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Manuscript received 12 October 2022, revised and accepted 20 November 2022.

1. Introduction

While its name was popularized later on, the five gradients inequality was introduced in [5] as a
way to derive estimates on the gradient of the solution of some recurring variational problems in
Optimal Transport involving the Wasserstein distance W2. In particular the authors showed that
the inequality can be used in the celebrated JKO scheme

ϱτk+1 ∈ argminϱ

ˆ
f (ϱ)dx + W 2

2 (ϱ,ϱτk )

2τ
,

to derive BV estimates that can be iterated along the scheme uniformly in τ, and therefore pass to
the limit PDE ∂tϱ−∇· (ϱ f ′′(ϱ)∇ϱ)= 0, yielding that the BV norm of the solution is nonincreasing
in time. In the same paper, the authors also use the inequality to prove BV estimates for the
Wasserstein projection of a measure with BV density on the set of measures with density bounded
by another given BV function. This result is then used in [4] to find bounds on the perimeters of
solutions of some variational problems involving mutually singular measures. The five gradients
inequality has also been used in [6] to derive Sobolev estimates for the solutions of the JKO
scheme for the Fokker-Planck equation. One only needs to prove that the five gradients inequality
holds in a more general setting to generalize most of these results beyond the W2 case. It is now
folk-lore that the inequality is also true for the distance Wp for p > 1 and more general cost
functions, yet a full proof has not been available until now. In this paper we generalize the proof
given in [5] to the case where the cost c is of the form c(x, y) = h(x− y) where h is a strictly convex
radially symmetric C 1 function. The inequality reads as follows:
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Theorem 1. Let Ω ⊂ Rd be bounded and convex with non-empty interior, ϱ, g ∈ W 1,1(Ω) be two
probability densities, h ∈C 1(Rd ) a radially symmetric strictly convex function and H ∈C 1(Rd \{0})
be a radially symmetric convex function, then the following inequality holdsˆ

Ω

(∇ϱ ·∇H(∇ϕ)+∇g ·∇H(∇ψ)
)

dx ≥ 0, (1)

where (ϕ,ψ) is a choice of Kantorovich potentials for the optimal transport problem between ϱ and
g for the transport cost given by h, with the convention that ∇H(0) = 0.

A particular case is the one where h(z) = |z|p for p > 1, generalizing the inequality to the Wp

case. Following the strategy established in [5], the generalized inequality for example implies that
the BV norm of the solution of ∂tϱ−∆q (g (ϱ)) = 0 (with q = p

p−1 , and g nondecreasing) decreases
in time. Indeed, this nonlinear PDE can be seen as the limit of a JKO-like scheme

ϱk+1 ∈ argminϱ
W p

p (ϱ,ϱk )

pτp−1 +
ˆ
Ω

f (ϱk )dx.

by choosing g ′(ϱ) = ϱp−1 f ′′(ϱ) with suitable assumptions on f so that the JKO scheme indeed
converges (see e.g. [1, 3, 10]).

To justify computations that involve second derivatives of Kantorovich potentials, the original
proof made use of the well known Caffarelli regularity theory available for the cost h(x − y) =
|x − y |2. Since the works of Ma, Trudinger, Wang [9] and Loeper [8], sufficient and necessary
conditions on the cost c to guarantee the existence of smooth potentials are known, and in these
cases one could reproduce the proof given in [5]. Unfornutately, these conditions for regularity
do not cover the cases where, for example, h(z) = |z|p for p ̸= 2. Therefore in the sequel we shall
instead approximate the cost with semiconcave cost functions, and use the fact that Kantovorich
potentials inherit this semiconcavity, along with Alexandroff’s theorem (see e.g. [7]):

Theorem 2 (Alexandroff’s theorem). Let u be a semiconcave function on an open bounded set
A ⊂ Rd ; then u is twice differentiable a.e., meaning for a.e. x0 ∈ A, there exists px0 ∈ Rd and a
symmetric matrix Bx0 such that

lim
x−→x0

u(x)−u(x0)−px0 · (x −x0)+Bx0 (x −x0) · (x −x0)

|x −x0|2
= 0.

Moreover, the gradient of u, defined for almost every x0 in A is BV and the absolutely continuous
part of the second derivative D2

ac u(x0) is given by Bx0 .

Usual references for the theory of optimal transport that we will use throughout this paper
include [12, 13] as well as [11] which also features a chapter dedicated to the JKO scheme for the
Fokker-Planck equation.

2. Proof of the inequality

In the sequel, unless otherwise indicated,Ωwill denote a bounded convex subset ofRd with non-
empty interior. The weak convergence of measures will be in duality with C (Ω), however, we will
work with probability measures that have densities and that therefore cannot be concentrated on
∂Ω which is negligible for the Lebesgue measure because Ω is convex. We take R > 0 to be such
thatΩ⊂ B(R/2).

Definition 3. We say that a cost c(x, y) = h(x − y) satisfies (H1) if:

(1) h ∈C 2(B(R))
(2) h is strictly convex
(3) h is radially symmetric
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Remark 4. In particular, a cost satisfying (H1) is semiconcave i.e. there exists C > 0 such that
x 7→ h(x)−C |x|2 is concave on B(R). Since it is known that Kantorovich potentials can be taken
to be c-concave, i.e. of the form

ϕ(x) = inf
y∈Ω

h(x − y)−ψ(y)

for some function ψ : Ω → R, they can also be asumed to be semiconcave, with the same
semiconcavity constant C as h.

In order to deal with regularity issues, we will approximate the cost function with costs
satisfying (H1).

Lemma 5. Let h ∈ C 1(Rd ) be a radially symmetric strictly convex function and ηε be a radially

symmetric mollifier. Then hε = ηε∗h satisfies (H1) and hε
C 1(B(R))−−−−−−→ h.

To prove the convergence back to the original problem we will need a few lemmas. We recall
that if (X ,Σ,µ) is a measure space and fn , f are measurable functions, we say that fn converges
in µ-measure to f if for every ε> 0

lim
n−→+∞µ

({∣∣ fn − f
∣∣> ε})= 0.

and we will denote this convergence by fn
µ−→ f .

Lemma 6. Let Ω⊂Rd and T,Tn :Ω−→Ω be measurable functions. Let ϱ ∈P(Ω) then we have

Tn
ϱ−→ T ⇐⇒ (id×Tn)#ϱ−→ (id×T )#ϱ weakly,

where (id×T ) :Ω→Ω is the function defined as (id×T )(x) = (x,T (x))

Proof. First if Tn
ϱ−→ T , assuming by contradiction that the weak convergence does not hold, there

exists f ∈Cb(Ω×Ω), ε> 0 and a subsequence (Tnk )k such that∣∣∣∣ˆ
Ω

f (x,T (x))− f (x,Tnk (x))dϱ(x)

∣∣∣∣≥ ε.

Extracting a further subsequence such that Tnk j
converges to T ϱ-a.e. and using dominated

convergences gives a contradiction.
Let ε > 0, by Lusin’s theorem, for δ > 0, there exists a compact set K ⊂ Ω such that T |K is
continuous and ϱ(Ω\K ) ≤ δ. Therefore A = {(x, y) ∈ K ×Ω, |T (x) − y | ≥ ε} is a closed set in
Ω×Ω. Since the evaluation on closed sets is upper semi continuous for the weak convergence
of measures,

0 = (id×T )#ϱ(A) ≥ limsup(id×Tn)#ϱ(A)

= limsupϱ
(
{x ∈ K , |T (x)−Tn(x)| ≥ ε}

)
≥ limsupϱ

(
{x ∈Ω, |T (x)−Tn(x)| ≥ ε}

)−δ.

Letting δ−→ 0 gives Tn
ϱ−→ T . □

Lemma 7. Given metric spaces X and Y , let f , fn : X −→ Y be bijective functions such that
fn converges uniformly to f . Then gn = f −1

n converges uniformly to g = f −1 if g is uniformly
continuous. Furthermore, if (xn)n ∈ X is a sequence such that fn(xn) −→ f (x) then xn −→ x.

Proof. It is straightforward to check that if w : Y −→ X is uniformly continuous and if hn : X −→ Y
converges uniformly to h, then w ◦ hn converges uniformly to w ◦ h. Therefore to prove that
gn = g ◦ f ◦gn uniformly converges to g ◦ f ◦g it is enough to check that f ◦gn uniformly converges
to the identity function. For y ∈ Y , we have that d

(
f ◦ gn(y), y

) = d( f ◦ gn(y), fn ◦ gn(y)) and the
uniform convergence of fn to f concludes.
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The second claim follows from the fact that uniform convergence of functions preserves the
convergence of sequences of points. □

Lemma 8. Let Tn ,T : Ω → Rd be uniformly bounded, 1 < p < ∞ and ϱn ,ϱ ∈ L1(Ω) such that

ϱn
L1(Ω)−−−−→ ϱ, ϱnTn * ϱT as measures in M (Ω) and

´
Ω |Tn |pϱn −→ ´

Ω |T |pϱ. Then Tn
Lp (Ω,ϱ)−−−−−→ T .

Remark 9. The assumptions are satisfied if Ω is bounded and Tn ,T take values in Ω, ϱn
L1(Ω)−−−−→ ϱ

and (id×Tn)#ϱn * (id×T )#ϱ

Proof. Since the Tn are uniformly bounded in L∞, up to a subsequence we have weak-∗ con-
vergence in L∞: Tn

∗
* T̃ ∈ L∞(Ω). Since ϱn −→ ϱ strongly in L1, strong-weak convergence yields

convergence in distribution of the product ϱnTn −→ ϱT̃ . By uniqueness of the limit in the space of
distributions, the convergence ϱnTn * ϱT therefore gives that that ϱT = ϱT̃ . Then we have:∣∣∣∣ˆ

Ω

|Tn |pϱ−
ˆ
Ω

|T |pϱ
∣∣∣∣≤ ∣∣∣∣ˆ

Ω

|Tn |pϱ−
ˆ
Ω

|Tn |pϱn

∣∣∣∣+ ∣∣∣∣ˆ
Ω

|Tn |pϱn −
ˆ
Ω

|T |pϱ
∣∣∣∣ .

The second term goes to 0 by assumption and the first term is bounded by C p
∥∥ϱ−ϱn

∥∥
1 which

also goes to 0. Now it is enough to prove weak convergence in Lp , so let f ∈ Lp ′
(Ω,ϱ). Since by

Hölder f ϱ ∈ L1(Ω),∣∣∣∣ˆ
Ω

f Tϱdx −
ˆ
Ω

f Tnϱdx

∣∣∣∣= ∣∣∣∣ˆ
Ω

(T −Tn) f ϱdx

∣∣∣∣ n−→∞−−−−→
∣∣∣∣ˆ
Ω

(T − T̃ ) f ϱdx

∣∣∣∣= 0.

Hence Tn
Lp (Ω,ϱ)−−−−−→ T , and by uniqueness of this limit the whole sequence actually converges. □

We are now ready to begin the proof of the five gradients inequality with smooth densities and
a cost satisfying (H1)

Lemma 10. Given h satisfying (H1), ϱ and g smooth probability densities, let H ∈ C 2(Rd ) be a
convex function, then the following inequality holds:ˆ

Ω

(
ϱ∇· [∇H(∇ϕ)]− g ∇· [∇H(−∇ψ)]

)
dx ≤ 0, (2)

where (ϕ,ψ) is a choice of Kantorovich potentials for the optimal transport problem between ϱ and
g for the transport cost given by h, and ∇· denotes the distributional divergence.

Proof. Let (ϕ,ψ) be a choice of c-concave potentials for the transport problem. From c-concavity
we deduce that ϕ and ψ are semiconcave and hence by Alexandroff’s theorem (2), ϕ and ψ are
twice differentiable almost everywhere and ∇ϕ, ∇ψ are functions of bounded variation on Ω.
We will denote by Jϕ the set of approximate jump points of ∇ϕ, ∇ϕ+ and ∇ϕ− the left and right
approximations of ∇ϕ and νϕ the approximate normal to Jϕ. We will denote by D2

acϕ and D2
cϕ

respectively the absolutely continuous part and the Cantor part of D2ϕ. We will now use the chain
rule for BV functions (see [2] for more details on notation and precise statements).

D[∇H(∇ϕ)] = D2H(∇ϕ)D2
acϕL d +D2H(∇ϕ)D2

cϕ+ (∇H(∇ϕ+)−∇H(∇ϕ−))⊗νϕH d−1 Jϕ.

Using the semiconcavity of ϕ, we deduce that there exists some C > 0 such that, as a measure,
D2ϕ≤CL d , and we have

D2
acϕ≤C L d a.e.,

D2
cϕ≤ 0,

(∇ϕ+−∇ϕ−)⊗νϕH d−1 Jϕ ≤ 0.

In particular since a⊗b ≤ 0 implies the existence of λ≤ 0 such that a =λb, using the convexity of
H we get

(∇H(∇ϕ+)−∇H(∇ϕ−)) · (∇ϕ+−∇ϕ−) ≥ 0,
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and therefore

(∇H(∇ϕ+)−∇H(∇ϕ−)) ·νϕ ≤ 0 H d−1 Jϕ ae.

Using the nonnegativity of D2H we therefore have

∇· [∇H(∇ϕ)] = Tr(D2H(∇ϕ)D2
acϕ)+Tr(D2H(∇ϕ)D2

cϕ)+ (∇H(∇ϕ+)−∇H(∇ϕ−)) ·νϕH d−1 Jϕ

≤ Tr(D2H(∇ϕ)D2
acϕ).

Using the same arguments we also get

∇· [∇H(−∇ψ)] ≥−Tr(D2H(−∇ψ)D2
acψ).

Integrating with respect to non negative densities ϱ, g , we getˆ
Ω

(
ϱ∇· [∇H(∇ϕ)]− g ∇· [∇H(−∇ψ)]

)
dx

≤
ˆ
Ω

(
ϱTr(D2H(∇ϕ)D2

acϕ) + g Tr(D2H(−∇ψ)D2
acψ)

)
dx

=
ˆ
Ω

(
ϱTr(D2H(∇ϕ)D2

acϕ) +ϱ[
Tr(D2H(−∇ψ)D2

acψ)◦T
])

dx,

where T is the optimal transport map between ϱ and g . Let S be the optimal transport between
g and ϱ (for the cost c̃(x, y) = c(y, x)), then S ◦T = id ϱ-a.e., and therefore for ϱ-a.e. x we have

−∇ψ(T (x)) =∇h(S ◦T (x)−T (x)))

=∇h(x −T (x))

=∇ϕ(x).

We know that ϕ,ψ are twice differentiable L d -a.e. hence

1 = g
(
{y,ψ is twice differentiable at y}

)
= ϱ(

{x,ψ is twice differentiable at T (x)}
)
.

and since the function v 7→ ϕ(x + v)+ψ(T (x)− v) ≤ h(x −T (x)) is maximal at v = 0 for ϱ-a.e. x,
using that, for BV functions, the absolutely continuous part of the derivative coincides with the
pointwise derivative, we have D2

acϕ(x)+D2
acψ(T (x)) ≤ 0 ϱ-a.e. Thereforeˆ

Ω

(
ϱ∇· [∇H(∇ϕ)]− g ∇· [∇H(−∇ψ)]

)
dx ≤

ˆ
Ω

(
ϱTr(D2H(∇ϕ)[D2

acϕ+D2
acψ◦T ]

)
dx ≤ 0. □

Theorem 11. Given h satisfying (H1), suppose that ϱ, g are smooth probability densities, and let
H ∈C 2(Rd ) be a convex radially symmetric function, then the following inequality holdsˆ

Ω

(∇ϱ ·∇H(∇ϕ)+∇g ·∇H(∇ψ)
)

dx ≥ 0,

where (ϕ,ψ) is a choice of Kantorovich potentials for the optimal transport problem between ϱ and
g for the transport cost given by h.

Proof. First since H is radially symmetric we have ∇H(−∇ψ) = −∇H(∇ψ) Using Lemma 10 and
the trace theorem for BV functions we getˆ

Ω

(∇ϱ ·∇H(∇ϕ)+∇g ·∇H(∇ψ)
)

dx

=−
ˆ
Ω

(
ϱ∇· [∇H(∇ϕ)]+ g ∇· [∇H(∇ψ)]

)
dx +

ˆ
∂Ω

(
ϱ∇H(∇ϕ) ·n + g∇H(∇ψ) ·n

)
dH d−1

≥
ˆ
∂Ω

(
ϱ∇H(∇ϕ) ·n + g∇H(∇ψ) ·n

)
dH d−1.
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Let x0 ∈ ∂Ω be such that ϱ(x0) > 0. By continuity of ϱ, for small ε > 0, there exists r0 > 0
such that if x ∈ B(x0,r0) ∩Ω, then ϱ(x) > ε. For a.e. x ∈ B(x0,r0) ∩Ω, since T (x) ∈ Ω we have
(T (x)− x0) ·n(x0) ≤ 0 and therefore (x −∇h∗(∇ϕ)) ·n(x0) ≤ x0 ·n(x0). For r ≤ r0, integrating on
B(x0,r ) we get  

B(x0,r )∩Ω
(x −∇h∗(∇ϕ)) ·n(x0)dx ≤

 
B(x0,r )∩Ω

x0 ·n(x0)dx.

Taking r −→ 0 we get ∇h∗(∇ϕ(x0)) ·n(x0) ≥ 0 for H d−1-a.e. x0 ∈ ∂Ω such that ϱ(x0) > 0.
Since H and h are convex and radially symmetric we have ∇H(z) = α(z)z with α(z) ≥ 0 and

since ∇h∗ = (∇h)−1 we also have ∇h∗(z) =α′(z)z hence for H d−1-a.e. x0 ∈ ∂Ω such that ϱ(x0) > 0
we have ∇H(∇ϕ(x0)) ·n(x0) ≥ 0. By the same arguments for g and ∇ψ we haveˆ

∂Ω

(
ϱ∇H(∇ϕ) ·n + g∇H(∇ψ) ·n

)
dH d−1 ≥ 0,

which concludes the proof. □

Remark 12. In the above proof the hypothesis that h and H are radially symmetric is only used
in proving that ∇H and ∇h∗ point in the same direction, to deal with the boundary integral. One
therefore should be able to only assume that H(z) =α(h∗(z)) for some increasing convex function
α to get ∇H(z) = α′(h∗(z))∇h∗(z). This however adds the difficulty of finding an adequate
replacement for Lemma 5 and proving the ensuing convergence.

Proof of Theorem 1. We begin by taking H ∈C 2(Rd ), smooth densitites ϱ, g , and approximating

the cost h using Lemma 5 and applying Theorem 11. Since hε
C 1

−−→ h, by compactness of P(Ω)
the sequence (γε)ε = ((id×Tε)#ϱ)ε of optimal plans weakly converges up to a subsequence to γ=
(id×T )#ϱ ∈P(Ω) which is optimal for h. By uniqueness of such transport maps in fact the whole

sequence converges and by Lemma 6 we have Tε
ϱ−→ T . Extracting a subsequence we therefore

have Tε −→ T ϱ-a.e, using that we have Tε(x) = x −∇h∗
ε (∇ϕε(x)) and T (x) = x −∇h∗(∇ϕ(x)) and

Lemma 7 we get that ∇ϕε(x) −→∇ϕ(x) ϱ-a.e. Doing the same for g andψ and using that ∇H ∈ L∞,
the result is proved by dominated convergence.

Next we take ϱ, g ∈ W 1,1(Ω), and for example by convolution we can find smooth functions

ϱε, gε such that (ϱε, gε)
W 1,1(Ω)−−−−−→ (ϱ, g ). Extracting a subsequence if necessary, we can assume the

convergence to hold a.e. and to have a uniform L1 domination. Normalizing (ϱε, gε) if necessary
we can assume they are probability densities and apply the previous result to getˆ

Ω

(∇ϱε ·∇H(∇ϕε)+∇gε ·∇H(∇ψε)
)

dx ≥ 0. (3)

Using Lemma 8 and up to a subsequence, we have Tε −→ T ϱ-a.e. which implies just as before that
∇ϕε −→∇ϕ ϱ-a.e. Therefore for a.e. x ∈ {ϱ> 0}, we have ∇ϕε(x) −→∇ϕ(x) and, using ∇ϱ= 0 a.e on{
ϱ= 0

}
, for a.e. x ∈ {ϱ = 0}, we have ∇ϱε(x) −→ ∇ϱ(x). In any case, since ∇H ∈ L∞, we have that

∇ϱε(x) ·∇H(∇ϕε(x)) −→∇ϱ(x) ·∇H(∇ϕ(x)) for a.e. x ∈Ω and dominated convergence givesˆ
Ω

∇ϱε ·∇H(∇ϕε)dx
ε−→0−−−→

ˆ
Ω

∇ϱ ·∇H(∇ϕ)dx.

Doing the same for g and ψ and adding the integrals gives the result.
Finally, approximating a radially symmetric convex function H ∈ C 1(Rd \{0}) with C 2 functions
with the same properties proves that the result stays true in this case, when using the natural
convention ∇H(0) = 0. □
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