

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Wang Xu and Xiangyu Zhou

Optimal L^2 Extensions of Openness Type and Related Topics

Volume 361 (2023), p. 679-683

Published online: 2 March 2023

https://doi.org/10.5802/crmath.437

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1778-3569

Complex analysis and geometry / Analyse et géométrie complexes

Optimal *L*² Extensions of Openness Type and Related Topics

Wang Xu^{*, a} and Xiangyu Zhou^b

^a School of Mathematical Sciences, Peking University, Beijing, 100871, P. R. China

^b Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, P. R. China

E-mails: xuwang@amss.ac.cn, xyzhou@math.ac.cn

Abstract. We establish several optimal L^2 extension theorems of openness type on weakly pseudoconvex Kähler manifolds. We prove a product property for certain minimal L^2 extensions, which generalizes the product property of Bergman kernels. We describe a different approach to the Suita conjecture and its generalizations, which is based on a log-concavity for certain minimal L^2 integrals.

Résumé. Nous établissons quelques théorèmes d'extension optimaux L^2 pour les formes ouvertes sur les variété Kähler faiblement pseudoconvexes. Nous prouvons les propriétés de produit de certaines extensions minimales de L^2 , qui généralisent les propriétés de produit du noyau Bergman. Sur la base de la concavité logarithmique de certaines intégrales minimales de L^2 , nous donnons une méthode différente pour la conjecture de Suita et son extension.

2020 Mathematics Subject Classification. 32D15, 32A36, 32L05, 32W05, 32E10, 14C30, 30C40. **Funding.** The second author is partially supported by the NSFC grant (11688101 and 12288201). *Manuscript received 5 February 2022, accepted 16 October 2022.*

1. Backgrounds

In this note, we study the following problem: let *S* be a closed submanifold of a complex manifold *M* and *E* be a Hermitian holomorphic vector bundle on *M*; suppose *f* is an L^2 holomorphic section of *E* defined in a neighborhood *U* of *S*, find a holomorphic section $F \in \Gamma(M, E)$ so that $F|_S = f|_S$ and the L^2 -norm $||F||_M$ is uniformly and optimally controlled by the L^2 -norm $||f||_U$. This problem is closely related to but different from the usual L^2 extension problem (where *f* is defined on *S* and $||f||_U$ is replaced by $||f||_S$), which is called optimal L^2 extension problem of *openness type*, in order to distinguish with the usual one.

The existence part of the L^2 extension problem of openness type is well studied, e.g. Jennane [15] and Demailly [4, 5] (see also [6, Chapter VIII.7]). This note is devoted to the optimal part of the problem and some related topics. Details of the proofs will appear in [17].

^{*} Corresponding author.

2. Optimal L² Extension Theorems of Openness Type

Recall that, a complex manifold Ω is said to be *weakly pseudoconvex* if there exists a smooth psh exhaustion function for Ω ; an upper semi-continuous function $\varphi : \Omega \to [-\infty, +\infty)$ is said to be *quasi-psh* if φ is locally the sum of a psh function and a smooth function. Given a quasi-psh function φ on a complex manifold Ω , we denote by $\mathscr{I}(\varphi) \subset \mathscr{O}_{\Omega}$ the *multiplier ideal sheaf* associated to φ , i.e. $\mathscr{I}(\varphi)_x = \{f_x \in \mathscr{O}_{\Omega,x} : |f_x|^2 e^{-\varphi} \text{ is integrable in some neighborhood of } x\}.$

Theorem 1. Let (Ω, ω) be a weakly pseudoconvex Kähler manifold and (E, h) be a Hermitian holomorphic vector bundle over Ω . Suppose there are quasi-psh functions $\psi < 0$ and φ , continuous real (1,1)-forms $\gamma \ge 0$ and ρ on Ω such that

$$\sqrt{-1}\partial\bar{\partial}\psi \ge \gamma, \quad \sqrt{-1}\partial\bar{\partial}\varphi \ge \rho \quad and \quad \sqrt{-1}\Theta(E,h) + (\gamma+\rho) \otimes \mathrm{Id}_E \ge_{\mathrm{Nak}} 0$$

Let $\Omega_a := \{z \in \Omega : \psi(z) < -a\}$, where $a \in \mathbb{R}_+$. Then for any holomorphic section $f \in \Gamma(\Omega_a, K_\Omega \otimes E)$ satisfying $\int_{\Omega_a} |f|^2_{\omega,h} e^{-\varphi} dV_\omega < +\infty$, there exists $F \in \Gamma(\Omega, K_\Omega \otimes E)$ such that

$$F|_{\Omega_a} - f \in \Gamma(\Omega_a, \mathcal{O}(K_\Omega \otimes E) \otimes \mathscr{I}(\varphi + \psi))$$
⁽¹⁾

and

$$\int_{\Omega} |F|^{2}_{\omega,h} e^{-\varphi} \mathrm{d}V_{\omega} \le e^{a} \int_{\Omega_{a}} |f|^{2}_{\omega,h} e^{-\varphi} \mathrm{d}V_{\omega}.$$
(2)

The proof of Theorem 1 uses the L^2 techniques developed by Guan–Zhou [13] and Zhou–Zhu [18], together with a log-concavity for certain minimal L^2 integrals (which is essentially due to Guan [8]). Since Ω is a weakly pseudoconvex Kähler manifold, we approximate the quasi-psh functions on relatively compact subdomains by the methods of [7] and then solve $\bar{\partial}$ -equations with error terms. Using the L^2 techniques, we prove the theorem with the uniform constant replaced by $e^a + 1$. Using the log-concavity, we then obtain the uniform constant e^a .

Definition 2. Let $U \subset \mathbb{C}^n$ be an open set and $f, g \in \mathcal{O}(U)$. Given $x \in U$ and $k \in \mathbb{N}$, if $\partial^{\alpha} f(x) = \partial^{\alpha} g(x)$ for all multi-order $\alpha \in \mathbb{N}^n$ with $|\alpha| \leq k$, then we say "f coincides with g up to order k at x". In particular, if f coincides with the zero function up to order k at x, then we say "f vanishes up to order k at x". Clearly, f vanishes up to order k at x if and only if $[f]_x \in \mathfrak{m}_x^{k+1}$. These concepts can be easily extended to holomorphic sections of holomorphic vector bundles.

If there exists a closed subset $S \subset \Omega$ so that $\mathscr{I}(\varphi + \psi)_x \subset \mathfrak{m}_x^{k+1}$ for any $x \in S$, then the condition (1) implies that *F* coincides with *f* up to order *k* along *S*. In particular, we have the following corollary.

Corollary 3. Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n , φ be a psh function on Ω , and $G_{\Omega}(\cdot, w)$ be the pluricomplex Green function of Ω with a pole at $w \in \Omega$. Let $U = \{G_{\Omega}(\cdot, w) < -a\}$ for some $a \in \mathbb{R}_+$. For any $f \in \mathcal{O}(U)$ satisfying $\int_U |f|^2 e^{-\varphi} d\lambda < +\infty$, there exists a holomorphic function $F \in \mathcal{O}(\Omega)$ such that F coincides with f up to order $k \in \mathbb{N}$ at w and

$$\int_{\Omega} |F|^2 e^{-\varphi} \mathrm{d}\lambda \le e^{2(n+k)a} \int_{U} |f|^2 e^{-\varphi} \mathrm{d}\lambda.$$
(3)

The case of k = 0 and $\varphi \equiv 0$ has been obtained by Błocki [2], whose proof used a tensor power trick. It is clear that the uniform estimates of Theorem 1 and Corollary 3 are optimal.

Using similar arguments as Theorem 1, we prove another L^2 extension theorem of openness type, whose prototype comes from [6, Chapter VIII.7]. Demailly's theorem corresponds to the case of m = 0 and the right hand side of (4) is replaced by $(1 + \frac{(p+1)^2}{\epsilon}) \int_U |f|_{\omega,h}^2 e^{-\varphi} dV_{\omega}$.

Theorem 4. Let (Ω, ω) be a weakly pseudoconvex Kähler manifold of dimension n and (E, h) be a Hermitian holomorphic vector bundle over Ω . Suppose there exists a quasi-psh function φ and a continuous real (1, 1)-form ρ on Ω such that

$$\sqrt{-1}\partial\partial\varphi \ge \rho \quad and \quad \sqrt{-1}\Theta(E,h) + \rho \otimes \mathrm{Id}_E \ge_{\mathrm{Nak}} 0.$$

Suppose $w = (w_1, ..., w_p)$ is a tuple of holomorphic functions on Ω $(1 \le p \le n)$, let

$$S = \{x \in \Omega : w(x) = 0\} \text{ and } U = \{x \in \Omega : |w(x)| < 1\}.$$

Assume that $dw_1 \wedge \cdots \wedge dw_p \neq 0$ generically on S. Given $m \in \mathbb{N}$ and $0 < \varepsilon < m + p$, for any holomorphic section $f \in \Gamma(U, K_\Omega \otimes E)$ satisfying $\int_U |f|^2_{\omega,h} e^{-\varphi} dV_\omega < +\infty$, there exists $F \in \Gamma(\Omega, K_\Omega \otimes E)$ such that F coincides with f up to order m along S and

$$\int_{\Omega} \frac{|F|^{2}_{\omega,h} e^{-\varphi}}{(1+|w|^{2})^{m+p+\varepsilon}} \mathrm{d}V_{\omega} \leq \frac{\int_{0}^{1} \tau^{m+p-1} (1-\tau)^{\varepsilon-1} \mathrm{d}\tau}{\int_{0}^{1/2} \tau^{m+p-1} (1-\tau)^{\varepsilon-1} \mathrm{d}\tau} \int_{U} \frac{|f|^{2}_{\omega,h} e^{-\varphi}}{(1+|w|^{2})^{m+p+\varepsilon}} \mathrm{d}V_{\omega}.$$
(4)

Let $\Omega = \mathbb{C}^n$ and ω be the standard Kähler form. Let $w = (z_1, ..., z_p)$ be the first p coordinates of \mathbb{C}^n , then $S \cong \mathbb{C}^{n-p}$ is a linear subspace and $U \cong \mathbb{B}^p \times \mathbb{C}^{n-p}$. Let $(E, h) = (K_{\Omega}^{-1}, \det \omega)$ and $\varphi \equiv 0$. Let u be a homogeneous polynomial in $z_1, ..., z_p$ of degree m and $v \in \mathcal{O}(\mathbb{C}^{n-p})$ be a holomorphic function of $z_{p+1}, ..., z_n$. Let $f := uv \in \mathcal{O}(U)$ and let F be the unique holomorphic function on \mathbb{C}^n such that F coincides with f up to order m along S and the left hand side of (4) is minimized. It is easy to show that $F \equiv uv$ and the inequality (4) is sharp.

3. Sharper Estimates in Optimal L² Extension Theorems

Let Ω be a weakly pseudoconvex Kähler manifold of dimension *n*. Let (E, h) be a Hermitian holomorphic vector bundle over Ω whose curvature is Nakano semi-positive. Assume that $\psi < 0$ is a psh function on Ω having a logarithmic pole at $x \in \Omega$: if (U, z) is a coordinate chart so that z(x) = 0, then $\psi - \log |z|$ is bounded near *x*. By the optimal L^2 extension theorem ([13, 18]): for any $\xi \in E_x$, there exists a holomorphic section $F \in \Gamma(\Omega, K_\Omega \otimes E)$ such that $F(x) = dz \otimes \xi$ and $\int_{\Omega} (\sqrt{-1})^{n^2} F \wedge_h \overline{F} \leq \frac{(2\pi)^n}{n!} e^{-2nc} |\xi|_h^2$, where $dz := dz_1 \wedge \cdots \wedge dz_n$ and $c := \lim_{z \to 0} (\psi(z) - \log |z|)$. The uniform estimate in the above statement is optimal: there are admissible situations where

The uniform estimate in the above statement is optimal: there are admissible situations where the constant $\frac{(2\pi)^n}{n!}e^{-2nc}$ cannot be replaced by a smaller one. Under some additional conditions, we may obtain a sharper estimate. For example, if the curvature of (E, h) is Nakano positive somewhere, then there exists an extension F of $dz \otimes \xi$ so that $\int_{\Omega} (\sqrt{-1})^{n^2} F \wedge_h \overline{F} < \frac{(2\pi)^n}{n!} e^{-2nc} |\xi|_h^2$. Hosono's [14] result is a special case. Using Theorem 1, we have one more example.

Theorem 5. Let $\Omega \ni x$, (E, h) and ψ be the same as above. Moreover, we assume that:

- (i) the curvature of (E, h) is Griffiths positive at x;
- (ii) (U, z) can be chosen so that z(x) = 0 and $\psi(z) = c + \log|z| + o(|z|^2)$ as $z \to 0$.

There exists a constant $\tau \in (0, 1)$ *depends on h and* ψ *, for any* $\xi \in E_x$ *, we can find a holomorphic section* $F \in \Gamma(\Omega, K_\Omega \otimes E)$ *such that* $F(x) = dz \otimes \xi$ *and*

$$\int_{\Omega} (\sqrt{-1})^{n^2} F \wedge_h \overline{F} \le (1-\tau) \frac{(2\pi)^n}{n!} e^{-2nc} |\xi|_h^2.$$
(5)

Since (E, h) is Griffiths positive at x, we can construct a local L^2 holomorphic extension with sharper estimate, then we apply Theorem 1 to obtain a global extension with sharper estimate. The technical condition (ii) guarantees that the sublevel set { $\psi < -a$ } (with $a \gg 1$) is almost an Euclidean ball in U. Moreover, if Ω is a hyperbolic Riemann surface and $\psi = G_{\Omega}(\cdot, x)$ is the Green function, then the condition (ii) is automatically satisfied.

4. A Product Property for Minimal L² Extensions

The tensor power trick of [2] relies on the product property of Bergman kernels. Notice that, Bergman kernel records the norm of certain minimal L^2 extension: let $\Omega \subset \mathbb{C}^n$ be an open set, then $B_{\Omega}(w)^{-1} = \inf\{\int_{\Omega} |f|^2 d\lambda : f \in \mathcal{O}(\Omega), f(w) = 1\}$. As a generalization, we prove a product property for general minimal L^2 extensions.

For i = 1 and 2, let (Ω_i, dV_i) be a complex manifold with continuous volume form, $(E_i, h_i) \rightarrow \Omega_i$ be a holomorphic vector bundle with continuous Hermitian metric, $S_i \subset \Omega_i$ be an arbitrary closed subset, and ψ_i be a measurable function on Ω_i which is locally bounded above. We define

$$A^{2}(\Omega_{i}, E_{i}) := \left\{ f_{i} \in \Gamma(\Omega_{i}, E_{i}) : \|f_{i}\|^{2} = \int_{\Omega_{i}} |f_{i}|^{2}_{h_{i}} e^{-\psi_{i}} dV_{i} < +\infty \right\}, \quad i = 1 \text{ and } 2.$$
(6)

Let $\Omega := \Omega_1 \times \Omega_2$ be the product manifold and let $p_i : \Omega \to \Omega_i$ be the natural projections. Let $dV := p_1^* dV_1 \times p_2^* dV_2$, $E := p_1^* E_1 \otimes p_2^* E_2$, $h := p_1^* h_1 \otimes p_2^* h_2$ and $\psi := p_1^* \psi_1 + p_2^* \psi_2$. Then we define $A^2(\Omega, E)$ in a similar way as (6). We can show that $A^2(\Omega, E) = A^2(\Omega_1, E_1) \widehat{\otimes} A^2(\Omega_2, E_2)$.

By constructing a special orthogonal decomposition which is compatible with the Hilbert tensor product $\hat{\otimes}$, we can prove a product property for minimal L^2 holomorphic extensions. Since we need to assume the existence of global L^2 extensions, we simply assume that $f_i \in A^2(\Omega_i, E_i)$, and we are interested in high-order minimal L^2 extensions of $f_i|_{S_i}$.

Theorem 6. Let $f_1 \in A^2(\Omega_1, E_1)$ and $f_2 \in A^2(\Omega_2, E_2)$ be given. For i = 1 and 2, let F_i be the unique element with minimal norm in $A^2(\Omega_i, E_i)$ that coincides with f_i up to order $m_i \in \mathbb{N}$ along S_i . Let F be the unique element with minimal norm in $A^2(\Omega, E)$ that coincides with $f := f_1 \otimes f_1$ up to order $m_1 + m_2$ along $S := S_1 \times S_2$. Then

$$\|F\|_{A^{2}(\Omega,E)}^{2} \ge \|F_{1}\|_{A^{2}(\Omega_{1},E_{1})}^{2}\|F_{2}\|_{A^{2}(\Omega_{2},E_{2})}^{2}.$$
(7)

Moreover, if $m_i = 0$ or f_i vanishes up to order $m_i - 1$ on S_i for i = 1 and 2, then

$$F = F_1 \otimes F_2 \quad and \quad \|F\|_{A^2(\Omega, E)}^2 = \|F_1\|_{A^2(\Omega_1, E_1)}^2 \|F_2\|_{A^2(\Omega_2, E_2)}^2.$$
(8)

If S_i are singleton sets and $m_i = 0$, then (8) corresponds to the product property of Bergman kernels. Using Theorem 6 and imitating the tensor power trick of [2], one can prove a weak version of Theorem 1.

5. Generalized Suita Conjecture with Jets and Weights

A motivation for optimal L^2 extension theorems is the long-standing Suita conjecture. Let Ω be a potential-theoretically hyperbolic Riemann surface. Let (U, z) be a coordinate chart of Ω . Locally, we denote by $\kappa_{\Omega} = B_{\Omega} |dz|^2$ the Bergman kernel of Ω and $c_{\beta} |dz|$ the logarithmic capacity of Ω . Suita [16] conjectured that $\pi B_{\Omega} \ge c_{\beta}^2$, and $\pi B_{\Omega}(w) = c_{\beta}(w)^2$ for some $w \in \Omega$ if and only if Ω is conformally equivalent to the unit disc less a possible closed polar set. The inequality part of Suita's conjecture was solved by Błocki [1] and Guan–Zhou [11], and the equality part was solved by Guan–Zhou [13]. Moreover, Guan–Zhou [12, 13] proved the extended Suita conjecture and Błocki-Zwonek [3] obtained a high-order generalization to the inequality part.

In proving Theorem 1, we use a log-concavity for minimal L^2 integrals. Tracing the proof, we obtain a necessary condition for the concavity degenerating to linearity (see also [9]). Using the concavity and the necessary condition, we have a different approach to Suita's conjecture and its generalizations.

Proposition 7. Let φ be a harmonic function on Ω and $\psi = 2(m+1)G_{\Omega}(\cdot, w)$. For each $t \ge 0$, let

$$\Omega_t := \{ z \in \Omega : \psi(z) < -t \} \quad and \quad \mathcal{A}_t := \left\{ F \in \Gamma(\Omega_t, K_\Omega) : \|F\|^2 = \int_{\Omega_t} \frac{\sqrt{-1}}{2} F \wedge \overline{F} e^{-\varphi} < +\infty \right\}$$

Let f be a holomorphic 1-form defined in a neighborhood of w. For each $t \ge 0$, let $F_t \in \mathcal{A}_t$ be the unique element with minimal norm that coincides with f up to order m at w. Let $I(t) := ||F_t||_{\mathcal{A}_t}^2$ and we assume that I(t) > 0. Then $r \mapsto I(-\log r)$ is a concave non-decreasing function on (0, 1] and $I(0) \le I(t)e^t$ for all t > 0. Moreover, if $r \mapsto I(-\log r)$ is linear, then $F_t \equiv F_0|_{\Omega_t}$ for any t > 0.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and $\mathbb{S} = \{z \in \mathbb{C} : |z| = 1\}$. Let $p : \mathbb{D} \to \Omega$ be a universal covering. Then the fundamental group $\pi_1(\Omega)$ is identified with a subgroup of Aut(\mathbb{D}), and $p \circ \sigma = p$ for any $\sigma \in \pi_1(\Omega)$. For any $w \in \Omega$, there exists an $f_w \in \mathcal{O}(\mathbb{D})$ so that $\log |f_w| = p^*(G_\Omega(\cdot, w))$. Then there is a multiplier $\chi_w \in \operatorname{Hom}(\pi_1(\Omega), \mathbb{S})$ so that $p^*f_w = \chi_w(\sigma)f_w$ for any $\sigma \in \pi_1(\Omega)$. For any harmonic function η on Ω , there exists an $f_\eta \in \mathcal{O}(\mathbb{D})$ so that $\log |f_\eta| = p^*\eta$. Then there is a multiplier $\chi_\eta \in \operatorname{Hom}(\pi_1(\Omega), \mathbb{S})$ so that $p^*f_\eta = \chi_\eta(\sigma)f_\eta$ for any $\sigma \in \pi_1(\Omega)$.

Theorem 8. *Given an integer* $m \in \mathbb{N}$ *and a harmonic function* η *on* Ω *, we define*

$$B_{\Omega,\eta}^{(m)}(w) := \sup\left\{ \left| \frac{\partial^m f}{\partial z^m}(w) \right|^2 : \int_{\Omega} \frac{F \in \Gamma(\Omega, K_{\Omega}) \text{ with } F|_U = f \, \mathrm{d}z,}{\int_{\Omega} \frac{\sqrt{-1}}{2} F \wedge \overline{F} e^{-2\eta} \le 1, [f]_w \in \mathfrak{m}_w^m} \right\}, \quad w \in \Omega.$$
(9)

Then

$$\pi e^{-2\eta(w)} B_{\Omega,\eta}^{(m)}(w) \ge m!(m+1)! c_{\beta}(w)^{2m+2}.$$
(10)

Moreover, the equality holds if and only if $\chi_{\eta}^{-1} = \chi_{w}^{m+1}$, if and only if there exists a holomorphic function $g \in \mathcal{O}(\Omega)$ such that $\log |g| = (m+1)G_{\Omega}(\cdot, w) + \eta$.

The extended Suita conjecture is the case of m = 0, and Błocki-Zwonek's generalization is the inequality (10) with $\eta \equiv 0$. Recently, Guan–Mi–Yuan [10] obtain a result generalizing Theorem 8, but our proof is different.

References

- Z. Błocki, "Suita conjecture and the Ohsawa-Takegoshi extension theorem", *Invent. Math.* 193 (2013), no. 1, p. 149-158.
- [2] , "A lower bound for the Bergman kernel and the Bourgain-Milman inequality", in *Geometric aspects of functional analysis*, Springer, 2014, p. 53-63.
- [3] Z. Błocki, W. Zwonek, "One dimensional estimates for the Bergman kernel and logarithmic capacity", Proc. Am. Math. Soc. 146 (2018), no. 6, p. 2489-2495.
- [4] J.-P. Demailly, "Estimations L² pour l'opérateur ∂ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète", Ann. Sci. Éc. Norm. Supér. 15 (1982), no. 3, p. 457-511.
- [5] ——, "Scindage holomorphe d'un morphisme de fibrés vectoriels semi-positifs avec estimations L²", in Seminar Pierre Lelong-Henri Skoda (Analysis), 1980/1981, Springer, 1982, p. 77-107.
- [6] ——, "Complex analytic and differential geometry", e-book, 2012.
- [7] J.-P. Demailly, T. Peternell, M. Schneider, "Pseudo-effective line bundles on compact Kähler manifolds", *Int. J. Math.* **12** (2001), no. 6, p. 689-741.
- [8] Q. Guan, "A sharp effectiveness result of Demailly's strong openness conjecture", Adv. Math. 348 (2019), p. 51-80.
- [9] Q. Guan, Z. Mi, "Concavity of minimal L² integrals releted to multiplier ideal sheaves", *Peking Math. J.* (2022), https://doi.org/10.1007/s42543-021-00047-5.
- [10] Q. Guan, Z. Mi, Z. Yuan, "Concavity property of minimal L^2 integrals with Lebesgue measurable gain II", 2022, https://arxiv.org/abs/2211.00473v1.
- [11] Q. Guan, X. Zhou, "Optimal constant problem in the L^2 extension theorem", C. R. Math. Acad. Sci. Paris **350** (2012), no. 15-16, p. 753-756.
- [12] ______, "Optimal constant in an L^2 extension problem and a proof of a conjecture of Ohsawa", *Sci. China Math.* **58** (2015), no. 1, p. 35-59.
- [13] ______, "A solution of an L^2 extension problem with an optimal estimate and applications", *Ann. Math.* **181** (2015), no. 3, p. 1139-1208.
- [14] G. Hosono, "On sharper estimates of Ohsawa-Takegoshi *L*²-extension theorem", *J. Math. Soc. Japan* **71** (2019), no. 3, p. 909-914.
- [15] B. Jennane, "Extension d'une fonction définie sur une sous-variété avec contrôle de la croissance", in Séminaire Pierre Lelong-Henri Skoda (Analyse), Année 1976/77, Springer, 1978, p. 126-133.
- [16] N. Suita, "Capacities and kernels on Riemann surfaces", Arch. Ration. Mech. Anal. 46 (1972), p. 212-217.
- [17] W. Xu, X. Zhou, "Optimal L^2 extensions of openness type", 2022, https://arxiv.org/abs/2202.04791v2.
- [18] X. Zhou, L. Zhu, "An optimal L^2 extension theorem on weakly pseudoconvex Kähler manifolds", *J. Differ. Geom.* **110** (2018), no. 1, p. 135-186.