# Comptes Rendus 

## Mathématique

Wang Xu and Xiangyu Zhou
Optimal $L^{\mathbf{2}}$ Extensions of Openness Type and Related Topics
Volume 361 (2023), p. 679-683
Published online: 2 March 2023
https: //doi.org/10.5802/crmath. 437
$(\sigma)$ Br $\quad$ This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

# Optimal $L^{2}$ Extensions of Openness Type and Related Topics 

Wang $\mathrm{Xu}^{*, a}$ and Xiangyu Zhou ${ }^{b}$<br>${ }^{a}$ School of Mathematical Sciences, Peking University, Beijing, 100871, P. R. China<br>${ }^{b}$ Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, P. R. China<br>E-mails: xuwang@amss.ac.cn, xyzhou@math.ac.cn


#### Abstract

We establish several optimal $L^{2}$ extension theorems of openness type on weakly pseudoconvex Kähler manifolds. We prove a product property for certain minimal $L^{2}$ extensions, which generalizes the product property of Bergman kernels. We describe a different approach to the Suita conjecture and its generalizations, which is based on a log-concavity for certain minimal $L^{2}$ integrals. Résumé. Nous établissons quelques théorèmes d'extension optimaux $L^{2}$ pour les formes ouvertes sur les variété Kähler faiblement pseudoconvexes. Nous prouvons les propriétés de produit de certaines extensions minimales de $L^{2}$, qui généralisent les propriétés de produit du noyau Bergman. Sur la base de la concavité logarithmique de certaines intégrales minimales de $L^{2}$, nous donnons une méthode différente pour la conjecture de Suita et son extension.


2020 Mathematics Subject Classification. 32D15, 32A36, 32L05, 32W05, 32E10, 14C30, 30C40.
Funding. The second author is partially supported by the NSFC grant (11688101 and 12288201).
Manuscript received 5 February 2022, accepted 16 October 2022.

## 1. Backgrounds

In this note, we study the following problem: let $S$ be a closed submanifold of a complex manifold $M$ and $E$ be a Hermitian holomorphic vector bundle on $M$; suppose $f$ is an $L^{2}$ holomorphic section of $E$ defined in a neighborhood $U$ of $S$, find a holomorphic section $F \in \Gamma(M, E)$ so that $\left.F\right|_{S}=\left.f\right|_{S}$ and the $L^{2}$-norm $\|F\|_{M}$ is uniformly and optimally controlled by the $L^{2}$-norm $\|f\|_{U}$. This problem is closely related to but different from the usual $L^{2}$ extension problem (where $f$ is defined on $S$ and $\|f\|_{U}$ is replaced by $\|f\|_{S}$ ), which is called optimal $L^{2}$ extension problem of openness type, in order to distinguish with the usual one.

The existence part of the $L^{2}$ extension problem of openness type is well studied, e.g. Jennane [15] and Demailly [4,5] (see also [6, Chapter VIII.7]). This note is devoted to the optimal part of the problem and some related topics. Details of the proofs will appear in [17].

[^0]
## 2. Optimal $L^{2}$ Extension Theorems of Openness Type

Recall that, a complex manifold $\Omega$ is said to be weakly pseudoconvex if there exists a smooth psh exhaustion function for $\Omega$; an upper semi-continuous function $\varphi: \Omega \rightarrow[-\infty,+\infty)$ is said to be quasi-psh if $\varphi$ is locally the sum of a psh function and a smooth function. Given a quasipsh function $\varphi$ on a complex manifold $\Omega$, we denote by $\mathscr{I}(\varphi) \subset \mathscr{O}_{\Omega}$ the multiplier ideal sheaf associated to $\varphi$, i.e. $\mathscr{I}(\varphi)_{x}=\left\{f_{x} \in \mathscr{O}_{\Omega, x}:\left|f_{x}\right|^{2} e^{-\varphi}\right.$ is integrable in some neighborhood of $\left.x\right\}$.

Theorem 1. Let $(\Omega, \omega)$ be a weakly pseudoconvex Kähler manifold and $(E, h)$ be a Hermitian holomorphic vector bundle over $\Omega$. Suppose there are quasi-psh functions $\psi<0$ and $\varphi$, continuous $\operatorname{real}(1,1)$-forms $\gamma \geq 0$ and $\rho$ on $\Omega$ such that

$$
\sqrt{-1} \partial \bar{\partial} \psi \geq \gamma, \quad \sqrt{-1} \partial \bar{\partial} \varphi \geq \rho \quad \text { and } \quad \sqrt{-1} \Theta(E, h)+(\gamma+\rho) \otimes \operatorname{Id}_{E} \geq_{\mathrm{Nak}} 0 .
$$

Let $\Omega_{a}:=\{z \in \Omega: \psi(z)<-a\}$, where $a \in \mathbb{R}_{+}$. Then for any holomorphic section $f \in \Gamma\left(\Omega_{a}, K_{\Omega} \otimes E\right)$ satisfying $\int_{\Omega_{a}}|f|_{\omega, h}^{2} e^{-\varphi} \mathrm{d} V_{\omega}<+\infty$, there exists $F \in \Gamma\left(\Omega, K_{\Omega} \otimes E\right)$ such that

$$
\begin{equation*}
\left.F\right|_{\Omega_{a}}-f \in \Gamma\left(\Omega_{a}, \mathscr{O}\left(K_{\Omega} \otimes E\right) \otimes \mathscr{I}(\varphi+\psi)\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}|F|_{\omega, h}^{2} e^{-\varphi} \mathrm{d} V_{\omega} \leq e^{a} \int_{\Omega_{a}}|f|_{\omega, h}^{2} e^{-\varphi} \mathrm{d} V_{\omega} \tag{2}
\end{equation*}
$$

The proof of Theorem 1 uses the $L^{2}$ techniques developed by Guan-Zhou [13] and ZhouZhu [18], together with a log-concavity for certain minimal $L^{2}$ integrals (which is essentially due to Guan [8]). Since $\Omega$ is a weakly pseudoconvex Kähler manifold, we approximate the quasi-psh functions on relatively compact subdomains by the methods of [7] and then solve $\bar{\partial}$-equations with error terms. Using the $L^{2}$ techniques, we prove the theorem with the uniform constant replaced by $e^{a}+1$. Using the log-concavity, we then obtain the uniform constant $e^{a}$.
Definition 2. Let $U \subset \mathbb{C}^{n}$ be an open set and $f, g \in \mathscr{O}(U)$. Given $x \in U$ and $k \in \mathbb{N}$, if $\partial^{\alpha} f(x)=\partial^{\alpha} g(x)$ for all multi-order $\alpha \in \mathbb{N}^{n}$ with $|\alpha| \leq k$, then we say " $f$ coincides with $g$ up to order $k$ at $x$ ". In particular, if $f$ coincides with the zero function up to order $k$ at $x$, then we say " $f$ vanishes up to order $k$ at $x$ ". Clearly, $f$ vanishes up to order $k$ at $x$ if and only if $[f]_{x} \in \mathfrak{m}_{x}^{k+1}$. These concepts can be easily extended to holomorphic sections of holomorphic vector bundles.

If there exists a closed subset $S \subset \Omega$ so that $\mathscr{I}(\varphi+\psi)_{x} \subset \mathfrak{m}_{x}^{k+1}$ for any $x \in S$, then the condition (1) implies that $F$ coincides with $f$ up to order $k$ along $S$. In particular, we have the following corollary.
Corollary 3. Let $\Omega$ be a bounded pseudoconvex domain in $\mathbb{C}^{n}, \varphi$ be a psh function on $\Omega$, and $G_{\Omega}(\cdot, w)$ be the pluricomplex Green function of $\Omega$ with a pole at $w \in \Omega$. Let $U=\left\{G_{\Omega}(\cdot, w)<-a\right\}$ for some $a \in \mathbb{R}_{+}$. For any $f \in \mathscr{O}(U)$ satisfying $\int_{U}|f|^{2} e^{-\varphi} \mathrm{d} \lambda<+\infty$, there exists a holomorphic function $F \in \mathscr{O}(\Omega)$ such that $F$ coincides with $f$ up to order $k \in \mathbb{N}$ at $w$ and

$$
\begin{equation*}
\int_{\Omega}|F|^{2} e^{-\varphi} \mathrm{d} \lambda \leq e^{2(n+k) a} \int_{U}|f|^{2} e^{-\varphi} \mathrm{d} \lambda . \tag{3}
\end{equation*}
$$

The case of $k=0$ and $\varphi \equiv 0$ has been obtained by Błocki [2], whose proof used a tensor power trick. It is clear that the uniform estimates of Theorem 1 and Corollary 3 are optimal.

Using similar arguments as Theorem 1, we prove another $L^{2}$ extension theorem of openness type, whose prototype comes from [6, Chapter VIII.7]. Demailly's theorem corresponds to the case of $m=0$ and the right hand side of (4) is replaced by $\left(1+\frac{(p+1)^{2}}{\varepsilon}\right) \int_{U}|f|_{\omega, h}^{2} e^{-\varphi} \mathrm{d} V_{\omega}$.
Theorem 4. Let $(\Omega, \omega)$ be a weakly pseudoconvex Kähler manifold of dimension $n$ and $(E, h)$ be a Hermitian holomorphic vector bundle over $\Omega$. Suppose there exists a quasi-psh function $\varphi$ and a continuous real $(1,1)$-form $\rho$ on $\Omega$ such that

$$
\sqrt{-1} \partial \bar{\partial} \varphi \geq \rho \quad \text { and } \quad \sqrt{-1} \Theta(E, h)+\rho \otimes \operatorname{Id}_{E} \geq_{\mathrm{Nak}} 0 .
$$

Suppose $w=\left(w_{1}, \ldots, w_{p}\right)$ is a tuple of holomorphic functions on $\Omega(1 \leq p \leq n)$, let

$$
S=\{x \in \Omega: w(x)=0\} \quad \text { and } \quad U=\{x \in \Omega:|w(x)|<1\} .
$$

Assume that $\mathrm{d} w_{1} \wedge \cdots \wedge \mathrm{~d} w_{p} \neq 0$ generically on $S$. Given $m \in \mathbb{N}$ and $0<\varepsilon<m+p$, for any holomorphic section $f \in \Gamma\left(U, K_{\Omega} \otimes E\right)$ satisfying $\int_{U}|f|_{\omega, h}^{2} e^{-\varphi} \mathrm{d} V_{\omega}<+\infty$, there exists $F \in \Gamma\left(\Omega, K_{\Omega} \otimes E\right)$ such that $F$ coincides with $f$ up to order $m$ along $S$ and

$$
\begin{equation*}
\int_{\Omega} \frac{|F|_{\omega, h}^{2} e^{-\varphi}}{\left(1+|w|^{2}\right)^{m+p+\varepsilon}} \mathrm{d} V_{\omega} \leq \frac{\int_{0}^{1} \tau^{m+p-1}(1-\tau)^{\varepsilon-1} \mathrm{~d} \tau}{\int_{0}^{1 / 2} \tau^{m+p-1}(1-\tau)^{\varepsilon-1} \mathrm{~d} \tau} \int_{U} \frac{|f|_{\omega, h}^{2} e^{-\varphi}}{\left(1+|w|^{2}\right)^{m+p+\varepsilon}} \mathrm{d} V_{\omega} \tag{4}
\end{equation*}
$$

Let $\Omega=\mathbb{C}^{n}$ and $\omega$ be the standard Kähler form. Let $w=\left(z_{1}, \ldots, z_{p}\right)$ be the first $p$ coordinates of $\mathbb{C}^{n}$, then $S \cong \mathbb{C}^{n-p}$ is a linear subspace and $U \cong \mathbb{B}^{p} \times \mathbb{C}^{n-p}$. Let $(E, h)=\left(K_{\Omega}^{-1}, \operatorname{det} \omega\right)$ and $\varphi \equiv 0$. Let $u$ be a homogeneous polynomial in $z_{1}, \ldots, z_{p}$ of degree $m$ and $v \in \mathscr{O}\left(\mathbb{C}^{n-p}\right)$ be a holomorphic function of $z_{p+1}, \ldots, z_{n}$. Let $f:=u v \in \mathscr{O}(U)$ and let $F$ be the unique holomorphic function on $\mathbb{C}^{n}$ such that $F$ coincides with $f$ up to order $m$ along $S$ and the left hand side of (4) is minimized. It is easy to show that $F \equiv u v$ and the inequality (4) is sharp.

## 3. Sharper Estimates in Optimal $L^{2}$ Extension Theorems

Let $\Omega$ be a weakly pseudoconvex Kähler manifold of dimension $n$. Let $(E, h)$ be a Hermitian holomorphic vector bundle over $\Omega$ whose curvature is Nakano semi-positive. Assume that $\psi<0$ is a psh function on $\Omega$ having a logarithmic pole at $x \in \Omega$ : if $(U, z)$ is a coordinate chart so that $z(x)=0$, then $\psi-\log |z|$ is bounded near $x$. By the optimal $L^{2}$ extension theorem ( $\left.[13,18]\right)$ : for any $\xi \in E_{x}$, there exists a holomorphic section $F \in \Gamma\left(\Omega, K_{\Omega} \otimes E\right)$ such that $F(x)=\mathrm{d} z \otimes \xi$ and $\int_{\Omega}(\sqrt{-1})^{n^{2}} F \wedge_{h} \bar{F} \leq \frac{(2 \pi)^{n}}{n!} e^{-2 n c}|\xi|_{h}^{2}$, where $\mathrm{d} z:=\mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{n}$ and $c:=\underline{\lim }_{z \rightarrow 0}(\psi(z)-\log |z|)$.

The uniform estimate in the above statement is optimal: there are admissible situations where the constant $\frac{(2 \pi)^{n}}{n!} e^{-2 n c}$ cannot be replaced by a smaller one. Under some additional conditions, we may obtain a sharper estimate. For example, if the curvature of $(E, h)$ is Nakano positive somewhere, then there exists an extension $F$ of $\mathrm{d} z \otimes \xi$ so that $\int_{\Omega}(\sqrt{-1})^{n^{2}} F \wedge_{h} \bar{F}<\frac{(2 \pi)^{n}}{n!} e^{-2 n c}|\xi|_{h}^{2}$. Hosono's [14] result is a special case. Using Theorem 1, we have one more example.

Theorem 5. Let $\Omega \ni x,(E, h)$ and $\psi$ be the same as above. Moreover, we assume that:
(i) the curvature of $(E, h)$ is Griffiths positive at $x$;
(ii) $(U, z)$ can be chosen so that $z(x)=0$ and $\psi(z)=c+\log |z|+o\left(|z|^{2}\right)$ as $z \rightarrow 0$.

There exists a constant $\tau \in(0,1)$ depends on $h$ and $\psi$, for any $\xi \in E_{x}$, we can find a holomorphic section $F \in \Gamma\left(\Omega, K_{\Omega} \otimes E\right)$ such that $F(x)=\mathrm{d} z \otimes \xi$ and

$$
\begin{equation*}
\int_{\Omega}(\sqrt{-1})^{n^{2}} F \wedge_{h} \bar{F} \leq(1-\tau) \frac{(2 \pi)^{n}}{n!} e^{-2 n c}|\xi|_{h}^{2} \tag{5}
\end{equation*}
$$

Since $(E, h)$ is Griffiths positive at $x$, we can construct a local $L^{2}$ holomorphic extension with sharper estimate, then we apply Theorem 1 to obtain a global extension with sharper estimate. The technical condition (ii) guarantees that the sublevel set $\{\psi<-a\}$ (with $a \gg 1$ ) is almost an Euclidean ball in $U$. Moreover, if $\Omega$ is a hyperbolic Riemann surface and $\psi=G_{\Omega}(\cdot, x)$ is the Green function, then the condition (ii) is automatically satisfied.

## 4. A Product Property for Minimal $L^{2}$ Extensions

The tensor power trick of [2] relies on the product property of Bergman kernels. Notice that, Bergman kernel records the norm of certain minimal $L^{2}$ extension: let $\Omega \subset \mathbb{C}^{n}$ be an open set, then $B_{\Omega}(w)^{-1}=\inf \left\{\int_{\Omega}|f|^{2} \mathrm{~d} \lambda: f \in \mathscr{O}(\Omega), f(w)=1\right\}$. As a generalization, we prove a product property for general minimal $L^{2}$ extensions.

For $i=1$ and 2 , let $\left(\Omega_{i}, \mathrm{~d} V_{i}\right)$ be a complex manifold with continuous volume form, $\left(E_{i}, h_{i}\right) \rightarrow \Omega_{i}$ be a holomorphic vector bundle with continuous Hermitian metric, $S_{i} \subset \Omega_{i}$ be an arbitrary closed subset, and $\psi_{i}$ be a measurable function on $\Omega_{i}$ which is locally bounded above. We define

$$
\begin{equation*}
A^{2}\left(\Omega_{i}, E_{i}\right):=\left\{f_{i} \in \Gamma\left(\Omega_{i}, E_{i}\right):\left\|f_{i}\right\|^{2}=\int_{\Omega_{i}}\left|f_{i}\right|_{h_{i}}^{2} e^{-\psi_{i}} \mathrm{~d} V_{i}<+\infty\right\}, \quad i=1 \text { and } 2 . \tag{6}
\end{equation*}
$$

Let $\Omega:=\Omega_{1} \times \Omega_{2}$ be the product manifold and let $p_{i}: \Omega \rightarrow \Omega_{i}$ be the natural projections. Let $\mathrm{d} V:=p_{1}^{*} \mathrm{~d} V_{1} \times p_{2}^{*} \mathrm{~d} V_{2}, E:=p_{1}^{*} E_{1} \otimes p_{2}^{*} E_{2}, h:=p_{1}^{*} h_{1} \otimes p_{2}^{*} h_{2}$ and $\psi:=p_{1}^{*} \psi_{1}+p_{2}^{*} \psi_{2}$. Then we define $A^{2}(\Omega, E)$ in a similar way as (6). We can show that $A^{2}(\Omega, E)=A^{2}\left(\Omega_{1}, E_{1}\right) \widehat{\otimes} A^{2}\left(\Omega_{2}, E_{2}\right)$.

By constructing a special orthogonal decomposition which is compatible with the Hilbert tensor product $\widehat{\otimes}$, we can prove a product property for minimal $L^{2}$ holomorphic extensions. Since we need to assume the existence of global $L^{2}$ extensions, we simply assume that $f_{i} \in A^{2}\left(\Omega_{i}, E_{i}\right)$, and we are interested in high-order minimal $L^{2}$ extensions of $f_{i} \mid s_{i}$.

Theorem 6. Let $f_{1} \in A^{2}\left(\Omega_{1}, E_{1}\right)$ and $f_{2} \in A^{2}\left(\Omega_{2}, E_{2}\right)$ be given. For $i=1$ and 2 , let $F_{i}$ be the unique element with minimal norm in $A^{2}\left(\Omega_{i}, E_{i}\right)$ that coincides with $f_{i}$ up to order $m_{i} \in \mathbb{N}$ along $S_{i}$. Let $F$ be the unique element with minimal norm in $A^{2}(\Omega, E)$ that coincides with $f:=f_{1} \otimes f_{1}$ up to order $m_{1}+m_{2}$ along $S:=S_{1} \times S_{2}$. Then

$$
\begin{equation*}
\|F\|_{A^{2}(\Omega, E)}^{2} \geq\left\|F_{1}\right\|_{A^{2}\left(\Omega_{1}, E_{1}\right)}^{2}\left\|F_{2}\right\|_{A^{2}\left(\Omega_{2}, E_{2}\right)}^{2} . \tag{7}
\end{equation*}
$$

Moreover, if $m_{i}=0$ or $f_{i}$ vanishes up to order $m_{i}-1$ on $S_{i}$ for $i=1$ and 2, then

$$
\begin{equation*}
F=F_{1} \otimes F_{2} \quad \text { and } \quad\|F\|_{A^{2}(\Omega, E)}^{2}=\left\|F_{1}\right\|_{A^{2}\left(\Omega_{1}, E_{1}\right)}^{2}\left\|F_{2}\right\|_{A^{2}\left(\Omega_{2}, E_{2}\right)}^{2} . \tag{8}
\end{equation*}
$$

If $S_{i}$ are singleton sets and $m_{i}=0$, then (8) corresponds to the product property of Bergman kernels. Using Theorem 6 and imitating the tensor power trick of [2], one can prove a weak version of Theorem 1 .

## 5. Generalized Suita Conjecture with Jets and Weights

A motivation for optimal $L^{2}$ extension theorems is the long-standing Suita conjecture. Let $\Omega$ be a potential-theoretically hyperbolic Riemann surface. Let $(U, z)$ be a coordinate chart of $\Omega$. Locally, we denote by $\kappa_{\Omega}=B_{\Omega}|\mathrm{d} z|^{2}$ the Bergman kernel of $\Omega$ and $c_{\beta}|\mathrm{d} z|$ the logarithmic capacity of $\Omega$. Suita [16] conjectured that $\pi B_{\Omega} \geq c_{\beta}^{2}$, and $\pi B_{\Omega}(w)=c_{\beta}(w)^{2}$ for some $w \in \Omega$ if and only if $\Omega$ is conformally equivalent to the unit disc less a possible closed polar set. The inequality part of Suita's conjecture was solved by Błocki [1] and Guan-Zhou [11], and the equality part was solved by Guan-Zhou [13]. Moreover, Guan-Zhou [12, 13] proved the extended Suita conjecture and Błocki-Zwonek [3] obtained a high-order generalization to the inequality part.

In proving Theorem 1, we use a log-concavity for minimal $L^{2}$ integrals. Tracing the proof, we obtain a necessary condition for the concavity degenerating to linearity (see also [9]). Using the concavity and the necessary condition, we have a different approach to Suita's conjecture and its generalizations.

Proposition 7. Let $\varphi$ be a harmonic function on $\Omega$ and $\psi=2(m+1) G_{\Omega}(\cdot, w)$. For each $t \geq 0$, let

$$
\Omega_{t}:=\{z \in \Omega: \psi(z)<-t\} \text { and } \mathscr{A}_{t}:=\left\{F \in \Gamma\left(\Omega_{t}, K_{\Omega}\right):\|F\|^{2}=\int_{\Omega_{t}} \frac{\sqrt{-1}}{2} F \wedge \bar{F} e^{-\varphi}<+\infty\right\} .
$$

Let $f$ be a holomorphic 1-form defined in a neighborhood of $w$. For each $t \geq 0$, let $F_{t} \in \mathscr{A}_{t}$ be the unique element with minimal norm that coincides with $f$ up to order $m$ at $w$. Let $I(t):=\left\|F_{t}\right\|_{\mathscr{A}_{t}}^{2}$ and we assume that $I(t)>0$. Then $r \mapsto I(-\log r)$ is a concave non-decreasing function on $(0,1]$ and $I(0) \leq I(t) e^{t}$ for all $t>0$. Moreover, if $r \mapsto I(-\log r)$ is linear, then $\left.F_{t} \equiv F_{0}\right|_{\Omega_{t}}$ for any $t>0$.

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and $\mathbb{S}=\{z \in \mathbb{C}:|z|=1\}$. Let $p: \mathbb{D} \rightarrow \Omega$ be a universal covering. Then the fundamental group $\pi_{1}(\Omega)$ is identified with a subgroup of $\operatorname{Aut}(\mathbb{D})$, and $p \circ \sigma=p$ for any $\sigma \in \pi_{1}(\Omega)$. For any $w \in \Omega$, there exists an $f_{w} \in \mathscr{O}(\mathbb{D})$ so that $\log \left|f_{w}\right|=p^{*}\left(G_{\Omega}(\cdot, w)\right)$. Then there is a multiplier $\chi_{w} \in \operatorname{Hom}\left(\pi_{1}(\Omega), \mathbb{S}\right)$ so that $p^{*} f_{w}=\chi_{w}(\sigma) f_{w}$ for any $\sigma \in \pi_{1}(\Omega)$. For any harmonic function $\eta$ on $\Omega$, there exists an $f_{\eta} \in \mathscr{O}(\mathbb{D})$ so that $\log \left|f_{\eta}\right|=p^{*} \eta$. Then there is a multiplier $\chi_{\eta} \in \operatorname{Hom}\left(\pi_{1}(\Omega), \mathbb{S}\right)$ so that $p^{*} f_{\eta}=\chi_{\eta}(\sigma) f_{\eta}$ for any $\sigma \in \pi_{1}(\Omega)$.

## Theorem 8. Given an integer $m \in \mathbb{N}$ and a harmonic function $\eta$ on $\Omega$, we define

$$
\begin{equation*}
B_{\Omega, \eta}^{(m)}(w):=\sup \left\{\left|\frac{\partial^{m} f}{\partial z^{m}}(w)\right|^{2}: \int_{\Omega} \frac{\sqrt{-1}}{2} F \wedge \bar{F}\left(\Omega, K_{\Omega}\right) \text { with }\left.F\right|_{U}=f \mathrm{~d} z, \quad, \quad\left[,[f]_{w} \in \mathfrak{m}_{w}^{m}\right\}, \quad w \in \Omega\right. \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\pi e^{-2 \eta(w)} B_{\Omega, \eta}^{(m)}(w) \geq m!(m+1)!c_{\beta}(w)^{2 m+2} \tag{10}
\end{equation*}
$$

Moreover, the equality holds if and only if $\chi_{\eta}^{-1}=\chi_{w}^{m+1}$, if and only if there exists a holomorphic function $g \in \mathscr{O}(\Omega)$ such that $\log |g|=(m+1) G_{\Omega}(\cdot, w)+\eta$.

The extended Suita conjecture is the case of $m=0$, and Błocki-Zwonek's generalization is the inequality (10) with $\eta \equiv 0$. Recently, Guan-Mi-Yuan [10] obtain a result generalizing Theorem 8, but our proof is different.

## References

[1] Z. Błocki, "Suita conjecture and the Ohsawa-Takegoshi extension theorem", Invent. Math. 193 (2013), no. 1, p. 149158.
[2] ——, "A lower bound for the Bergman kernel and the Bourgain-Milman inequality", in Geometric aspects of functional analysis, Springer, 2014, p. 53-63.
[3] Z. Błocki, W. Zwonek, "One dimensional estimates for the Bergman kernel and logarithmic capacity", Proc. Am. Math. Soc. 146 (2018), no. 6, p. 2489-2495.
[4] J.-P. Demailly, "Estimations $L^{2}$ pour l'opérateur $\bar{\partial}$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète", Ann. Sci. Éc. Norm. Supér. 15 (1982), no. 3, p. 457-511.
[5] _, "Scindage holomorphe d'un morphisme de fibrés vectoriels semi-positifs avec estimations $L^{2}$ ", in Seminar Pierre Lelong-Henri Skoda (Analysis), 1980/1981, Springer, 1982, p. 77-107.
[6] ——, "Complex analytic and differential geometry", e-book, 2012.
[7] J.-P. Demailly, T. Peternell, M. Schneider, "Pseudo-effective line bundles on compact Kähler manifolds", Int. J. Math. 12 (2001), no. 6, p. 689-741.
[8] Q. Guan, "A sharp effectiveness result of Demailly's strong openness conjecture", Adv. Math. 348 (2019), p. 51-80.
[9] Q. Guan, Z. Mi, "Concavity of minimal $L^{2}$ integrals releted to multiplier ideal sheaves", Peking Math. J. (2022), https://doi.org/10.1007/s42543-021-00047-5.
[10] Q. Guan, Z. Mi, Z. Yuan, "Concavity property of minimal $L^{2}$ integrals with Lebesgue measurable gain II", 2022, https://arxiv.org/abs/2211.00473v1.
[11] Q. Guan, X. Zhou, "Optimal constant problem in the $L^{2}$ extension theorem", C. R. Math. Acad. Sci. Paris 350 (2012), no. 15-16, p. 753-756.
[12] , "Optimal constant in an $L^{2}$ extension problem and a proof of a conjecture of Ohsawa", Sci. China Math. 58 (2015), no. 1, p. 35-59.
[13] -, "A solution of an $L^{2}$ extension problem with an optimal estimate and applications", Ann. Math. 181 (2015), no. 3, p. 1139-1208.
[14] G. Hosono, "On sharper estimates of Ohsawa-Takegoshi $L^{2}$-extension theorem", J. Math. Soc. Japan 71 (2019), no. 3, p. 909-914.
[15] B. Jennane, "Extension d'une fonction définie sur une sous-variété avec contrôle de la croissance", in Séminaire Pierre Lelong-Henri Skoda (Analyse), Année 1976/77, Springer, 1978, p. 126-133.
[16] N. Suita, "Capacities and kernels on Riemann surfaces", Arch. Ration. Mech. Anal. 46 (1972), p. 212-217.
[17] W. Xu, X. Zhou, "Optimal $L^{2}$ extensions of openness type", 2022, https://arxiv.org/abs/2202.04791v2.
[18] X. Zhou, L. Zhu, "An optimal $L^{2}$ extension theorem on weakly pseudoconvex Kähler manifolds", J. Differ. Geom. 110 (2018), no. 1, p. 135-186.


[^0]:    * Corresponding author.

