I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

Mathématique

Phuong Le

Uniqueness of bounded solutions to \boldsymbol{p}-Laplace problems in strips

Volume 361 (2023), p. 795-801
Published online: 11 May 2023
https://doi.org/10.5802/crmath. 442

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

MERSENNE

Uniqueness of bounded solutions to p-Laplace problems in strips

Phuong Le ${ }^{\oplus a, b}$

$a_{\text {Faculty of Economic Mathematics, University of Economics and Law, Ho Chi Minh }}$
City, Vietnam
${ }^{b}$ Vietnam National University, Ho Chi Minh City, Vietnam
E-mail: phuongl@uel.edu.vn

Abstract

We consider a p-Laplace problem in a strip with two-constant boundary Dirichlet conditions. We show that if the width of the strip is smaller than some $d_{0} \in(0,+\infty]$, then the problem admits a unique bounded solution, which is strictly monotone. Hence this unique solution is one-dimensional symmetric and belongs to the C^{2} class. We also show that the problem has no bounded solution in the case that $d_{0}<+\infty$ and the width of the strip is larger than or equal to d_{0}. An analogous rigidity result in the whole space was obtained recently by Esposito et al. [8]

Keywords. p-Laplace equation, uniqueness, monotonicity, 1D symmetry.
Mathematical subject classification (2010). 35J92, 35A01, 35A02, 35B06.
Manuscript received 26 September 2022, revised 31 October 2022, accepted 9 November 2022.

1. Introduction

Given $N \geq 1, p>1, a<b, \Omega=\mathbb{R}^{N-1} \times(0, h)$ and f is a locally Lipschitz continuous function, we study the uniqueness, symmetry and monotonicity of solutions to the problem

$$
\begin{cases}-\Delta_{p} u=f(u) & \text { in } \Omega, \tag{1}\\ u=a & \text { on } \mathbb{R}^{N-1} \times\{0\}, \\ u=b & \text { on } \mathbb{R}^{N-1} \times\{h\},\end{cases}
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian of u. When $p=2$, this is a classical topic which was investigated in the works of Berestycki, Caffarelli and Nirenberg [2,3], Angenent [1], Clément and Sweers [4] for various types of domains.

One difficulty that arises in the case $p \neq 2$ is that the p-Laplacian is nonlinear. Moreover, this operator is singular or degenerate depending on $1<p<2$ or $p>2$, respectively. Hence, solutions to (1) should be understood in the weak sense, see [6, 10]. Throughout our paper, solutions to p-Laplace problems with boundary conditions will be always understood in the following weak sense.

Definition 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \partial \mathscr{U} \rightarrow \mathbb{R}$ be continuous functions, where \mathscr{U} is a domain of \mathbb{R}^{N}. A function $u \in W_{\text {loc }}^{1, p}(\mathscr{U}) \cap C(\overline{\mathscr{U}})$ is called a (weak) solution to the problem

$$
\begin{cases}-\Delta_{p} u=f(u) & \text { in } \mathscr{U}, \\ u=g & \text { on } \partial \mathscr{U}\end{cases}
$$

if

$$
u(x)=g(x) \quad \text { for all } x \in \partial \mathscr{U}
$$

and

$$
\begin{equation*}
\int_{\mathscr{U}}|\nabla u|^{p-2} \nabla u \cdot \nabla \psi=\int_{\mathscr{U}} f(u) \psi \quad \text { for all } \psi \in C_{0}^{1}(\overline{\mathscr{U}}) . \tag{2}
\end{equation*}
$$

Throughout this paper, we denote

$$
Z_{f}:=\{z \in[a, b] \mid f(z)=0\}
$$

Under some mild assumptions on f, we find a necessary and sufficient condition on h to ensure that problem (1) has a bounded solution (by bounded solution, we mean weak solutions in $L^{\infty}(\Omega)$). We also show that the solution is unique and monotone increasing in the x_{N}-direction. Our main result is the following.

Theorem 2. Suppose that f is a locally Lipschitz continuous function such that $f(a)=f(b)=0$, $f(s)>0$ for $s<a, f(s)<0$ for $s>b$, and

$$
\begin{equation*}
\liminf _{t \rightarrow z^{+}} \frac{f(t)}{(t-z)^{p-1}}>-\infty, \quad \limsup _{t \rightarrow z^{-}} \frac{f(t)}{(z-t)^{p-1}}<+\infty \quad \text { for all } z \in Z_{f} \tag{3}
\end{equation*}
$$

Then problem (1) has a bounded solution if and only if

$$
\begin{equation*}
h<\left(\frac{p-1}{p}\right)^{\frac{1}{p}} \int_{a}^{b} \frac{d s}{\left[\max _{[a, b]} F-F(s)\right]^{\frac{1}{p}}} \tag{4}
\end{equation*}
$$

where $F(s)=\int_{a}^{s} f(t) \mathrm{d} t$. Moreover, such a solution u is unique and $\partial_{x_{N}} u>0$ in Ω. Consequently, $u \in C^{2}(\Omega)$ and u depends only on x_{N}, i.e., $u(x)=u\left(x_{N}\right)$.

If we further assume that $f(t)=-f(a+b-t)$ for $t \in\left[a, \frac{a+b}{2}\right]$, then

$$
u\left(x_{N}\right)=a+b-u\left(h-x_{N}\right) \quad \text { for } x_{N} \in\left[0, \frac{h}{2}\right]
$$

Remark 3. Locally Lipschitz continuous functions satisfy (3) automatically when $1<p \leq 2$. Notice also that the integral in (4) may be infinity. In particular, this happens to the Allen-Cahn nonlinearity $f(t)=t-t^{3}$ when $(a, b)=(-1,1)$ and $1<p \leq 2$.

Theorem 2 is motivated by a recent result by Esposito et al. [8], where they studied the problem

$$
\begin{cases}-\Delta_{p} u=f(u) & \text { in } \mathbb{R}^{N} \tag{5}\\ |u| \leq 1 & \text { in } \mathbb{R}^{N} \\ \lim _{x_{N} \rightarrow \pm \infty} u\left(x^{\prime}, x_{N}\right)= \pm 1 & \text { uniformly in } x^{\prime} \in \mathbb{R}^{N-1}\end{cases}
$$

under assumptions $\frac{2 N+2}{N+2}<p<2$ and $f \in C^{1}([-1,1])$ such that $f(-1)=f(1)=0, f_{+}^{\prime}(-1)<0$, $f_{-}^{\prime}(1)<0$ and Z_{f} is finite. They prove that every solution u of (5) depends only on x_{N} and $\frac{\partial u}{\partial x_{N}}>0$ in \mathbb{R}^{N}.

The proof in [8] is based on the method of moving planes, in which various types of comparison principles for the p-Laplacian are exploited. This in turn requires the technical assumption $\frac{2 N+2}{N+2}<p<2$ and some restrictions on f.

The moving plane method can also be applied to problem (1), which can be regarded as a finite version of problem (5), to yield the one-dimensional symmetry of solutions under similar restrictions on p and f. To cover the full range $1<p<+\infty$ and to deal with weaker assumptions
on f in Theorem 2, we follow another approach based on the ideas in [5, 7]. First, we construct the minimal and maximal solutions to the problem. These solutions depend only on x_{N}. Then a careful ODE analysis of (1) with $N=1$ reveals that the problem has a unique solution in dimension one, and it is monotone increasing. This implies that solutions in higher dimensions are also unique, one-dimensional symmetric and monotone increasing in x_{N}.

In Section 2, we prove Theorem 2 for dimension one. In Section 3, we prove it for more general cases. We always use C to denote a generic positive constant whose concrete value is not important.

2. ODE analysis

In this section, we study the ODE problem

$$
\begin{cases}-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=f(u) & \text { in }(0, h) \tag{6}\\ a \leq u \leq b & \text { in }(0, h) \\ u(0)=a, u(h)=b & \end{cases}
$$

Theorem 4. Let f be a locally Lipschitz continuous function such that $f(a)=f(b)=0$ and (3) holds. Then problem (6) has a solution if and only if (4) holds. Moreover, such a solution u is unique, $u^{\prime}>0$ in $(0, h)$ and $u \in C^{2}((0, h))$. If we further assume that $f(t)=-f(a+b-t)$ for $t \in\left[a, \frac{a+b}{2}\right]$, then

$$
\begin{equation*}
u(t)=a+b-u(h-t) \quad \text { for } t \in\left[0, \frac{h}{2}\right] \tag{7}
\end{equation*}
$$

Proof. Assume that problem (6) admits a solution u. By Hopf's lemma [11], we have $u^{\prime}(0)>0$. Let $\left(0, t_{0}\right)$ be the largest interval such that $u^{\prime}(t)>0$ for all $t \in\left(0, t_{0}\right)$. By the standard regularity, u is C^{2} in $\left(0, t_{0}\right)$ and in this interval

$$
\begin{equation*}
(p-1)\left|u^{\prime}\right|^{p-2} u^{\prime \prime}=-f(u) \tag{8}
\end{equation*}
$$

We show that $t_{0}=h$.
Suppose on the contrary that $t_{0}<h$. Then $u^{\prime}\left(t_{0}\right)=0$.
First, we claim that $f\left(u\left(t_{0}\right)\right)>0$. Indeed, if $f\left(u\left(t_{0}\right)\right)=0$, then we obtain from (3) that

$$
-\Delta_{p}\left(u\left(t_{0}\right)-u(t)\right)+C\left(u\left(t_{0}\right)-u(t)\right)^{p-1}=-f(u(t))+C\left(u\left(t_{0}\right)-u(t)\right)^{p-1} \geq 0
$$

for some constant $C>0$ and all $t<t_{0}$ close to t_{0}. We can now apply Hopf's lemma [11] to conclude that $u^{\prime}\left(t_{0}\right)>0$, a contradiction to $u^{\prime}\left(t_{0}\right)=0$. Now we assume $f\left(u\left(t_{0}\right)\right)<0$, then from (8) we obtain $u^{\prime \prime}(t)>0$ for all $t<t_{0}$ and close to t_{0}. It follows that $u^{\prime}\left(t_{0}\right)>u^{\prime}(t)>0$ for $t<t_{0}$ and close to t_{0}. This contradiction shows that $f\left(u\left(t_{0}\right)\right)>0$.

By continuity, we have $f(u(t))>0$ for $t \in\left[t_{0}, t_{0}+\varepsilon\right]$ for some small $\varepsilon>0$.
We claim that $u^{\prime}(t) \leq 0$ or all $t \in\left(t_{0}, t_{0}+\varepsilon\right)$. Otherwise we can find $r_{1} \in\left(t_{0}, t_{0}+\varepsilon\right)$ such that $u^{\prime}\left(r_{1}\right)>0$. Consider the maximal interval $\left(r_{2}, r_{1}\right] \subset\left(t_{0}, r_{1}\right]$ such that

$$
u^{\prime}(t)>0 \text { in }\left(r_{2}, r_{1}\right], \quad u^{\prime}\left(r_{2}\right)=0
$$

From the standard elliptic regularity, we know that u is C^{2} in (r_{2}, r_{1}]. Hence (8) holds in this interval and $u^{\prime \prime}(t)<0$ for $t \in\left(r_{2}, r_{1}\right]$. This implies $u^{\prime}\left(r_{2}\right)>u^{\prime}\left(r_{1}\right)>0$, which is a contradiction.

We further claim that $u^{\prime}(t)<0$ or all $t \in\left(t_{0}, t_{0}+\varepsilon\right)$. Suppose on the contrary that $u^{\prime}\left(r_{1}\right)=0$ for some $r_{1} \in\left(t_{0}, t_{0}+\varepsilon\right)$. If $u^{\prime}(t)=0$ for all $t \in\left[t_{0}, r_{1}\right]$ then from the equation we deduce $f(u(t))=0$ in this interval, a contradiction. Hence there exists $r_{2} \in\left(t_{0}, r_{1}\right)$ such that $u^{\prime}\left(r_{2}\right)<0$. Let $\left(r_{2}, r_{3}\right) \subset$ (r_{2}, r_{1}) be the maximal interval such that

$$
u^{\prime}(t)<0 \text { in }\left[r_{2}, r_{3}\right), \quad u^{\prime}\left(r_{3}\right)=0
$$

Now, (8) holds in $\left[r_{2}, r_{3}\right)$, which implies $u^{\prime \prime}(t)<0$ in this interval. Therefore, $u^{\prime}\left(r_{2}\right)>u^{\prime}\left(r_{3}\right)=0$, a contradiction.

From (8), we have

$$
\begin{equation*}
\frac{p-1}{p}\left|u^{\prime}\right|^{p}+F(u)=\frac{p-1}{p}\left|u^{\prime}(0)\right|^{p} \quad \text { for } t \in\left[0, t_{0}\right] \tag{9}
\end{equation*}
$$

Taking $t=t_{0}$ we deduce $F\left(u\left(t_{0}\right)\right)=\frac{p-1}{p}\left|u^{\prime}(0)\right|^{p}>0$. From this and the fact that $u^{\prime}>0$ in $\left(0, t_{0}\right)$, formula (9) becomes

$$
\frac{p-1}{p}\left(u^{\prime}\right)^{p}=F\left(u\left(t_{0}\right)\right)-F(u)
$$

or equivalently,

$$
\frac{u^{\prime}}{\left[F\left(u\left(t_{0}\right)\right)-F(u)\right]^{\frac{1}{p}}}=\left(\frac{p}{p-1}\right)^{\frac{1}{p}} .
$$

It follows that $u(t)$ is uniquely determined in $\left(0, t_{0}\right)$ by

$$
\begin{equation*}
\int_{a}^{u(t)} \frac{\mathrm{d} s}{\left[F\left(u\left(t_{0}\right)\right)-F(s)\right]^{\frac{1}{p}}}=\left(\frac{p}{p-1}\right)^{\frac{1}{p}} t \quad \text { for all } t \in\left[0, t_{0}\right] \tag{10}
\end{equation*}
$$

Now let $\left(t_{0}, t_{1}\right) \subset\left(t_{0}, h\right)$ be the maximal interval such that $u^{\prime}(t)<0$ or all $t \in\left(t_{0}, t_{1}\right)$. We show that $t_{1} \geq 2 t_{0}$ and $u(t)=u\left(2 t_{0}-t\right)$ for $t \in\left[0, t_{0}\right]$. Clearly, (9) holds in $\left[t_{0}, t_{1}\right]$ and we deduce

$$
\int_{u(t)}^{u\left(t_{0}\right)} \frac{\mathrm{d} s}{\left[F\left(u\left(t_{0}\right)\right)-F(s)\right]^{\frac{1}{p}}}=\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\left(t-t_{0}\right) \quad \text { for all } t \in\left[t_{0}, t_{1}\right]
$$

Combining this with (10), we have

$$
\int_{a}^{u(t)} \frac{\mathrm{d} s}{\left[F\left(u\left(t_{0}\right)\right)-F(s)\right]^{\frac{1}{p}}}=\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\left(2 t_{0}-t\right) \quad \text { for all } t \in\left[t_{0}, t_{1}\right]
$$

or equivalently,

$$
\int_{a}^{u\left(2 t_{0}-t\right)} \frac{\mathrm{d} s}{\left[F\left(u\left(t_{0}\right)\right)-F(s)\right]^{\frac{1}{p}}}=\left(\frac{p}{p-1}\right)^{\frac{1}{p}} t \quad \text { for all } t \in\left[2 t_{0}-t_{1}, t_{0}\right]
$$

Comparing this with (10) we immediately obtain $t_{1} \geq 2 t_{0}$ and $u\left(2 t_{0}-t\right)=u(t)$ in [0, $\left.t_{0}\right]$. Hence $u^{\prime}\left(2 t_{0}\right)=-u^{\prime}(0)<0$. This implies $u(t)<a$ for $t>2 t_{0}$ and close to $2 t_{0}$, a contradiction.

Therefore, we must have $t_{0}=h$. By Hopf's lemma [11], we also have $u^{\prime}(h)>0$.
Hence $u^{\prime}(t)>0$ for all $t \in[0, h]$ and we have

$$
\begin{equation*}
\frac{p-1}{p}\left|u^{\prime}\right|^{p}+F(u)=\frac{p-1}{p}\left|u^{\prime}(0)\right|^{p} \quad \text { for } t \in[0, h] \tag{11}
\end{equation*}
$$

This implies $\frac{p-1}{p}\left|u^{\prime}(0)\right|^{p}>\max _{[a, b]} F$ and

$$
\int_{a}^{u(t)} \frac{\mathrm{d} s}{\left[\frac{p-1}{p}\left|u^{\prime}(0)\right|^{p}-F(s)\right]^{\frac{1}{p}}}=\left(\frac{p}{p-1}\right)^{\frac{1}{p}} t \quad \text { for all } t \in[0, h]
$$

Choosing $t=h$, we have

$$
\int_{a}^{b} \frac{\mathrm{~d} s}{\left[\frac{p-1}{p}\left|u^{\prime}(0)\right|^{p}-F(s)\right]^{\frac{1}{p}}}=\left(\frac{p}{p-1}\right)^{\frac{1}{p}} h
$$

Therefore, the necessary condition for the existence of a solution of (6) is that (4) holds.
Conversely, if (4) holds, then every solution u to (6) satisfies

$$
\begin{equation*}
\int_{a}^{u(t)} \frac{\mathrm{d} s}{[c-F(s)]^{\frac{1}{p}}}=\left(\frac{p}{p-1}\right)^{\frac{1}{p}} t \quad \text { for all } t \in[0, h] \tag{12}
\end{equation*}
$$

where $c>\max _{[a, b]} F$ is such that

$$
\int_{a}^{b} \frac{\mathrm{~d} s}{[c-F(s)]^{\frac{1}{p}}}=\left(\frac{p}{p-1}\right)^{\frac{1}{p}} h
$$

This implies uniqueness. It also implies

$$
u^{\prime}(t)=\left(\frac{p}{p-1}\right)^{\frac{1}{p}}[c-F(u(t))]^{\frac{1}{p}} .
$$

Hence $u^{\prime}>0$ in $[0, h], c=\frac{p-1}{p}\left|u^{\prime}(0)\right|^{p}$ and (11) holds. This means that u defined by (12) is actually a solution to problem (6). Property (7) can easily be checked using the above formulae. This completes the proof.

3. Higher dimensions

This section is devoted to the proof of our main result.
Lemma 5. Under assumptions of Theorem 2, we have

$$
a \leq u \leq b \quad \text { in } \Omega .
$$

Proof. We follow an idea in [9]. Assume by contradiction that $\sup u=M>b$. Let $\gamma \in(b, M)$ and $\varphi_{R} \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ be a standard cut-off function. That is, $0 \leq \varphi \leq 1$ and

$$
\begin{cases}\varphi_{R}=1 & \text { in } B_{R} \\ \varphi_{R}=0 & \text { in } \mathbb{R}^{N-1} \backslash B_{2 R} \\ \left|\nabla \varphi_{R}\right| \leq \frac{2}{R} & \text { in } B_{2 R} \backslash B_{R}\end{cases}
$$

We denote $a^{+}:=\max \{a, 0\}$ for $a \in \mathbb{R}$. By approximation argument, we can use $\psi=(u-\gamma)^{+} \varphi_{R}^{p} \chi_{\Omega}$ as a test function in (2) to obtain

$$
\begin{aligned}
-\int_{\{u>\gamma\}} f(u)(u-\gamma) \varphi_{R}^{p} & =-\int_{\{u>\gamma\}}|\nabla u|^{p} \varphi_{R}^{p}-p \int_{\{u>\gamma\}}|\nabla u|^{p-2}(u-\gamma) \varphi_{R}^{p-1} \nabla u \cdot \nabla \varphi_{R} \\
& \leq-\int_{\{u>\gamma\}}|\nabla u|^{p} \varphi_{R}^{p}+p \int_{\{u>\gamma\}}|\nabla u|^{p-1}(u-\gamma) \varphi_{R}^{p-1}\left|\nabla \varphi_{R}\right| \\
& \leq-\int_{\{u>\gamma\}}|\nabla u|^{p} \varphi_{R}^{p}+\int_{\{u>\gamma\}}\left\{\left(|\nabla u|^{p-1} \varphi_{R}^{p-1}\right)^{\frac{p}{p-1}}+C_{p}\left[(u-\gamma)\left|\nabla \varphi_{R}\right|\right]^{p}\right\} \\
& \leq C_{p} \int_{\{u>\gamma\}}[(u-\gamma)]^{p}\left|\nabla \varphi_{R}\right|^{p} .
\end{aligned}
$$

Taking into account that u is bounded and $p>1$, we have

$$
\begin{equation*}
C_{0} \int_{\{u>\gamma\}}(u-\gamma) \varphi_{R}^{p} \leq C_{p} \int_{\{u>\gamma\}}[(u-\gamma)]^{p}\left|\nabla \varphi_{R}\right|^{p} \leq C_{1} R^{-p} \int_{\{u>\gamma\} \cap B_{2 R}}(u-\gamma), \tag{13}
\end{equation*}
$$

where $C_{0}=\min _{[\gamma, M]}(-f)>0$. By setting

$$
\mathscr{L}(R)=\int_{\{u>\gamma\} \cap B_{R}}(u-\gamma),
$$

then $\mathscr{L}(R) \leq C_{2} R^{N}$. Moreover, from (13), there exists $R_{0}>0$ such that

$$
\mathscr{L}(R) \leq 2^{-N-1} \mathscr{L}(2 R) \quad \text { for all } R>R_{0}
$$

Hence Lemma 2.1 in [9] implies $\mathscr{L}(R) \equiv 0$, which means $u \leq \gamma$ in Ω. This contradicts the assumption $\sup u=M>\gamma$.

Therefore, $u \leq b$ in Ω. Similarly, we can show that $u \geq a$ in Ω.

Proof of Theorem 2. The existence follows from Theorem 4.
Let us assume that problem (1) has a bounded solution u. By Lemma 5,

$$
a \leq u \leq b \quad \text { in } \Omega .
$$

Since $f(a)=f(b)=0$ and by the boundary conditions, we can apply the strong maximum principle [11] to deduce that

$$
a<u<b \quad \text { in } \Omega .
$$

We show that there is a maximal solution u^{*} in the order interval $[u, b]$ in the sense that any solution v with $u \leq v \leq b$ satisfies $v \leq u^{*}$. To this end, for each $n>1$ we define

$$
\Omega_{n}=\left\{\left(x^{\prime}, x_{N}\right) \in \Omega| | x^{\prime} \mid<n\right\}
$$

Setting

$$
\phi_{n}(x)= \begin{cases}b & \text { on } \partial \Omega_{n} \backslash\left\{x_{N}=0\right\} \\ a+(b-a)\left(\left|x^{\prime}\right|-n+1\right)^{+} & \text {on } \partial \Omega_{n} \cap\left\{x_{N}=0\right\}\end{cases}
$$

We now consider the auxiliary problem

$$
\begin{cases}-\Delta_{p} u=f(u) & \text { in } \Omega_{n} \tag{14}\\ u=\phi_{n} & \text { on } \partial \Omega_{n}\end{cases}
$$

Obviously, $\left.u\right|_{\Omega_{n}}$ is a lower solution and b is an upper solution to (14). Hence by standard upper and lower solution argument, problem (14) has a maximal solution u_{n} in $[u, b]$. Since $\left.u_{n+1}\right|_{\Omega_{n}}$ is a lower solution to (14) in this interval, we have $u_{n} \geq u_{n+1}$ in Ω_{n}. By a standard regularity argument, $u^{*}=\lim _{n \rightarrow \infty} u_{n}$ is well defined in Ω and it is a solution of (1).

Clearly, $u^{*} \in[u, b]$. If v is any solution of (1) in $[u, b]$, then it is evident that $\left.v\right|_{\Omega_{n}}$ is a lower solution of (14) and it follows that $u_{n} \geq v$ (since the standard upper and lower solution argument implies the existence of a solution in $[v, b]$ which is less than or equal to u_{n}). It follows that $v \leq u^{*}$. Thus u^{*} is the maximal solution in $[u, b]$.

Since the equation is invariant under translations in x^{\prime}, the maximality implies that u^{*} is a function of x_{N} only. Indeed, we assume by contradiction that there exist two points $x=\left(x^{0}, l\right)$ and $y=\left(y^{0}, l\right), a<l<b$, such that $u^{*}(x) \neq u^{*}(y)$. We define $\widetilde{u}^{*}\left(x^{\prime}, y\right)=u^{*}\left(x^{\prime}+y^{0}-x^{0}, x_{N}\right)$. Then \widetilde{u}^{*} is a solution to (1) and $v(x):=\max \left\{u^{*}(x), \widetilde{u}^{*}(x)\right\} \geq u^{*}(x)$. Moreover, $v \not \equiv u^{*}$ and v is a lower solution to (1) satisfying $v \leq b$. Hence (1) has a solution v^{*} in the order interval $[v, b]$. It follows that v^{*} is a solution in $[u, b]$ which satisfies $v^{*} \geq u^{*}$ and $v^{*} \not \equiv u^{*}$. This contradicts the maximality of u^{*}.

Thus u^{*} is a function of x_{N} only and hence it is a solution of (6).
In the same way, we can construct a minimal solution u_{*} in $[a, u]$ by considering the auxiliary problem

$$
\begin{cases}-\Delta_{p} u=f(u) & \text { in } \Omega_{n} \tag{15}\\ u=\psi_{n} & \text { on } \partial \Omega_{n}\end{cases}
$$

where

$$
\psi_{n}(x)= \begin{cases}a & \text { on } \partial \Omega_{n} \backslash\left\{x_{N}=h\right\} \\ b+(a-b)\left(\left|x^{\prime}\right|-n+1\right)^{+} & \text {on } \partial \Omega_{n} \cap\left\{x_{N}=h\right\}\end{cases}
$$

Moreover, the minimality of u_{*} implies that u_{*} is a function of x_{N} only. Thus u_{*} is a solution of (6).

By Theorem 4, we necessarily have $u_{*}=u^{*}=U$, where U is the unique solution of (6). Moreover, condition (4) holds. Since $u_{*} \leq u \leq u^{*}$, this implies that $u(x) \equiv U\left(x_{N}\right)$. The conclusion then follows from the properties of U obtained in Theorem 4.

References

[1] S. B. Angenent, "Uniqueness of the solution of a semilinear boundary value problem", Math. Ann. 272 (1985), no. 1, p. 129-138.
[2] H. Berestycki, L. Caffarelli, L. Nirenberg, "Further qualitative properties for elliptic equations in unbounded domains", Ann. Sc. Norm. Super. Pisa, Cl. Sci. 25 (1997), no. 1-2, p. 69-94, Dedicated to Ennio De Giorgi.
[3] -, "Monotonicity for elliptic equations in unbounded Lipschitz domains", Commun. Pure Appl. Math. 50 (1997), no. 11, p. 1089-1111.
[4] P. Clément, G. Sweers, "Existence and multiplicity results for a semilinear elliptic eigenvalue problem", Ann. Sc. Norm. Super. Pisa, Cl. Sci. 14 (1987), no. 1, p. 97-121.
[5] E. N. Dancer, Y. Du, M. Efendiev, "Quasilinear elliptic equations on half- and quarter-spaces", Adv. Nonlinear Stud. 13 (2013), no. 1, p. 115-136.
[6] E. DiBenedetto, " $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations", Nonlinear Anal., Theory Methods Appl. 7 (1983), no. 8, p. 827-850.
[7] Y. Du, Z. Guo, "Symmetry for elliptic equations in a half-space without strong maximum principle", Proc. R. Soc. Edinb., Sect. A, Math. 134 (2004), no. 2, p. 259-269.
[8] F. Esposito, A. Farina, L. Montoro, B. Sciunzi, "On the Gibbons' conjecture for equations involving the p-Laplacian", Math. Ann. 382 (2022), no. 1-2, p. 943-974.
[9] A. Farina, L. Montoro, B. Sciunzi, "Monotonicity and one-dimensional symmetry for solutions of $-\Delta_{p} u=f(u)$ in half-spaces", Calc. Var. Partial Differ. Equ. 43 (2012), no. 1-2, p. 123-145.
[10] P. Tolksdorf, "Regularity for a more general class of quasilinear elliptic equations", J. Differ. Equations 51 (1984), no. 1, p. 126-150.
[11] J. L. Vázquez, "A strong maximum principle for some quasilinear elliptic equations", Appl. Math. Optim. 12 (1984), no. 3, p. 191-202.

