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1. Introduction

This note is dedicated to the nonlocal problem

∂t u −div
(
d(x)∇u

)+ϕ(∫ ∞

0
a(s, x)u(s, x)ds

)
u = f (t , x) , (t , x) ∈ (0,∞)×Ω , (1a)

u(0, · ) = u0 , u|∂Ω = 0 (1b)

on a bounded smooth domain Ω ⊂ Rn with d ∈ C 1(Ω) such that d(x) ≥ d0 > 0 for x ∈ Ω. The
potential ϕ, the weight a, the initial datum u0, and the right-hand side f are suitable given
functions.

Equation (1) is used in the modeling of a biological nanosensor in the chaotic dynamics of a
polymer chain in an aqueous solution and has been introduced and considered in [5–8]. It can
also be seen as a toy model for equilibrium states in age-structured diffusive populations (with t
referring to the age of individuals), see [9, 10] for instance.

Note that the unknown weighted time-integral

u =
∫ ∞

0
a(s)u(s)ds

depends on the whole, a priori given interval of existence (0,∞) (the case of a bounded time
interval (0,T ) is included in (1), of course). Hence, only global solutions are of interest. Moreover,
(1) is no usual evolution problem satisfying a Volterra property since solutions at a time instant
depend also on future time instants. For the homogeneous version of (1) on a bounded interval

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.443
mailto:walker@ifam.uni-hannover.de
https://comptes-rendus.academie-sciences.fr/mathematique/


826 Christoph Walker

time (0,T ) with vanishing right-hand side f and without weight a, existence of weak solutions
was derived in [5, 6] and strong solutions in [11]. We also refer to [4] for existence of weak
solutions when the Laplacian is replaced by an integrodifferential operator of Lévy type. The
non-homogeneous problem (1) on a bounded interval (0,T ) was investigated in [7] where, for
unbounded potentials ϕ, a truncation approach and weak compactness methods were used to
prove the existence of weak solutions under fairly general conditions.

The purpose of this work is to propose an alternative approach to (1) for deriving the existence
of mild and strong solutions under slightly different conditions. This approach has been used
in [11] and may also be a template for other nonlocal problems. More precisely, we shall use the
fact that solutions to (1) may be written as mild solutions in the form

u(t ) = e t A(u)u0 +
∫ t

0
e(t−s)A(u) f (s)ds , t ≥ 0, (2)

where (e t A(u))t≥0 is the contraction semigroup on Lp (Ω) generated by the operator

A(u) := [
w 7→ div

(
d(x)∇w

)−ϕ(u)w
]

subject to Dirichlet boundary conditions (see below for details). Integrating the representation (2)
yields the equivalent fixed point equation

u =
∫ ∞

0
a(t )e t A(u)u0 dt +

∫ ∞

0
a(t )

∫ t

0
e(t−s)A(u) f (s)ds dt (3)

for u. We then shall focus on this fixed point equation and prove, in particular, that the right-
hand side of (3) enjoys suitable compactness properties with respect to u that allow us to apply
Schauder’s theorem leading to the following existence result:

Theorem 1. Let a ∈ L1(R+,L∞(Ω)), ϕ ∈ C (R,R+), and f ∈ L1(R+,L∞(Ω))∩L∞,loc (R+,Lp (Ω)) for
some p ∈ (n/2∨1,∞) and let u0 ∈ L∞(Ω). Then there is a mild solution u ∈C

(
R+,Lp (Ω)

)
to (1) such

that
∥u(t )∥∞ ≤ ∥u0∥∞+∥ f ∥L1((0,t ),L∞(Ω)) , t ∈R+ .

If f ∈Cθ(R+,Lq (Ω))+C (R+,W θ
q (Ω)) with θ > 0 and q ∈ (1,∞), then u is a strong solution with

u ∈C
(
R+,Lq (Ω)

)∩C 1(Ṙ+,Lq (Ω)
)∩C

(
Ṙ+,W 2

q (Ω)
)

,

with Ṙ+ := (0,∞).

Some of the assumptions may be weaken, e.g. for linearly bounded ϕ or smoother a.
In Section 2 we prove Theorem 1. The crucial compactness properties of the integral terms

appearing on the right-hand side of (3) are postponed to Section 3. The proofs there are inspired
by the works [2, 3] and may be extended to more general frameworks than the one considered
herein for (1), e.g. to other semilinear and possibly quasilinear equations (see Remark 5 in this
regard).

2. Proof of Theorem 1

Notation and Preliminaries

We use the notation

W α
p,D (Ω) :=

{
{u ∈W α

p (Ω) ; u = 0 on ∂Ω} if 1
p <α≤ 2,

W α
p (Ω) if 0 ≤α< 1

p ,

and we write A ∈H (W 2
p,D (Ω),Lp (Ω)) if A ∈L (W 2

p,D (Ω),Lp (Ω)) generates an analytic semigroup

(e tA )t≥0 on Lp (Ω). Recall that[
w 7→ div

(
d(x)∇w

)] ∈H (W 2
p,D (Ω),Lp (Ω))
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provided d ∈C 1(Ω)) with d(x) ≥ d0 > 0 for x ∈Ω.

Since ϕ is uniformly continuous and bounded on bounded sets, it follows that (considered as
Nemytskii operator)

ϕ ∈C
(
L∞(Ω),L∞(Ω)

)
is bounded on bounded sets . (4)

Given R0 > 0 denote by

X :=BL∞(Ω)(0,R0)

the closed ball in L∞(Ω) of radius R0 centered at the origin. Recall that p ∈ (n/2∨1,∞) and note
that, given any u ∈ X , the mapping ϕ(u) := [w 7→ϕ(u)w] ∈L

(
Lp (Ω)

)
satisfies

∥ϕ(u)∥L (Lp (Ω)) ≤ ∥ϕ(u)∥∞ ≤ max
[−R0,R0]

ϕ , u ∈ X .

Setting

A(u)w := div
(
d∇w

)−ϕ(u)w , w ∈W 2
p,D (Ω) ,

it then follows from standard perturbation results that

A(u) ∈H (W 2
p,D (Ω),Lp (Ω)) , u ∈ X .

In fact, since ϕ is nonnegative, (e t A(u))t≥0 is a positive contraction semigroup on each Lq (Ω) for
q ∈ (1,∞] (which, however, is not strongly continuous for q =∞), hence

∥e t A(u)∥L (Lq (Ω)) ≤ 1, t ≥ 0, q ∈ (1,∞] . (5)

Moreover, we have s(A(u)) ≤ s0 < 0 for its spectral bound with s0 denoting the spectral bound of
the operator

[
w 7→ div

(
d∇w

)]
. It then follows from [1, II.Lemma 5.1.3] that there is ν > 0 and,

given 2θ ∈ [0,2] \ {1/p}, there is M(R0) ≥ 1 such that

∥e t A(u)∥L (Lp (Ω),W 2θ
p,D (Ω)) ≤ M(R0)e−νt t−θ , t > 0, u ∈ X . (6)

In the following we fix 2θ ∈ (n/p,2) and note the compact embedding

W 2θ
p,D (Ω)

c
,→ L∞(Ω) ,→ Lp (Ω) . (7)

Let us also observe that, given t > 0 and u, v ∈ X , we have

e t A(u) −e t A(v) =−
∫ t

0

d

ds
e(t−s)A(u)e s A(v) ds =−

∫ t

0
e(t−s)A(u) (ϕ(u)−ϕ(v)

)
e s A(v) ds . (8)

We then use (6) and (7) to get

∥e t A(u) −e t A(v)∥L (Lp (Ω),L∞(Ω)) ≤ c ∥e t A(u) −e t A(v)∥L (Lp (Ω),W 2θ
p,D (Ω))

≤
∫ t

0
∥e(t−s)A(u)∥L (Lp (Ω),W 2θ

p,D (Ω)) ∥ϕ(u)−ϕ(v)∥L (Lp (Ω)) ∥e s A(v)∥L (Lp (Ω)) ds

≤ c(R0)e−νt t 1−θ ∥ϕ(u)−ϕ(v)∥∞ . (9)

We are now in a position to provide the proof of Theorem 1.

Proof of Theorem 1. We show that the mapping

Φ(u) :=
∫ ∞

0
a(t )e t A(u)u0 dt +

∫ ∞

0
a(t )

∫ t

0
e(t−s)A(u) f (s)ds dt , u ∈ X =BL∞(Ω)(0,R0) ,

with

R0 := ∥a∥L1(R+,L∞(Ω))
(∥u0∥∞+∥ f ∥L1(R+,L∞(Ω))

)
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has a fixed point. Note first from (5) that ∥Φ(u)∥∞ ≤ R0 for u ∈ X , hence Φ : X → X . Next, due
to (9) and (7) we obtain, for u, v ∈ X ,

∥Φ(u)−Φ(v)∥∞ ≤
∫ T

0
∥a(t )∥∞ ∥e t A(u) −e t A(v)∥L (Lp (Ω),L∞(Ω)) ∥u0∥p dt

+
∫ T

0
∥a(t )∥∞

∫ t

0
∥e(t−s)A(u) −e(t−s)A(v)∥L (Lp (Ω),L∞(Ω)) ∥ f (s)∥p ds dt

≤ c(R0)
∫ ∞

0
∥a(t )∥∞ e−νt t 1−θ dt ∥u0∥p ∥ϕ(u)−ϕ(v)∥∞

+ c(R0)
∫ ∞

0
∥a(t )∥∞

∫ t

0
e−ν(t−s) (t − s)1−θ ∥ f (s)∥p ds dt ∥ϕ(u)−ϕ(v)∥∞

and hence, using ν> 0,

∥Φ(u)−Φ(v)∥∞ ≤ c(R0)∥a∥L1(R+,L∞(Ω))
(∥u0∥p +∥ f ||L1(R+,Lp (Ω))

)∥ϕ(u)−ϕ(v)∥∞ . (10)

Therefore, Φ ∈ C (X , X ) according to (4). From Proposition 3 and Proposition 4 we deduce that
Φ ∈C (X , X ) has precompact image so that Schauder’s fixed point theorem yields u ∈ X such that
u =Φ(u). We may then define u by (2) in order to obtain a mild solution to (1) which belongs to
C (R+,Lp (Ω)) due to [1, II.Theorem 5.3.1] since f ∈ L∞,loc (R+,Lp (Ω)).

Finally, if f ∈ Cθ(R+,Lq (Ω)) + C (R+,W θ
q (Ω)) for some θ > 0 and q ∈ (1,∞), then u is a

strong solution with the regularity properties stated in Theorem 1, see [1, II.Theorem 1.2.1,
II.Theorem 1.2.2]. This proves Theorem 1. □

Remark 2. If ϕ is locally Lipschitz continuous, then one may derive the existence and unique-
ness of a solution using Banach’s fixed point argument for Φ : X → X provided that

R0 = ∥a∥L1(R+,L∞(Ω))
(∥u0∥∞+∥ f ∥L1(R+,L∞(Ω))

)
is small enough.

3. Compactness Properties

We provide the compactness results used in the proof of Theorem 1. This section relies on the
papers [2, 3] and adapts these ideas to our setting.

We first consider the non-homogeneous part.

Proposition 3. Let a ∈ L1(R+,L∞(Ω)) and f ∈ L1(R+,L∞(Ω)) ∩ L∞,loc (R+,Lp (Ω)) for some p ∈
(n/2∨1,∞). Define

F (u) :=
∫ ∞

0
a(t )

∫ t

0
e(t−s)A(u) f (s)ds dt , u ∈ X .

Then the set
{
F (u) ; u ∈ X

}
is precompact in L∞(Ω).

Proof. Given T > 0 introduce
XT :=C ([0,T ],L∞(Ω))

and

F (u)(t ) :=
∫ t

0
e(t−s)A(u) f (s)ds , t ∈ [0,T ] , u ∈ X =BL∞(Ω)(0,R0) .

It suffices to prove that F ∈ C (X ,XT ) is compact for every T > 0 since the assertion then follows
by a diagonal sequence argument and the assumption a ∈ L1(R+,L∞(Ω)).

(i). Since f ∈ L∞,loc (R+,Lp (Ω)), we infer from [1, II.Theorem 5.3.1] that F (u) ∈ C ([0,T ],W 2θ
p (Ω))

and hence F (u) ∈XT for u ∈ X by (7). Moreover, given u, v ∈ X and t ∈ [0,T ], we have, as in (10),

∥F (u)(t )−F (v)(t )∥∞ ≤ c(R0)∥ f ∥L1(R+,Lp (Ω)) ∥ϕ(u)−ϕ(v)∥∞ .

Therefore, F ∈C (X ,XT ) owing to (4).
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(ii). In order to prove that F ∈C (X ,XT ) has precompact image we use an idea inspired by [2, 3]:
for fixed λ> 0 we first show that{

eλA(u)F (u) ; u ∈ X
}

is precompact in XT . (11)

To this end, we note from (6) and (5) that, for u ∈ X and t ∈ [0,T ],

∥eλA(u)F (u)(t )∥W 2θ
p,D (Ω) ≤ c(R0)λ−θ ∥F (u)(t )∥p ≤ c(R0)λ−θ∥ f ∥L1(R+,Lp (Ω)) . (12)

That is, invoking (7), the set{
eλA(u)F (u)(t ) ; u ∈ X

}
is precompact in L∞(Ω) (13)

for every t ∈ [0,T ]. Before proceeding let us note that, given u ∈ X , δ> 0 and h ≥ 0,

e(δ+h)A(u) −eδA(u) =
∫ h

0

d

ds
e(δ+s)A(u) ds =

∫ h

0
e( δ2 +s)A(u) A(u)e

δ
2 A(u) ds

so that, using (6),

∥e(δ+h)A(u) −eδA(u)∥L (Lp (Ω),W 2θ
p,D (Ω))

≤
∫ h

0
∥e( δ2 +s)A(u)∥L (Lp (Ω),W 2θ

p,D (Ω)) ∥A(u)∥L (W 2
p,D (Ω),Lp (Ω)) ∥e

δ
2 A(u)∥L (Lp (Ω),W 2

p,D (Ω)) ds

≤ c(R0)e−νδ
(
δ

2

)−1 ∫ h

0

(
δ

2
+ s

)−θ
ds .

Consequently, invoking (7),

∥e(δ+h)A(u) −eδA(u)∥L (Lp (Ω),L∞(Ω)) ≤ c(R0)e−νδδ−1−θh , h ≥ 0, δ> 0, u ∈ X . (14)

Next, given u ∈ X and 0 ≤ t ≤ t +h ≤ T we have, using (7),

∥eλA(u)F (u)(t +h)−eλA(u)F (u)(t )∥∞

≤ c
∫ t+h

t
∥e(λ+t+h−s)A(u)∥L (Lp (Ω),L∞(Ω)) ∥ f (s)∥p ds

+ c
∫ t

0
∥e(λ+t+h−s)A(u) −e(λ+t−s)A(u)∥L (Lp (Ω),L∞(Ω)) ∥ f (s)∥p ds .

We use (6)-(7) once more along with (14) to get

∥eλA(u)F (u)(t +h)−eλA(u)F (u)(t )∥∞

≤ c(R0)
∫ t+h

t
(λ+ t +h − s)−θ ∥ f (s)∥p ds + c(R0)h

∫ t

0
(λ+ t − s)−1−θ ∥ f (s)∥p ds

≤ c(R0)λ−θ
∫ t+h

t
∥ f (s)∥p ds + c(R0)hλ−1−θ ∥ f ∥L1(R+,Lp (Ω)) .

Therefore, since f ∈ L1(R+,Lp (Ω)) we deduce that

lim
h→0

sup
u∈X

∥eλA(u)F (u)(·+h)−eλA(u)F (u)∥XT = 0, λ> 0. (15)

Gathering (15) and (13) we conclude that
{
eλA(u)F (u) ; u ∈ X

}
is indeed precompact in XT due to

the Arzelà-Ascoli Theorem.

(iii). Next, we claim that

lim
λ→0

sup
u∈X

∥eλA(u)F (u)−F (u)∥XT = 0. (16)
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Let δ ∈ (0,T ). Using (5) we have, for 0 ≤ t ≤ δ,

∥eλA(u)F (u)(t )−F (u)(t )∥∞ ≤ 2∥F (u)(t )∥∞ ≤ 2
∫ δ

0
∥ f (s)∥∞ ds . (17)

On the other hand, for δ≤ t ≤ T , we use (5) to get

∥eλA(u)F (u)(t )−F (u)(t )∥∞ ≤ ∥eλA(u)F (u)(t )−e(λ+δ)A(u)F (u)(t −δ)∥∞
+∥e(λ+δ)A(u)F (u)(t −δ)−eδA(u)F (u)(t −δ)∥∞
+∥eδA(u)F (u)(t −δ)−F (u)(t )∥∞

≤ 2∥eδA(u)F (u)(t −δ)−F (u)(t )∥∞
+∥e(λ+δ)A(u)F (u)(t −δ)−eδA(u)F (u)(t −δ)∥∞ .

For the first term on the right-hand side we use (5) to estimate

∥eδA(u)F (u)(t −δ)−F (u)(t )∥∞ =
∥∥∥∥∫ t

t−δ
e(t−s)A(u) f (s)ds

∥∥∥∥∞ ≤
∫ t

t−δ
∥ f (s)∥∞ ds

while we use (14) and (12) for the second term to obtain

∥e(λ+δ)A(u)F (u)(t −δ)−eδA(u)F (u)(t −δ)∥∞ ≤ c(R0)δ−1−θλ∥F (u)(t −δ)∥p

≤ c(R0)δ−1−θλ∥ f ∥L1(R+,Lp (Ω)) .

Gathering these estimates we derive, for δ≤ t ≤ T ,

∥eλA(u)F (u)(t )−F (u)(t )∥∞ ≤ 2
∫ t

t−δ
∥ f (s)∥∞ ds + c(R0)δ−1−θλ∥ f ∥L1(R+,Lp (Ω)) . (18)

Since f ∈ L1(R+,L∞(Ω)) we may first choose δ > 0 small enough and then let λ tend to zero to
conclude from (17) and (18) that (16) indeed holds true.

(iv). Let ε> 0 be arbitrary. Then, due to (16), there is λ0 > 0 such that

∥eλ0 A(u)F (u)−F (u)∥XT ≤ ε

3
, u ∈ X , (19)

while (11) yields finitely many u1, . . . ,uN ∈ X such that for every u ∈ X there exists k ∈ 1, . . . , N
such that

∥eλ0 A(u)F (u)−eλ0 A(uk )F (uk )∥XT ≤ ε

3
. (20)

Hence ∥F (u) − F (uk )∥XT ≤ ε so that
{
F (u) ; u ∈ X

}
is totally bounded in XT . This proves the

assertion. □

We prove a compactness result for the part involving the initial condition:

Proposition 4. Let a ∈ L1(R+,L∞(Ω)). Given u0 ∈ L∞(Ω) define

G (u) :=
∫ ∞

0
a(t )e t A(u) u0 dt , u ∈ X =BL∞(Ω)(0,R0) .

Then the set
{
G (u) ; u ∈ X

}
is precompact in L∞(Ω).

Proof. Let λ> 0 and set

Gλ(u) :=
∫ ∞

0
a(t )e(λ+t )A(u) u0 dt , u ∈ X .

Similarly as in Proposition 3 we infer that{
Gλ(u) ; u ∈ X

}
is precompact in L∞(Ω) . (21)
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Taking δ> 0 and using (5), (7), and (14) we then get

∥Gλ(u)−G (u)∥∞ ≤ 2
∫ δ

0
∥a(t )∥∞ dt ∥u0∥∞+

∫ ∞

δ
∥a(t )∥∞

∥∥e(λ+t )A(u)u0 −e t A(u)u0∥∞ dt

≤ 2
∫ δ

0
∥a(t )∥∞ dt ∥u0∥∞+ c(R0)δ−1−θ ∥a∥L1(R+,L∞(Ω)) ∥u0∥p λ .

Since a ∈ L1(R+,L∞(Ω)) we may choose δ> 0 small to make the first term small and then let λ go
to zero to conclude

lim
λ→0

sup
u∈X

∥Gλ(u)−G (u)∥∞ = 0. (22)

Combining (21) and (22) we deduce that
{
G (u) ; u ∈ X

}
is precompact in L∞(Ω). □

Remark 5. The compactness results of this section rely on properties (5), (6), and (7) and thus
may also be derived for truly quasilinear operators A(u) based on the stability estimates of [1,
II.Section 5]. One has, however, to replace the set X ⊂ L∞(Ω) by a subset of W 2θ

p,D (Ω) with
θ ∈ (0,2) \ {1/p} and to impose suitable assumptions on the data (e.g. the weight a has to be
sufficiently smooth in x).
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