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Abstract. We consider a p-Laplace problem in a strip with two-constant boundary Dirichlet conditions. We
show that if the width of the strip is smaller than some d0 ∈ (0,+∞], then the problem admits a unique
bounded solution, which is strictly monotone. Hence this unique solution is one-dimensional symmetric and
belongs to the C 2 class. We also show that the problem has no bounded solution in the case that d0 < +∞
and the width of the strip is larger than or equal to d0. An analogous rigidity result in the whole space was
obtained recently by Esposito et al. [8]
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1. Introduction

Given N ≥ 1, p > 1, a < b, Ω = RN−1 × (0,h) and f is a locally Lipschitz continuous function, we
study the uniqueness, symmetry and monotonicity of solutions to the problem

−∆p u = f (u) inΩ,

u = a on RN−1 × {0},

u = b on RN−1 × {h},

(1)

where ∆p u = div(|∇u|p−2∇u) is the p-Laplacian of u. When p = 2, this is a classical topic which
was investigated in the works of Berestycki, Caffarelli and Nirenberg [2,3], Angenent [1], Clément
and Sweers [4] for various types of domains.

One difficulty that arises in the case p ̸= 2 is that the p-Laplacian is nonlinear. Moreover, this
operator is singular or degenerate depending on 1 < p < 2 or p > 2, respectively. Hence, solutions
to (1) should be understood in the weak sense, see [6, 10]. Throughout our paper, solutions to
p-Laplace problems with boundary conditions will be always understood in the following weak
sense.
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Definition 1. Let f :R→R and g : ∂U →R be continuous functions, where U is a domain of RN .
A function u ∈W 1,p

loc (U )∩C (U ) is called a (weak) solution to the problem{
−∆p u = f (u) in U ,

u = g on ∂U

if
u(x) = g (x) for all x ∈ ∂U

and ∫
U
|∇u|p−2∇u ·∇ψ=

∫
U

f (u)ψ for all ψ ∈C 1
0 (U ). (2)

Throughout this paper, we denote

Z f := {z ∈ [a,b] | f (z) = 0}.

Under some mild assumptions on f , we find a necessary and sufficient condition on h to
ensure that problem (1) has a bounded solution (by bounded solution, we mean weak solutions
in L∞(Ω)). We also show that the solution is unique and monotone increasing in the xN -direction.
Our main result is the following.

Theorem 2. Suppose that f is a locally Lipschitz continuous function such that f (a) = f (b) = 0,
f (s) > 0 for s < a, f (s) < 0 for s > b, and

liminf
t→z+

f (t )

(t − z)p−1 >−∞, limsup
t→z−

f (t )

(z − t )p−1 <+∞ for all z ∈ Z f . (3)

Then problem (1) has a bounded solution if and only if

h <
(

p −1

p

) 1
p

∫ b

a

d s[
max[a,b] F −F (s)

] 1
p

, (4)

where F (s) = ∫ s
a f (t )dt . Moreover, such a solution u is unique and ∂xN u > 0 in Ω. Consequently,

u ∈C 2(Ω) and u depends only on xN , i.e., u(x) = u(xN ).
If we further assume that f (t ) =− f (a +b − t ) for t ∈ [a, a+b

2 ], then

u(xN ) = a +b −u(h −xN ) for xN ∈
[

0,
h

2

]
.

Remark 3. Locally Lipschitz continuous functions satisfy (3) automatically when 1 < p ≤ 2.
Notice also that the integral in (4) may be infinity. In particular, this happens to the Allen–Cahn
nonlinearity f (t ) = t − t 3 when (a,b) = (−1,1) and 1 < p ≤ 2.

Theorem 2 is motivated by a recent result by Esposito et al. [8], where they studied the problem
−∆p u = f (u) in RN ,

|u| ≤ 1 in RN ,

limxN→±∞ u(x ′, xN ) =±1 uniformly in x ′ ∈RN−1,

(5)

under assumptions 2N+2
N+2 < p < 2 and f ∈ C 1([−1,1]) such that f (−1) = f (1) = 0, f ′+(−1) < 0,

f ′−(1) < 0 and Z f is finite. They prove that every solution u of (5) depends only on xN and ∂u
∂xN

> 0

in RN .
The proof in [8] is based on the method of moving planes, in which various types of compar-

ison principles for the p-Laplacian are exploited. This in turn requires the technical assumption
2N+2
N+2 < p < 2 and some restrictions on f .

The moving plane method can also be applied to problem (1), which can be regarded as a
finite version of problem (5), to yield the one-dimensional symmetry of solutions under similar
restrictions on p and f . To cover the full range 1 < p <+∞ and to deal with weaker assumptions
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on f in Theorem 2, we follow another approach based on the ideas in [5, 7]. First, we construct
the minimal and maximal solutions to the problem. These solutions depend only on xN . Then
a careful ODE analysis of (1) with N = 1 reveals that the problem has a unique solution in
dimension one, and it is monotone increasing. This implies that solutions in higher dimensions
are also unique, one-dimensional symmetric and monotone increasing in xN .

In Section 2, we prove Theorem 2 for dimension one. In Section 3, we prove it for more
general cases. We always use C to denote a generic positive constant whose concrete value is
not important.

2. ODE analysis

In this section, we study the ODE problem
−(|u′|p−2u′)′ = f (u) in (0,h),

a ≤ u ≤ b in (0,h),

u(0) = a, u(h) = b.

(6)

Theorem 4. Let f be a locally Lipschitz continuous function such that f (a) = f (b) = 0 and (3)
holds. Then problem (6) has a solution if and only if (4) holds. Moreover, such a solution u is
unique, u′ > 0 in (0,h) and u ∈ C 2((0,h)). If we further assume that f (t ) = − f (a + b − t ) for
t ∈ [a, a+b

2 ], then

u(t ) = a +b −u(h − t ) for t ∈
[

0,
h

2

]
. (7)

Proof. Assume that problem (6) admits a solution u. By Hopf’s lemma [11], we have u′(0) > 0. Let
(0, t0) be the largest interval such that u′(t ) > 0 for all t ∈ (0, t0). By the standard regularity, u is C 2

in (0, t0) and in this interval

(p −1)|u′|p−2u′′ =− f (u). (8)

We show that t0 = h.
Suppose on the contrary that t0 < h. Then u′(t0) = 0.
First, we claim that f (u(t0)) > 0. Indeed, if f (u(t0)) = 0, then we obtain from (3) that

−∆p (u(t0)−u(t ))+C (u(t0)−u(t ))p−1 =− f (u(t ))+C (u(t0)−u(t ))p−1 ≥ 0

for some constant C > 0 and all t < t0 close to t0. We can now apply Hopf’s lemma [11] to conclude
that u′(t0) > 0, a contradiction to u′(t0) = 0. Now we assume f (u(t0)) < 0, then from (8) we obtain
u′′(t ) > 0 for all t < t0 and close to t0. It follows that u′(t0) > u′(t ) > 0 for t < t0 and close to t0. This
contradiction shows that f (u(t0)) > 0.

By continuity, we have f (u(t )) > 0 for t ∈ [t0, t0 +ε] for some small ε> 0.
We claim that u′(t ) ≤ 0 or all t ∈ (t0, t0 + ε). Otherwise we can find r1 ∈ (t0, t0 + ε) such that

u′(r1) > 0. Consider the maximal interval (r2,r1] ⊂ (t0,r1] such that

u′(t ) > 0 in (r2,r1], u′(r2) = 0.

From the standard elliptic regularity, we know that u is C 2 in (r2,r1]. Hence (8) holds in this
interval and u′′(t ) < 0 for t ∈ (r2,r1]. This implies u′(r2) > u′(r1) > 0, which is a contradiction.

We further claim that u′(t ) < 0 or all t ∈ (t0, t0 +ε). Suppose on the contrary that u′(r1) = 0 for
some r1 ∈ (t0, t0 + ε). If u′(t ) = 0 for all t ∈ [t0,r1] then from the equation we deduce f (u(t )) = 0
in this interval, a contradiction. Hence there exists r2 ∈ (t0,r1) such that u′(r2) < 0. Let (r2,r3) ⊂
(r2,r1) be the maximal interval such that

u′(t ) < 0 in [r2,r3), u′(r3) = 0.
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Now, (8) holds in [r2,r3), which implies u′′(t ) < 0 in this interval. Therefore, u′(r2) > u′(r3) = 0, a
contradiction.

From (8), we have
p −1

p
|u′|p +F (u) = p −1

p
|u′(0)|p for t ∈ [0, t0]. (9)

Taking t = t0 we deduce F (u(t0)) = p−1
p |u′(0)|p > 0. From this and the fact that u′ > 0 in (0, t0),

formula (9) becomes
p −1

p
(u′)p = F (u(t0))−F (u),

or equivalently,

u′

[F (u(t0))−F (u)]
1
p

=
(

p

p −1

) 1
p

.

It follows that u(t ) is uniquely determined in (0, t0) by∫ u(t )

a

ds

[F (u(t0))−F (s)]
1
p

=
(

p

p −1

) 1
p

t for all t ∈ [0, t0]. (10)

Now let (t0, t1) ⊂ (t0,h) be the maximal interval such that u′(t ) < 0 or all t ∈ (t0, t1). We show
that t1 ≥ 2t0 and u(t ) = u(2t0 − t ) for t ∈ [0, t0]. Clearly, (9) holds in [t0, t1] and we deduce∫ u(t0)

u(t )

ds

[F (u(t0))−F (s)]
1
p

=
(

p

p −1

) 1
p

(t − t0) for all t ∈ [t0, t1].

Combining this with (10), we have∫ u(t )

a

ds

[F (u(t0))−F (s)]
1
p

=
(

p

p −1

) 1
p

(2t0 − t ) for all t ∈ [t0, t1],

or equivalently, ∫ u(2t0−t )

a

ds

[F (u(t0))−F (s)]
1
p

=
(

p

p −1

) 1
p

t for all t ∈ [2t0 − t1, t0],

Comparing this with (10) we immediately obtain t1 ≥ 2t0 and u(2t0 − t ) = u(t ) in [0, t0]. Hence
u′(2t0) =−u′(0) < 0. This implies u(t ) < a for t > 2t0 and close to 2t0, a contradiction.

Therefore, we must have t0 = h. By Hopf’s lemma [11], we also have u′(h) > 0.
Hence u′(t ) > 0 for all t ∈ [0,h] and we have

p −1

p
|u′|p +F (u) = p −1

p
|u′(0)|p for t ∈ [0,h]. (11)

This implies p−1
p |u′(0)|p > max[a,b] F and∫ u(t )

a

ds[
p−1

p |u′(0)|p −F (s)
] 1

p

=
(

p

p −1

) 1
p

t for all t ∈ [0,h].

Choosing t = h, we have ∫ b

a

ds[
p−1

p |u′(0)|p −F (s)
] 1

p

=
(

p

p −1

) 1
p

h.

Therefore, the necessary condition for the existence of a solution of (6) is that (4) holds.
Conversely, if (4) holds, then every solution u to (6) satisfies∫ u(t )

a

ds

[c −F (s)]
1
p

=
(

p

p −1

) 1
p

t for all t ∈ [0,h], (12)
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where c > max[a,b] F is such that ∫ b

a

ds

[c −F (s)]
1
p

=
(

p

p −1

) 1
p

h.

This implies uniqueness. It also implies

u′(t ) =
(

p

p −1

) 1
p

[c −F (u(t ))]
1
p .

Hence u′ > 0 in [0,h], c = p−1
p |u′(0)|p and (11) holds. This means that u defined by (12) is actually

a solution to problem (6). Property (7) can easily be checked using the above formulae. This
completes the proof. □

3. Higher dimensions

This section is devoted to the proof of our main result.

Lemma 5. Under assumptions of Theorem 2, we have

a ≤ u ≤ b inΩ.

Proof. We follow an idea in [9]. Assume by contradiction that supu = M > b. Let γ ∈ (b, M) and
ϕR ∈C∞

c (RN ) be a standard cut-off function. That is, 0 ≤ϕ≤ 1 and
ϕR = 1 in BR ,

ϕR = 0 in RN−1 \ B2R ,

|∇ϕR | ≤ 2
R in B2R \ BR .

We denote a+ := max{a,0} for a ∈ R. By approximation argument, we can use ψ = (u −γ)+ϕp
RχΩ

as a test function in (2) to obtain

−
∫

{u>γ}
f (u)(u −γ)ϕp

R =−
∫

{u>γ}
|∇u|pϕp

R −p
∫

{u>γ}
|∇u|p−2(u −γ)ϕp−1

R ∇u ·∇ϕR

≤−
∫

{u>γ}
|∇u|pϕp

R +p
∫

{u>γ}
|∇u|p−1(u −γ)ϕp−1

R |∇ϕR |

≤ −
∫

{u>γ}
|∇u|pϕp

R +
∫

{u>γ}

{(
|∇u|p−1ϕ

p−1
R

) p
p−1 +Cp

[
(u −γ)|∇ϕR |

]p
}

≤Cp

∫
{u>γ}

[(u −γ)]p |∇ϕR |p .

Taking into account that u is bounded and p > 1, we have

C0

∫
{u>γ}

(u −γ)ϕp
R ≤Cp

∫
{u>γ}

[(u −γ)]p |∇ϕR |p ≤C1R−p
∫

{u>γ}∩B2R

(u −γ), (13)

where C0 = min[γ,M ](− f ) > 0. By setting

L (R) =
∫

{u>γ}∩BR

(u −γ),

then L (R) ≤C2RN . Moreover, from (13), there exists R0 > 0 such that

L (R) ≤ 2−N−1L (2R) for all R > R0.

Hence Lemma 2.1 in [9] implies L (R) ≡ 0, which means u ≤ γ in Ω. This contradicts the
assumption supu = M > γ.

Therefore, u ≤ b inΩ. Similarly, we can show that u ≥ a inΩ. □
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Proof of Theorem 2. The existence follows from Theorem 4.
Let us assume that problem (1) has a bounded solution u. By Lemma 5,

a ≤ u ≤ b inΩ.

Since f (a) = f (b) = 0 and by the boundary conditions, we can apply the strong maximum
principle [11] to deduce that

a < u < b inΩ.

We show that there is a maximal solution u∗ in the order interval [u,b] in the sense that any
solution v with u ≤ v ≤ b satisfies v ≤ u∗. To this end, for each n > 1 we define

Ωn = {(x ′, xN ) ∈Ω | |x ′| < n}.

Setting

φn(x) =
{

b on ∂Ωn \ {xN = 0},

a + (b −a)(|x ′|−n +1)+ on ∂Ωn ∩ {xN = 0}.

We now consider the auxiliary problem{
−∆p u = f (u) inΩn ,

u =φn on ∂Ωn .
(14)

Obviously, u|Ωn is a lower solution and b is an upper solution to (14). Hence by standard upper
and lower solution argument, problem (14) has a maximal solution un in [u,b]. Since un+1|Ωn is a
lower solution to (14) in this interval, we have un ≥ un+1 inΩn . By a standard regularity argument,
u∗ = limn→∞ un is well defined inΩ and it is a solution of (1).

Clearly, u∗ ∈ [u,b]. If v is any solution of (1) in [u,b], then it is evident that v |Ωn is a lower
solution of (14) and it follows that un ≥ v (since the standard upper and lower solution argument
implies the existence of a solution in [v,b] which is less than or equal to un). It follows that v ≤ u∗.
Thus u∗ is the maximal solution in [u,b].

Since the equation is invariant under translations in x ′, the maximality implies that u∗ is a
function of xN only. Indeed, we assume by contradiction that there exist two points x = (x0, l )
and y = (y0, l ), a < l < b, such that u∗(x) ̸= u∗(y). We define ũ∗(x ′, y) = u∗(x ′+ y0 − x0, xN ). Then
ũ∗ is a solution to (1) and v(x) := max{u∗(x), ũ∗(x)} ≥ u∗(x). Moreover, v ̸≡ u∗ and v is a lower
solution to (1) satisfying v ≤ b. Hence (1) has a solution v∗ in the order interval [v,b]. It follows
that v∗ is a solution in [u,b] which satisfies v∗ ≥ u∗ and v∗ ̸≡ u∗. This contradicts the maximality
of u∗.

Thus u∗ is a function of xN only and hence it is a solution of (6).
In the same way, we can construct a minimal solution u∗ in [a,u] by considering the auxiliary

problem {
−∆p u = f (u) inΩn ,

u =ψn on ∂Ωn ,
(15)

where

ψn(x) =
{

a on ∂Ωn \ {xN = h},

b + (a −b)(|x ′|−n +1)+ on ∂Ωn ∩ {xN = h}.

Moreover, the minimality of u∗ implies that u∗ is a function of xN only. Thus u∗ is a solution
of (6).

By Theorem 4, we necessarily have u∗ = u∗ = U , where U is the unique solution of (6).
Moreover, condition (4) holds. Since u∗ ≤ u ≤ u∗, this implies that u(x) ≡U (xN ). The conclusion
then follows from the properties of U obtained in Theorem 4. □
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