Here, supp(µ) denotes the compact support ofµ). Ifµ,ν are Lebesgue measures
supported on intervals of length one, we call ρ the additive space of Lebesgue type, the additive
space is defined as L2(ρ).

Recently, Lai, Liu and Prince [10] proved the following partial results.

Theorem A ([10, Theorem 1.3]). Let ρ be a symmetric measure of Lebesgue type, where the
component measure µ is the Lebesgue measure supported on [t , t +1] and −1/2 < t ≤ 0.

(1) If t = 0, then ρ is spectral and has a unique spectrum up to translations.
(2) If t =− 1

2 + 1
2a , where a > 1 is a positive integer, then ρ is not spectral.

The authors leave many questions in [10]. In this paper, we obtain a sufficient and necessary
condition for ρ to be spectral under the assumption that t ∈Q\ {− 1

2 }.

Theorem 1. Let ρ be a symmetric measure of Lebesgue type, where the component measure µ is
the Lebesgue measure supported on [t , t +1] and t ∈Q \ {− 1

2 }. Then ρ is a spectral measure if and
only if t ∈ 1

2Z. In this case, L2(ρ) has a unique orthonormal basis of the form{
e2πi (λx−λy) :λ ∈Λ0

}
,

whereΛ0 is the spectrum of the Lebesgue measure supported on [−t −1,−t ]∪ [t , t +1].

The proof depends on the analysis of the so called Orthogonality Equation. We firstly prove
that the spectrum of ρ is contained in a straight line if t ∈Q\{− 1

2 } (Proposition 8). Then we give an
interesting lemma about the Orthogonality Equation (Lemma 7) and extend a result about lower
Beurling density (Lemma 6). At last, we prove that ρ is not spectral if t ∈Q \ ( 1

2Z) by reduction to
absurdity. Furthermore, we construct the spectrum of ρ under the condition that t ∈ 1

2Z.
This paper is organized as follows. Section 1 is an introduction and we state our main result.

Section 2 presents some preliminary results. Section 3 is devoted to prove Theorem 1. We
conclude in Section 4 with some remarks and a conjecture.

2. Preliminaries

In this section, we introduce some preliminary definitions and basic results which are used in our
proof.
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Let ρ be a symmetric measure of Lebesgue type, i.e.,

ρ = 1

2
(µ×δ0 +δ0 ×µ),

where the component measure µ is the Lebesgue measure supported on [t , t + 1]. We study
exponential functions on additive spaces. Here exponential refers to functions mapping R2 →
T⊂C of the form

(x, y) → e2πi (ax+by),

where a,b ∈ R. We use ea,b as a shorthand for this function; similarly ea is the one-dimensional
function x → e2πi ax . With exponential functions, we have ea,b(x,0) = ea(x) and ea,b(0, y) = eb(y).
Hence 〈

ea,b ,eu,v
〉

L2(ρ) =
1

2
〈ea ,eu〉L2(µ) +

1

2
〈eb ,ev 〉L2(µ)

Note also that for ea,b , the x projection is ea , and the y projection is eb . If Λ ⊂ R2 and (a,b) ∈Λ,
then the x projection of (a,b) is a and the y projection is b.Λx is the set

Λx = {a ∈R : (a,b) ∈Λ for some b ∈R} ,

and similarly forΛy . We will use these observations frequently in the paper.
Let E(Λ) be an orthogonal set of exponential functions with exponent in Λ for L2(ρ) and

(a,b), (c,d) are any two distinct points ofΛ. Let (λ1,λ2) = (a,b)− (c,d), then λ1λ2 ̸= 0 and

eπi (λ1−λ2)(2t+1) sin(πλ1)

πλ1
=−sin(πλ2)

πλ2
. (2)

The above equation is also called Orthogonality Equation in [10]. As the right side is real, if
λ1,λ2 ∉Z, we obtain (λ1 −λ2)(2t +1) ∈Z. This fact will be used many times in this paper.

In the following, we give some useful results proved in [10].

Definition 2 ([10, Definition 7]). LetΛ be the set of exponents for a set of exponential functions on
an additive space. The multiplicity ofΛ is the largest number of points on any vertical or horizontal
line through Λ, if such a maximum exists. We say that Λ has bounded multiplicity in this case.
Similarly, the multiplicity of u ∈Λx (or v ∈Λy

)
is the number of points on a vertical (or horizontal)

line through u (or v), if this number is finite.

Theorem 3 ([10, Theorem 4.1]). Let E(Λ) be a frame for an additive space with measure ρ and
continuous component measures µ and ν defined in (1). Then

(i) Λ has bounded multiplicity;
(ii) E (Λx ) and E

(
Λy

)
are frames for L2(µ) and L2(ν) respectively.

Theorem 4 ([10, Theorem 4.2]). Let E(Λ) be an orthonormal basis for an additive space. Then

(i) Λ has multiplicity one;
(ii) Suppose that µ and ν are Lebesgue measures supported on intervals of length one. Then Λ

cannot be a subset of Z2.

For t ∈Q \ {− 1
2 }, by the following lemma, we can assume that there are infinite integer points

inΛ if E(Λ) is infinite.

Lemma 5. Let ρ be a symmetric measure of Lebesgue type, where the component measure µ is
the Lebesgue measure supported on [t , t + 1] and t ∈ Q \ {− 1

2 }. Suppose that E(Λ) is an infinite
orthonormal set for L2(ρ). Then there exists (u, v) ∈Λ such that #((Λ− (u, v))∩Z2) =∞.

Proof. Since t ∈ Q \ {− 1
2 }, we can write 2t + 1 = p

q with gcd(p, q) = 1. Suppose that Λ, with

(0,0) ∈ Λ, is an infinite orthogonal set for ρ. If #(Λ \Z2) < ∞, this implies that #(Λ∩Z2) = ∞,
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the lemma follows from taking (u, v) = (0,0). In the following, we consider the case #(Λ\Z2) =∞.
Let (λ1,λ2) ∈Λ\Z2. Since 〈eλ1,λ2 , 1〉 = 0, we have

eπi (λ1−λ2) p
q

sin(πλ1)

πλ1
=−sin(πλ2)

πλ2
.

As the right side is real and λ1,λ2 ∉ Z, we obtain (λ1 −λ2) p
q = k j ∈ Z. Let (λ( j1)

1 ,λ( j1)
2 ), (λ( j2)

1 ,λ( j2)
2 )

be any two distinct points ofΛ\Z2. Write(
λ

( j2)
1 −λ

( j2)
2

) p

q
−

(
λ

( j1)
1 −λ

( j1)
2

) p

q
= k j2 −k j1 ∈Z,

by the Orthogonality Equation (2), we have

sinπ
(
λ

( j2)
1 −λ

( j1)
1

)
π

(
λ

( j2)
1 −λ

( j1)
1

) = (−1)k j2−k j1+1
sinπ

(
λ

( j2)
2 −λ

( j1)
2

)
π

(
λ

( j2)
2 −λ

( j1)
2

) .

Note that {k j }∞j=1 is a sequence of integers. Without loss of generality, we assume that k j = ki

(mod p) for any j ̸= i . It follows that

sinπ
(
λ

( j2)
2 −λ

( j1)
2

)
π

(
λ

( j2)
2 −λ

( j1)
2 + (k j2−k j1 )q

p

) = (−1)k j2−k j1+1− q(k j2
−k j1

)

p
sinπ

(
λ

( j2)
2 −λ

( j1)
2

)
π

(
λ

( j2)
2 −λ

( j1)
2

) .

Hence λ( j2)
2 −λ

( j1)
2 ∈Z, or λ( j2)

2 −λ
( j1)
2 ̸∈Z but∣∣∣∣λ( j2)

2 −λ
( j1)
2 + (k j2 −k j1 )q

p

∣∣∣∣= ∣∣∣λ( j2)
2 −λ

( j1)
2

∣∣∣ .

This together with k j2 −k j1 ∈ pZ implies that λ( j2)
2 −λ

( j1)
2 =− (k j2−k j1 )q

2p ∈ 1
2Z for all j2 > j1. Clearly,

there exists a subsequence {nk } such that λ
( jnk

)

2 −λ
( jn1 )
2 ∈Z. In the same manner we can see that

there exists a subsequence {nk } such that λ
( jnk

)

1 −λ
( jn1 )
1 ∈Z. Set (u, v) = (λ

( jn1 )
1 ,λ

( jn1 )
2 ), the lemma

is proved. □

Recall the Beurling density of countable sets. Let Λ be a countable set in Rn . For r > 0, the
lower Beurling density corresponding to r (or r -Beurling density) ofΛ is defined by the formula

D−
r := liminf

h→∞
inf

x∈Rn

#(Λ∩B(x;h))

hr ,

where B(x;h) = {y ∈ Rn : dist(x, y) < h}. If r = 1, we write simply D−. Then we give the following
lemma.

Lemma 6. Let L,L′ ⊂ Z and L ∩L′ = ;. Suppose that α ̸= 0 and β is a constant. Then the lower
Beurling density ofΛ :=αL∪ (−αL′+β) is smaller than 1

|α| .

Proof. Without loss of generality, we assume that α,β> 0. It follows that

D−(Λ) = limh→∞ inf
x∈R

#(Λ∩ (x − 1
2 h, x + 1

2 h))

h

≤ limh→∞
#(Λ∩ (− 1

2 h, 1
2 h))

h

≤ limh→∞
h +β

αh
= 1

α
. □

We end this section with a simple but useful lemma.
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Lemma 7. Let 0 < |α| < 1. If

f (x0) := sinαx0

sin x0
=±α,

then there exists a positive constant δα such that |x0| > (1+δα)π.

Proof. Since f (x) = sinαx
sin x is an even function, we only need to consider the case x > 0. A simple

calculation gives

f ′(x) = αcosαx sin x −cos x sinαx

sin2 x
.

Set g (x) =αcosαx sin x −cos x sinαx, then for x ∈ (0,π),

g ′(x) = (1−α2)sinαx sin x

{
< 0 (−1 <α< 0),

> 0 (0 <α< 1).

If −1 <α< 0, then g (x) is decreasing in (0,π), i.e., f ′ < 0. Then f (x) < limx→0 f (x) =α in (0,π).
Note that f (x) is continuous in (π,2π) and

lim
x→π+ f (x) = lim

x→π+
sinαx

sinαπ

sinαπ

sin x
= lim

x→π+
sinαπ

sin x
=+∞.

We know that there exists δα such that f (x) > |α| when x ∈ (π, (1+δα)π). If there exists x0 such
that f (x0) ∈ {±α}, then x0 ≥ (1+δα)π.

If 0 < α < 1, then g (x) is increasing in (0,π), i.e., f ′ > 0. Then f (x) > limx→0 f (x) = α in (0,π).
Note that f (x) is continuous in (π,2π) and

lim
x→π+ f (x) = lim

x→π+
sinαx

sinαπ

sinαπ

sin x
= lim

x→π+
sinαπ

sin x
=−∞.

We know that there exists δα such that | f (x)| > |α| when x ∈ (π, (1+δα)π). If there exists x0 such
that f (x0) ∈ {±α}, then x0 ≥ (1+δα)π. □

3. Proof of Theorem 1

In this section, we will give the proof of Theorem 1. Firstly, unlike the case t = − 1
2 which was

proved by Lai, Liu and Prince in [10, Proposition 7.1], we prove that the points of spectrum of ρ
are contained in a straight line if t ∈Q\ {− 1

2 }.

Proposition 8. If the symmetric measure of Lebesgue type ρ is a spectral measure with the
spectrumΛ and t ∈Q\ {− 1

2 }, then the points ofΛ are contained in a straight line.

Proof. Since t ∈Q\ {− 1
2 }, we can write 2t +1 = p

q ∈Q\ {0} with gcd(p, q) = 1. By Lemma 5, we can

assume thatΛ, with (0,0) ∈Λ, is the spectrum of ρ and #(Λ∩Z2) =∞. By Theorem 4(ii), we know
Λ \Z2 ̸= ;. For any (λ1,λ2) ∈ Λ \Z2 and (k1,k2) ∈ Λ∩Z2, the Orthogonality Equation (2) shows
that

sin(πλ1)

πλ1
= (−1)l+1 sin(πλ2)

πλ2
(3)

and
sinπ(k1 −λ1)

π(k1 −λ1)
= (−1)k1,2−l+1 sinπ(k2 −λ2)

π(k2 −λ2)
, (4)

where l = (λ1−λ2)p
q ∈ Z, k1,2 = (k1−k2)p

q ∈ Z. This implies that q |(k1 − k2). Since ki ∈ Z and

sinπ(ki −λi ) = (−1)ki+1 sinπλi , by dividing (3) by (4), we have

(−1)k1,2+k1−k2
k1 −λ1

k2 −λ2
= λ1

λ2
,

i.e., {
λ1
λ2

= k1
k2

, k1,2 +k1 −k2 ∈ 2Z;

2 = k1
λ1

+ k2
λ2

, k1,2 +k1 −k2 ∈ 2Z+1.
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We can suppose that there exists (k1,k2) ∈ Λ∩Z2 such that k1,2 +k1 −k2 ∈ 2Z. If not, we can
chooseΛ− (k1,k2) to be the new spectrum that we need.

If k1,2 +k1 −k2 ∈ 2Z for all (k1,k2) ∈ Λ∩Z2, then the proposition follows from taking α = λ1
λ2

,
andΛ⊂ {(αλ,λ) :λ ∈R}. Furthermore, α ̸= 0,1.

If k1,2 + k1 − k2 ∈ 2Z+ 1 for some (k1,k2) ∈ Λ, we firstly claim that #(Λ \Z2) = 1. In fact, if
(λ1,λ2), (λ′

1,λ′
2) ∈Λ\Z2 and k1,2 +k1 −k2 ∈ 2Z+1, then{

2 = k1
λ1

+ k2
λ2

,

2 = k1
λ′

1
+ k2

λ′
2

.
(5)

Since there exists (k ′
1,k ′

2) satisfying k ′
1,2 + k ′

1 − k ′
2 ∈ 2Z, we obtain λ1/λ2 = λ′

1/λ′
2 = k ′

1/k ′
2. Take

it into (5), hence λ1 = λ′
1,λ2 = λ′

2. Then the claim follows. We now turn to prove that the case of
k1,2+k1−k2 ∈ 2Z+1 is impossible. Let (λ1,λ2) ∈Λ\Z2 and k1,2+k1−k2 ∈ 2Z+1, k ′

1,2+k ′
1−k ′

2 ∈ 2Z,
we obtain that

Λ⊂
{

(λ1,λ2),

(
−λ1

λ2
k2 +2λ1,k2

)
,

(
λ1

λ2
k ′

2,k ′
2

)}
.

Applying Theorem 4, then the projection ofΛ on the x-axis is

Λx ⊂ {λ1}∪ (−αL+2λ1)∪αL′

for some integer set L ∩L′ = ; and α = λ1
λ2

. By Lemma 6, the lower Beurling density of Λx is less

than 1
|α| . Similarly,

Λy ⊂ {λ2}∪
(
− 1

α
M +2λ2

)
∪ 1

α
M ′

for some integer set M ∩M ′ = ;. Therefore, the lower Beurling density of Λy is less than |α|. By
Theorem 3 and Landau’s theorem [11], one has α=±1. But α= 1 and α=−1 are both impossible.
Ifα= 1, thenλ1 =λ2. This is in contradiction with (3). Assumeα=−1. Note that k2−k1 =−2λ1 ∈Z
for some (k1,k2) ∈Λ∩Z2. This implies that λ1 = l q

2p = l ′q
2 for some integer l ′ = l

p . Since λ1 ̸∈Z and
by (3), we obtain that q, l ′, l ̸∈ 2Z. Since

k1,2 +k1 −k2 = (k1 −k2)
p +q

q
∈ 2Z+1,

and q|(k1 −k2), we know p is even. Then l = pl ′ ∈ 2Z, a contradiction.
Hence, the proof is complete, i.e.,

Λ⊂ {(αλ,λ) :λ ∈R},

where α= λ1
λ2

for any (λ1,λ2) ∈Λ\Z2. Moreover, α ̸= 0,1. □

With the help of above preparations, we can prove our main result.

Proof of Theorem 1. Suppose that ρ is a spectral measure with the spectrum Λ, and (0,0) ∈ Λ.
According to Proposition 8, there exists α ̸= 0,1 such that λ1/λ2 ≡α for (λ1,λ2) ∈Λ. If t ∈Q\{− 1

2 },
we can write 2t +1 = p

q ∈Q\{0} with gcd(p, q) = 1. Without loss of generality, we only consider the
case p, q > 0.

We divide the following proof into four steps.

Step 1. We prove that α=−1. We firstly claim that

λ1 = αkq

p(α−1)
, λ2 = kq

p(α−1)
, k ∈Z. (6)

In fact, by Theorem 4(ii), we know Λ \Z2 ̸= ;. For any (λ1,λ2) ∈Λ \Z2, since (0,0) ∈Λ, by the
Orthogonality Equation (2), we have (λ1 −λ2) p

q ∈Z. If (λ′
1,λ′

2) ∈Z2, take (λ1 −λ′
1,λ2 −λ′

2) into the
Orthogonality Equation (2), we have

[λ1 −λ′
1 − (λ2 −λ′

2)]
p

q
= (λ1 −λ2)

p

q
− (λ′

1 −λ′
2)

p

q
∈Z, i.e., (λ′

1 −λ′
2)

p

q
∈Z.
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Hence, for any (λ1,λ2) ∈Λ, we always have (λ1 −λ2) p
q ∈ Z. Write λ1 = λ2 + kq

p , k ∈ Z, combining
with λ1/λ2 ≡α, (6) is obtained.

Let (λ( j1)
1 ,λ( j1)

2 ), (λ( j2)
1 ,λ( j2)

2 ) ∈ Λ, where λ
( ji )
1 = λ

( ji )
2 + k ji

q

p , k ji ∈ Z, i = 1,2. Combining with

λ
( ji )
1 /λ( ji )

2 ≡α, we set

γ= (λ( j2)
1 ,λ( j2)

2 )− (λ( j1)
1 ,λ( j1)

2 ) =
(

q(k j2 −k j1 )α

p(α−1)
,

q(k j2 −k j1 )

p(α−1)

)
:= (γx ,γy ).

Taking γ into the Orthogonality Equation (2), we have

sin(πγx ) = (−1)k j2−k j1+1αsin(πγy ).

Since α ̸= 0,1, we know that both γx ,γy are integers or neither is an integer.
If γ ∈Z2, one has p|(k j2 −k j1 ). Then for |α| > 0,

|γx | = |αγy | ≥ |α|q
|α−1| , |γy | ≥ q

|α−1| . (7)

If γ ∉Z2, we obtain
sinπγx

sinπγy
= (−1)k j2−k j1+1α. (8)

From now on, we prove that α=−1 by excluding three cases.

Case I. q > 1 and 0 < |α| < 1. By (8) and Lemma 7, there exists a positive constant δα such that

|γy | ≥ 1+δα.

Combining with (7), we have

|γy | ≥ min

{
1+δα,

q

|α−1|
}

.

By Lemma 6, the lower Beurling density ofΛy satisfies

D−(Λy ) ≤ 1

min
{

1+δα, q
|α−1|

} ≤ max

{
1

1+δα
,
|α−1|

q

}
< 1.

Case II. q > 1 and |α| > 1. Write (8) as

sin(πγxα
−1)

sin(πγx )
= (−1)k j2−k j1+1α−1.

Since 0 < |α−1| < 1, by Lemma 7, there exists a positive constant δα−1 such that

|γx | ≥ 1+δα−1 .

Combining with (7), we have

|γx | ≥ min

{
1+δα−1 ,

|αq |
|α−1|

}
,

Similarly to Case I, we obtain

D−(Λx ) ≤ 1

min
{

1+δα−1 , |αq |
|α−1|

} ≤ max

{
1

1+δα−1
,
|α−1|
|αq |

}
< 1.

Case III. q = 1 and α ̸= −1. In this case,

γ= (γx ,γy ) =
(

(k j2 −k j1 )α

p(α−1)
,

(k j2 −k j1 )

p(α−1)

)
.

If γ ∈Z2, since α ̸= ±1, this implies that

|k j2 −k j1 | ≥ p max
{|α−1|, |1−α−1|}> p min

{|α−1|, |1−α−1|} .
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For γ ∉ Z2, by Lemma 7, there exists a positive constant δα(0 < |α| < 1) or δα−1 (|α| > 1) such that
|γy | ≥ 1+δα or |γx | ≥ 1+δα−1 . Denote

g (α) =
{

1
1+δα , 0 < |α| < 1;

1
1+δα−1

, |α| > 1.

Hence

min{D−(Λx ),D−(Λy )} ≤ max

{
g (α),

min{|α−1|, |1−α−1|}
max{|α−1|, |1−α−1|}

}
< 1.

In a word, if α ̸= −1, we always have D−(Λx ) < 1 or D−(Λy ) < 1. Then Theorem 3 and Landau’s
theorem [11] tell us thatΛ is not a frame of ρ, a contradiction. Hence α=−1.

Step 2. We will give the expression ofΛ. Since α=−1 and (0,0) ∈Λ, for any nonzero (λ,−λ) ∈Λ,
by the Orthogonality Equation (2), we have

(eπi 2λp
q +1)sin(πλ) = 0.

Hence, λ ∈Z or 2λp
q ∈ 2Z+1, i.e.,

Λ⊂ {(n,−n) : n ∈Z}∪
{(

qk

2p
,−qk

2p

)
: k ∈ 2Z+1

}
.

Let
(

qki
2p ,− qki

2p

)
∈Λ,ki = psi +ri ∈ 2Z+1 for some integers si ≥ 0,0 ≤ ri ≤ p −1. For any k1 ̸= k2,

then k2 −k1 ∈ 2Z. The Orthogonality Equation (2) tells us(
eπi (k2−k1) +1

)
sin

(
π

q(k2 −k1)

2p

)
= 0,

this yields q(k2−k1)
2p ∈Z, i.e., r1 = r2,2|q(s2 − s1).

Let (n,−n) ∈ Λ,
(

qki
2p ,− qki

2p

)
∈ Λ, and n − qki

2p ∉ Z. Taking
(
n − qki

2p ,−n + qki
2p

)
into the Orthogo-

nality Equation (2), we have
2pn

q
−ki ∈ 2Z+1, i.e., n ∈ qZ.

Note that we have actually proved that there exist some Si ⊂Z, i = 1,2 and a r ∈ [0, p−1] such that

Λ= {(qn,−qn) : n ∈S1}∪
{(

qsi

2
+ qr

2p
,−qsi

2
− qr

2p

)
: si ∈S2

}
:=Λ1 ∪Λ2, (9)

where ki = psi +r ∈ 2Z+1 and 2|q(s j −si ). Since (0,0) ∈Λ, we know thatΛ1 ̸= ;. By Theorem 4(ii),
we know thatΛ2 ̸= ; andΛ2 ̸⊂Z2.

Furthermore, combining with ki = psi +r ∈ 2Z+1 and 2|q(s j −si ), if p ̸= 1 and r ̸= 0, by simple
discussing, we always have

Λ2 =
{(

qm + qr

2p
,−qm − qr

2p

)
: m ∈S3 ⊂Z

}
for some odd r ∈ [1−p, p −1]. (10)

If p = 1 or r = 0, then q, si are both odd. By the maximal orthogonality ofΛ, we have

Λ=
{( qm

2
,−qm

2

)
: m ∈Z

}
. (11)

Step 3. Our next goal is to prove thatΛ can’t be the spectrum of ρ if t ∈Q\ ( 1
2Z).

If t ∈Q\ ( 1
2Z), then 2t +1 = p

q ∈Q\Z, i.e., q ≥ 2.
When q > 2 (or p = 1), by the expression ofΛ in (9),(10),(11), and Theorem 6,

D−(Λx ) ≤ 2

q
< 1.

Landau’s theorem [11] tells us thatΛ is not a spectrum of ρ.
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When q = 2, then p ≥ 3 is odd. By the expression of (9),(10), without loss of generality, we
assume that

Λ= {(n,−n) : n ∈ 2Z}∪
{(

m + r

p
,−m − r

p

)
: m ∈ 2Z

}
for some odd r ∈ [1− p, p − 1]. Let F (x, y) = e2πi (x−y)b with b := r+2

p , Fx = F (x,0) = e2πi bx and

Fy = F (0, y) = e−2πi by . Then

∥F (x, y)∥2
L2(ρ) =

1

2
∥Fx∥2 + 1

2
∥Fy∥2 ≡ 1.

Let a = b − r
p . Since 2t +1 = p

2 , we obtain

∑
(u,v)∈Λ

|〈F,eu,v 〉L2(ρ)|2

= 1

4

∑
(u,v)∈Λ

|〈Fx ,eu〉+〈Fy ,ev 〉|2

= 1

4

∑
λ∈2Z

(∣∣∣∣∫ t+1

t

(
e2πi (b−λ)x +e2πi (λ−b)x

)
dx

∣∣∣∣2

+
∣∣∣∣∫ t+1

t

(
e2πi (a−λ)x +e2πi (λ−a)x

)
dx

∣∣∣∣2
)

= 1

π2

∑
λ∈2Z

( |cosπ bp
2 sinπb|2

(b −λ)2 + |cosπ ap
2 sinπa|2

(a −λ)2

)

=
∣∣∣∣cosπ

bp

2
cosπ

b

2

∣∣∣∣2

+
∣∣∣cosπ

ap

2
cosπ

a

2

∣∣∣2

= cos2 π

p
< 1.

The penultimate equality follows from the fact that

∑
n∈Z

|sinπz|2
(z −n)2 =π2 for z ∈C\Z.

The last equality follows from r is odd and a = 2
p . HenceΛ is not a spectrum of ρ.

Then we have proved thatΛ can’t be the spectrum of ρ if t ∈Q\ ( 1
2Z).

Completion of the proof of Theorem 1. In the final step, we construct a spectrum of ρ under the
condition that t ∈ 1

2Z, i.e., q = 1. Combining with the expression of Λ in (9), (10), (11), we know if
p is odd, then there exists an odd r ∈ [1−p, p −1] such that

Λ= {(n,−n) : n ∈Z}∪
{(

m + r

2p
,−m − r

2p

)
: m ∈Z

}
,

or

Λ=
{(n

2
,−n

2

)
: n ∈Z

}
.

If p is even, then there exists an odd r ∈ [1−p, p −1] such that

Λ= {(n,−n) : n ∈Z}∪
{(

m + r

2p
,−m − r

2p

)
: m ∈Z

}
.

The proof of [10, Theorem 1.3] (see [10, Remark 6.2]) shows that if Λ0 is the spectrum of the
Lebesgue measure supported on [−t −1,−t ]∪ [t , t +1], thenΛ= {(λ,−λ) :λ ∈Λ0} is the spectrum
of ρ. This together with [10, Theorem 1.1] completes the proof. □
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4. Concluding remarks

In this paper, we only consider the case t ∈Q\ {− 1
2 }. There are many meaningful problems left in

the other cases. For the case t =− 1
2 , i.e., the Plus space called by Lai, Liu and Prince [10], since we

can’t solve the equation
sin(πλ1)

πλ1
=−sin(πλ2)

πλ2
,

it is interesting but very difficult. We only have the following partial results.

Lemma 9. Let ρ be a symmetric measure of Lebesgue type, where the component measure µ

is the Lebesgue measure supported on [t , t + 1] and t ∈ Qc ∪ {− 1
2 }. If ρ has a spectrum Λ, then

#(Λ∩Z2) <∞.

Proof. Suppose that Λ, with (0,0) ∈ Λ, is the spectrum of ρ and #(Λ∩Z2) = ∞. Set θ = 2t + 1.
We first consider the case t ∈ Qc , i.e., θ ∈ Qc . According to Theorem 4(ii), Λ \Z2 ̸= ;. Choose an
element (λ1,λ2) ∈Λ\Z2, which satisfies the Orthogonality Equation

eπi (λ1−λ2)θ sin(πλ1)

πλ1
=−sin(πλ2)

πλ2
. (12)

Hence λ1 −λ2 = mθ−1 for some integer m. Let (k1,k2) ∈Λ∩Z2, then

eπi (k1−λ1−k2+λ2)θ sinπ(k1 −λ1)

π(k1 −λ1)
=−sinπ(k2 −λ2)

π(k2 −λ2)
. (13)

This implies that k1 −λ1 − k2 +λ2 = k1 − k2 −mθ−1 ∈ θ−1Z. This yields that k1 = k2, as θ ∈ Qc .
Combining with (12), (13), one has λ1/λ2 = k1/k2 = 1. Then m = 0. Using (12) again, then
(λ1,λ2) ∈Z2, a contradiction.

For the case t =− 1
2 , i.e., θ = 0. Let (λ1,λ2) ∈Λ\Z2 and (k1,k2) ∈Λ∩Z2, we obtain

sin(πλ1)

πλ1
=−sin(πλ2)

πλ2
,

sinπ(k1 −λ1)

π(k1 −λ1)
=−sinπ(k2 −λ2)

π(k2 −λ2)
.

Hence,
λ1

λ2
= (−1)k1−k2

k1 −λ1

k2 −λ2
.

If k1 −k2 ∈ 2Z, then λ1/λ2 = k1/k2 = a for fixed a. If ki −k j ∈ 2Z for all (ki ,k j ) ∈ Λ∩Z2, then by
Proposition 7.1 in [10], Λ is not the spectrum of ρ. If not, similar to the proof of Proposition 8, Λ
is not the spectrum of ρ either.

Hence, the proof is complete. □

At last, we post the following conjecture.

Conjecture 10. Assume thatΛ∩Z2 = {(0,0)}. For any (λ1,λ2) ∈ (Λ−Λ) \ {(0,0)}, if

sinπλ1

πλ1
=−sinπλ2

πλ2
,

then D−(Λx ) or D−(Λy ) is less than 1.

If above conjecture is true, we have the following theorem.

Theorem 11. Let ρ be a symmetric measure of Lebesgue type, where the component measure µ is
the Lebesgue measure supported on [t , t +1]. Let t ̸∈ 1

2 +Z or t =− 1
2 . If Conjecture 10 is true, then ρ

is not spectral.
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Proof. LetΛ be the spectrum of ρ. By Lemma 9, we can assume that (0,0) ∈Λ and #(Λ∩Z2) <∞.
Write Λ := Γ∪ Γ̃ with Γ ⊂ Z2 and Γ̃∩Z2 = ;. By Conjecture 10, without loss of generality, we
suppose that D−(Γ̃x ) < 1. It follows from Lemma 9 that

D−(Λx ) = D−(Γ̃x ) < 1.

Then, by Theorem 3 and Landau’s theorem [11], E(Λ) is not a frame of ρ. This yields thatΛ is not
the spectrum of ρ, a contradiction. □
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