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Abstract. We consider a p-Laplace problem in a strip with two-constant boundary Dirichlet conditions. We
show that if the width of the strip is smaller than some dj € (0,+o0], then the problem admits a unique
bounded solution, which is strictly monotone. Hence this unique solution is one-dimensional symmetric and
belongs to the C2 class. We also show that the problem has no bounded solution in the case that dy < +oco
and the width of the strip is larger than or equal to dp. An analogous rigidity result in the whole space was
obtained recently by Esposito et al. [8]
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1. Introduction

Given N=1,p>1l,a<b Q= RY-1 x (0, h) and f is alocally Lipschitz continuous function, we
study the uniqueness, symmetry and monotonicity of solutions to the problem

-Apu=f(u) inQ,
u=a on RN~1 x {0}, (1)
u=>b on RN x {n},

where Apu = div(|Vu|P~2Vu) is the p-Laplacian of u. When p = 2, this is a classical topic which
was investigated in the works of Berestycki, Caffarelli and Nirenberg [2, 3], Angenent [1], Clément
and Sweers [4] for various types of domains.

One difficulty that arises in the case p # 2 is that the p-Laplacian is nonlinear. Moreover, this
operator is singular or degenerate dependingon 1 < p <2 or p > 2, respectively. Hence, solutions
to (1) should be understood in the weak sense, see [6, 10]. Throughout our paper, solutions to
p-Laplace problems with boundary conditions will be always understood in the following weak
sense.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/


https://doi.org/10.5802/crmath.442
https://orcid.org/0000-0003-4724-7118
mailto:phuongl@uel.edu.vn
https://comptes-rendus.academie-sciences.fr/mathematique/

796 Phuong Le

Definition 1. Let f:R — R and g: 0% — R be continuous functions, where % is a domain of RN,
A function u € Wl})cp ()N C(%) is called a (weak) solution to the problem

-Apu=f(u) in%,

u=g on o

u(x)=g(x) forallxeou
and
f IVulP2Vu-Vy = f fww forallye Cy (). )
u u
Throughout this paper, we denote
Zr:={z€ la,b]| f(z) =0}

Under some mild assumptions on f, we find a necessary and sufficient condition on & to
ensure that problem (1) has a bounded solution (by bounded solution, we mean weak solutions
in L*°(Q2)). We also show that the solution is unique and monotone increasing in the xy-direction.
Our main result is the following.

Theorem 2. Suppose that f is a locally Lipschitz continuous function such that f(a) = f(b) =0,
f(s)>0fors<a, f(s) <0 fors>b,and

_f@ S

ligligf(t—z)l’—l > —00, li?lszl}pm <+oo forallze Zy. 3
Then problem (1) has a bounded solution if and only if
1
—1\7» rb
h< (”—) ’ f as - @)
p @ [max,p F - F(s)]?

where F(s) = f;f(t)dt. Moreover, such a solution u is unique and 0, u > 0 in Q. Consequently,
ue C*(Q) and u depends only on xy, i.e., u(x) = u(xy).
Ifwe further assume that f(t) = —f(a+b—1t) fort€ [a, %b], then

u(xy) =a+b-ulh—xy) forxye .

h
0,—
2

Remark 3. Locally Lipschitz continuous functions satisfy (3) automatically when 1 < p < 2.
Notice also that the integral in (4) may be infinity. In particular, this happens to the Allen-Cahn
nonlinearity f(t) = t— t> when (a,b) = (-1,1) and 1 < p < 2.

Theorem 2 is motivated by a recent result by Esposito et al. [8], where they studied the problem
_Apu:f(u) inRY,
lul <1 inRY, (5)

limy, 100 (X', xx) = +1 uniformly in x' e RN,

under assumptions 252 < p < 2 and f € C'([-1,1]) such that f(-1) = f(1) =0, fi(-1) <0,
f.(1) <0and Zy is finite. They prove that every solution u of (5) depends only on xy and (gc—bfv >0
inRN.

The proof in [8] is based on the method of moving planes, in which various types of compar-
ison principles for the p-Laplacian are exploited. This in turn requires the technical assumption
ZJGI :22 < p <2 and some restrictions on f.

The moving plane method can also be applied to problem (1), which can be regarded as a
finite version of problem (5), to yield the one-dimensional symmetry of solutions under similar

restrictions on p and f. To cover the full range 1 < p < +o0 and to deal with weaker assumptions
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on f in Theorem 2, we follow another approach based on the ideas in [5, 7]. First, we construct
the minimal and maximal solutions to the problem. These solutions depend only on xy. Then
a careful ODE analysis of (1) with N = 1 reveals that the problem has a unique solution in
dimension one, and it is monotone increasing. This implies that solutions in higher dimensions
are also unique, one-dimensional symmetric and monotone increasing in xy.

In Section 2, we prove Theorem 2 for dimension one. In Section 3, we prove it for more
general cases. We always use C to denote a generic positive constant whose concrete value is
not important.

2. ODE analysis

In this section, we study the ODE problem

=W/ 1P72u) = f(w) in(0,h),
a<u<b in (0, h), (6)
u(0) = a, u(h) =b.
Theorem 4. Let f be a locally Lipschitz continuous function such that f(a) = f(b) = 0 and (3)
holds. Then problem (6) has a solution if and only if (4) holds. Moreover, such a solution u is

unique, u' > 0 in (0,h) and u € C?((0,h)). If we further assume that f(t) = —f(a+b—t) for
tela, %”], then

u(t)=a+b—-ulh—1t) forte

o] "
72 .

Proof. Assume that problem (6) admits a solution u. By Hopf’s lemma [11], we have #/(0) > 0. Let
(0, o) be the largest interval such that /() > 0 for all £ € (0, t). By the standard regularity, u is C?
in (0, fp) and in this interval

(p-DI1Pu" =~ f(w). 8)

We show that ¢y = h.
Suppose on the contrary that fy < /. Then /() = 0.
First, we claim that f(u(#)) > 0. Indeed, if f(u(fy)) =0, then we obtain from (3) that

—Ap(ulty) — u(®) + Clulty) — u(®)?' = = fu(®) + Clulto) — u()’ ' =0

for some constant C >0 and all ¢ < £ close to fy. We can now apply Hopf’s lemma [11] to conclude
that u'(f) > 0, a contradiction to u' () = 0. Now we assume f(u(fp)) < 0, then from (8) we obtain
u"(t) > 0forall t < tg and close to fy. It follows that u'(fy) > u'(t) > 0 for ¢ < fy and close to f. This
contradiction shows that f(u(%p)) > 0.

By continuity, we have f(u(t)) > 0 for t € [#, tp + €] for some small € > 0.

We claim that /() < 0 or all € (&, fp + £). Otherwise we can find r; € (f, fp + €) such that
u'(r1) > 0. Consider the maximal interval (15, r1] < (fy, r1] such that

u'(t)>0in (rp, 111, '(r2) =0.

From the standard elliptic regularity, we know that u is C? in (r2, r1]. Hence (8) holds in this
interval and u” () < 0 for t € (rp, r1]. This implies u'(r;) > u'(r1) > 0, which is a contradiction.

We further claim that u/(£) < 0 or all ¢ € (fy, fo + €). Suppose on the contrary that u/(r;) = 0 for
some 1 € (fy, fp + €). If u'(¢) = 0 for all ¢ € [y, r1] then from the equation we deduce f(u(t)) =0
in this interval, a contradiction. Hence there exists r» € (fy, r1) such that u'(r2) < 0. Let (o, 13)
(r2, r1) be the maximal interval such that

u'(t)<0in[rp,r3), u'(r3)=0.
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Now, (8) holds in [r3, r3), which implies 1" (¢) < 0 in this interval. Therefore, u'(r) > u/(r3) =0, a
contradiction.
From (8), we have
-1 -1
p—Iu'|p+F(u)=p—|u’(0)|p for t € [0, tp]. 9
p p

Taking ¢ = to we deduce F(u(tp)) = pT_llu’(O)lp > 0. From this and the fact that ' > 0 in (0, #y),
formula (9) becomes

p- 1 np _

T(Lt )7 = F(u(tp)) — F(uw),

or equivalently,

u' _ ( p )n
== .
[Flu(to)) ~ Fa]? ‘P~ 1
It follows that u(¢) is uniquely determined in (0, fp) by

u(t) b
f ds 1:( pl)”t forall £ € [0, ). (10)
@ [F(ultp)-F(s)]? ‘P~

Now let (fp, 1) < (o, h) be the maximal interval such that u/(#) < 0 or all ¢ € (£, t1). We show
that #; = 2ty and u(f) = u(2ty — t) for ¢ € [0, f]. Clearly, (9) holds in [#, t;] and we deduce

ulto) d v

f u T Z( d )p(t—to) forall t € [£y, 1;].
“O - [Fu) - F1r P

Combining this with (10), we have

u(t) d g
f $ :( p )p(ZtO_t) forall 7 € [19, 1],
a

1 p-1
[F(u(tp)) — F(s)]»
or equivalently,
uty—1) ¥
f ds 1:( P )pt forall te€[2ty— 11, o],
a [Flu(ty) - F(s)]? ‘P

Comparing this with (10) we immediately obtain #; = 2ty and u(2#, — t) = u(¢) in [0, fp]. Hence
u'(2tg) = —u'(0) < 0. This implies u(r) < a for ¢ > 21y and close to 21y, a contradiction.

Therefore, we must have #, = h. By Hopf’s lemma [11], we also have u'(h) > 0.

Hence u/(¢) > 0 for all ¢ € [0, h] and we have

~1 ~1
pTIu'I”+F(u):pT|u'(O)|p for £ € [0, 1. a1

This implies 22 |u/(0)|P > max(q,p F and

u(t) 7
f ds l:( ’il)"t for all £ € [0, h].
©[Bwor-Fel’ P

fb ds :( p );h
a p-1

1
w1 - F(9)|”

Therefore, the necessary condition for the existence of a solution of (6) is that (4) holds.
Conversely, if (4) holds, then every solution u to (6) satisfies

u(r) 5
f ds 1:( P )”t forall ¢ € [0, h, (12)
a [c-F())r \P~1

Choosing ¢ = h, we have
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where ¢ > max(, p) F is such that

b l
f ds : :( p )ph'
@« [e-Fg)r P71

This implies uniqueness. It also implies
1
W (1) = (L) " e~ Flu(n?.
p-1

Hence u/ >0in [0, k], c = pT?IIu’(O)Ip and (11) holds. This means that u defined by (12) is actually

a solution to problem (6). Property (7) can easily be checked using the above formulae. This
completes the proof. O

3. Higher dimensions

This section is devoted to the proof of our main result.
Lemma5. Under assumptions of Theorem 2, we have
asusb inQ.

Proof. We follow an idea in [9]. Assume by contradiction that supu = M > b. Let y € (b, M) and
QRE Cgo([RN) be a standard cut-off function. Thatis, 0 < ¢ <1 and

(pRZI iIlBR,
Qr=0 in RV=1\ Byp,
IVorl<% inBog\Bg.

We denote a* := max{a, 0} for a € R. By approximation argument, we can use ¥ = (u —y)ﬂpZ X
as a test function in (2) to obtain

- f(u)(u—yhpz:—f IVulPoh - p
1 {u>y}t

IVulP2(u-y)ph ' Vu-Vor
{u>y }

{u>y
S—f IVuI”w§+pf IVulP u-y)oh Vgl
{u>y} {u>y}

_r_
< —f VulP ol +f {(wulf"l(p;’;‘l) e, [(u—wwm]”}
{u>y} {u>y}

scpf [(w=7)P Vgl
{u>y}

Taking into account that u« is bounded and p > 1, we have

Cof (u—-7)ph < Cpf [(w—71PIVeRIP < ClRf”f (u-y), (13)
{u>y} {u>y} {

u>y}NBag
where Co = mingy,p (- f) > 0. By setting

Z(R) = f (u—="7),
{u>y}nBg

then £ (R) < C,RN. Moreover, from (13), there exists Ry > 0 such that
LR <2N"14L@2R) forallR>Ry.

Hence Lemma 2.1 in [9] implies Z(R) = 0, which means u < y in Q. This contradicts the
assumptionsupu =M >vy.
Therefore, u < b in Q. Similarly, we can show that u = a in Q. O
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Proof of Theorem 2. The existence follows from Theorem 4.
Let us assume that problem (1) has a bounded solution u. By Lemma 5,

as<u<b inQ.

Since f(a) = f(b) = 0 and by the boundary conditions, we can apply the strong maximum
principle [11] to deduce that

a<u<b inQ.

We show that there is a maximal solution u* in the order interval [u, b] in the sense that any
solution v with u < v < b satisfies v < u*. To this end, for each n > 1 we define

Qn =1, xn) € Q11X < ).

Setting

Bu() = b on 0Q, \ {xy =0},
T la+-a) (x| -n+ 1T ondQ,n{xy =0}

We now consider the auxiliary problem

{—Apu =fw inQ,

(14)
u=do¢y on 0Q2,.

Obviously, ulq, is alower solution and b is an upper solution to (14). Hence by standard upper
and lower solution argument, problem (14) has a maximal solution u in [u, b]. Since u,+1lq, isa
lower solution to (14) in this interval, we have u,, = u,; in Q,. By a standard regularity argument,
u* =lim,_ U, is well defined in Q and it is a solution of (1).

Clearly, u™ € [u, b]. If v is any solution of (1) in [u, b], then it is evident that v|qg, is a lower
solution of (14) and it follows that u, = v (since the standard upper and lower solution argument
implies the existence of a solution in [v, b] which is less than or equal to u,,). It follows that v < u*.
Thus u* is the maximal solution in [u, b].

Since the equation is invariant under translations in x’, the maximality implies that u* is a
function of x, only. Indeed, we assume by contradiction that there exist two points x = (x°,1)
and y = (yo, D), a< 1< b, such that u*(x) # u* (y). We define &* (x', y) = u™* (x’ +y0 —x9, xp). Then
u* is a solution to (1) and v(x) := max{u™*(x), #* (x)} = u*(x). Moreover, v Z u* and v is a lower
solution to (1) satisfying v < b. Hence (1) has a solution v* in the order interval [v, b]. It follows
that v* is a solution in [u, b] which satisfies v* = u* and v* # u*. This contradicts the maximality
of u*.

Thus u* is a function of x only and hence it is a solution of (6).

In the same way, we can construct a minimal solution u, in [a, u] by considering the auxiliary
problem

{—ApLL:f(u) in Q, (15)
U=y, on 0Q)y,,
where
a on 0Q, \ {xy = h},
Y= {b+(a—b)(|x’|—n+1)+ on 0Qy, N {xy = hi.

Moreover, the minimality of u, implies that u, is a function of xy only. Thus u, is a solution
of (6).

By Theorem 4, we necessarily have u, = u* = U, where U is the unique solution of (6).
Moreover, condition (4) holds. Since u. < u < u*, this implies that u(x) = U(xy). The conclusion
then follows from the properties of U obtained in Theorem 4. d
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