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Abstract. The classical q-analogue of the integers was recently generalized by Morier-Genoud and Ovsienko
to give q-analogues of rational numbers. Some combinatorial interpretations are already known, namely as
the rank generating functions for certain partially ordered sets. We give a new interpretation, showing that
the numerators of q-rationals count the sizes of certain varieties over finite fields, which are unions of open
Schubert cells in some Grassmannian.
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1. Background

The classical “q-analogue” of a positive integer n is the following polynomial in Z[q]

[n]q := 1+q +q2 +·· ·+qn−1.

It satisfies the property that evaluation at q = 1 yields the number n. In general, any “q-analogue”
should satisfy at least this simple property — that evaluating q = 1 (or more generally taking a
limit q → 1) should recover the classical case.

Some simple well-known examples are built from the q-integers in the obvious way. First is
the q-factorial:

[n]q ! := [n]q [n −1]q · · · [2]q [1]q .

Also we have the q-binomial coefficients:(
n

k

)
q

:= [n]q !

[k]q ![n −k]q !
.

However, the significance of a q-analogue would be superficial if the only connection were this
“q = 1” property. Usually, a q-analogue satisfies some other interesting properties, and has some
deeper significance. In particular, q-analogues often have two other interesting combinatorial
interpretations.

(1) They count the size of some algebraic variety defined over a finite field Fq .
(2) They appear as weight generating functions of some combinatorial set for some natural

statistic.
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Recently, Morier-Genoud and Ovsienko defined q-analogues of rational numbers [9]. Given a
rational number r

s , they define a rational function
[ r

s

]
q = R(q)

S (q) , which is defined in terms of the
continued fraction expansion of r

s . The formal definition will be given later, but here are some
examples: [

5

2

]
q
= 1+2q +q2 +q3

1+q
,

[
10

7

]
q
= 1+q +2q2 +3q3 +2q4 +q5

1+q +2q2 +2q3 +q4 .

Morier-Genoud and Ovsienko give some combinatorial interpretations and formulas for the
polynomials R(q), but they pose the open problem of finding more. They say the following in [9]:

“It is a challenging problem to find more different combinatorial and geometric
interpretations of the polynomials R and S . A natural question is to connect
the polynomials R and S with counting of points in varieties defined over the
finite fields Fq . This property would be similar to that of the Guassian q-binomial
coefficients.”

The aim of this paper is to address this question. We will review some known interpretations
of the polynomials R(q), as well as present some new ones. In particular, we answer the question
of giving an interpretation in terms of varieties over finite fields. The organization of the rest of
the paper is as follows.

In the remainder of Section 1, we discuss, for [n]q ! and
(n

k

)
q , the two points mentioned above,

how q-analogues often have interpretations in terms of finite algebraic varieties as well as weight
generating functions.

In Section 2, we give the definition of
[ r

s

]
q , the q-analogue of the rational number r

s , and dis-
cuss some combinatorial interpretations in terms of weight generating functions which have al-
ready appeared in the literature. In this section we define “snake graphs”, and the main combi-
natorial interpretation of q-rationals for our purposes will be as weight generating functions for
certain paths on these graphs. In this section we also define two partitions λ and µ (with µ < λ)
associated with a rational number, which depend on the continued fraction expansion. These
partitions play an important part in the statement of the main theorem later.

In Section 3, we begin by reviewing the decomposition of the Grassmannian Grk (n) into “open
Schubert cells”. These cells are indexed by partitions which fit inside a k × (n −k) rectangle. For
each partition λ, we write Ω◦

λ
for the open Schubert cell. The main result (Theorem 25) is the

following.

Theorem. Let r
s be a rational number, and

[ r
s

]
q = R(q)

S (q) . Also let µ and λ be the partitions defined
in Section 2 associated with r

s . Then

q |µ|R(q) =
∣∣∣∣∣ ⋃
µ≤ν≤λ

Ω◦
ν

∣∣∣∣∣ .

1.1. Geometry Over Finite Fields

Now let us recall how the above-mentioned examples (the q-factorial and q-binomial coeffi-
cients) can be interpreted as the sizes of certain algebraic varieties over finite fields. The state-
ments and results in this section are well-known (see [17] for example), but we recall them for the
sake of presentation.

First, let us establish some notation. Let V be a vector space (over a field K), of dimension n.
The (complete) flag variety, which we will denote by Fl(V ), is the set of all complete flags in V . By
a complete flag we mean a chain of nested subspaces

0 ⊂V1 ⊂V2 ⊂ ·· · ⊂Vn−1 ⊂V. (dim(Vi ) = i )



Nicholas Ovenhouse 809

Recall also that the set of k-dimensional subspaces of a vector space is called a Grassmannian,
and denoted Grk (V ). Then the q-factorial and q-binomial coefficients are the sizes of these
varieties over a finite field Fq :∣∣∣Fl(Fn

q )
∣∣∣= [n]q ! and

∣∣∣Grk (Fn
q )

∣∣∣= (
n

k

)
q

.

Example 1. The projective space Pn−1 is the special case Gr1(Kn), consisting of lines in Kn . In
particular, we have that the q-integer [n]q = (n

1

)
q is the size of Pn−1 over Fq . This is also easy to

see using the usual definition of projective space: Pn−1 = (Kn \{0})/ ∼, where ∼ is the equivalence
relation p ∼ αp for any non-zero α ∈ K. In the case K = Fq , we have |K\ {0}| = qn − 1, and the

number of non-zero α’s is q −1. And indeed we have [n]q = qn−1
q−1 .

1.2. Weight Generating Functions

We will now recall the interpretations of q-factorials and q-binomial coefficients as weight gen-
erating functions. As in the previous section, all results presented here are well-known (see [17]
for a standard reference).

First we will discuss the q-factorial. The natural set that comes to mind when one thinks of
the number n! is the symmetric group Sn , and indeed the q-analogue [n]q ! is a weight generating
function for a statistic on this set. Given a permutation σ ∈ Sn , an inversion of σ is a pair (i , j )
such that i < j and σ(i ) >σ( j ). Define inv(σ) to be the total number of inversions. Then

[n]q ! = ∑
σ∈Sn

q inv(σ).

Next we turn to the q-binomial coefficients. The number
(n

k

)
is of course the size of the set([n]

k

)
, of k-sized subsets of [n] = {1,2, . . . ,n}. However, for the present purposes it is more natural

to consider a couple other sets which are in bijection with
([n]

k

)
.

Consider the set Pn,k of lattice paths from (0,0) to (n −k,k) which only take unit steps right
or up. There is a natural bijection

([n]
k

)→ Pn,k , given by indicating which steps in the lattice path
are the “up” steps. For a path p ∈ Pn,k , let |p| be the area between p and the horizontal line y = k.
Then (

n

k

)
q

= ∑
p∈Pn,k

q |p|.

This can also be described nicely in terms of integer partitions. Recall that a partition λ is
a sequence of weakly decreasing integers λ1 ≥ λ2 ≥ ·· · ≥ λ j . If

∑
λi = m, we write λ ⊢ m, and

also |λ| = m. Partitions are visualized by their Young diagram, which is an array of boxes (left-
aligned) with λi boxes in row i . Let Yn,k be the set of all partitions whose Young diagram fits
inside the rectangle with height k and width n − k. There is a clear bijection Yn,k → Pn,k . The
bottom boundary of any Young diagram is a lattice path in Pn,k , and the number of boxes in
the Young diagram is precicely the area above the lattice path. We can then also express the q-
binomial coefficient as (

n

k

)
q

= ∑
λ∈Yn,k

q |λ|.

Lastly, let us just mention that the previous expressions can also be thought of in terms of
posets. In particular, the set of all Young diagrams (or partitions) has a natural partial order where
µ≤ λ means that µi ≤ λi for all i , or equivalently the Young diagram of µ fits inside λ. This poset
is called Young’s lattice. The poset has a natural rank function, given by the size of the partition
(the number of boxes). If we let λ = (n −k)k denote the Young diagram given by the k × (n −k)
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rectangle, then the set Yn,k above is simply the interval of Young’s lattice [;,λ] = {µ | µ≤ λ}, and
the generating function given above is the rank generating function for this poset. This simply
means the coefficient of qk is the number of elements of rank k.

Example 2. The poset structure for Y4,2 and P4,2 is pictured in Figure 1. The sizes of the ranks are
the coefficients of

(4
2

)
q = 1+q +2q2 +q3 +q4.

Figure 1. Poset structure for Y4,2
∼= P4,2. The Young diagrams are shown by the shaded gray

boxes, and the lattice paths are shown as red lines.

2. q-Rational Numbers

In [9], Morier-Genoud and Ovsienko extend the definition of [n]q to include the case when
n = r

s ∈ Q is a rational number. Their definition uses the continued fraction expansion of r
s .

Specifically, if r
s = [a1, a2, . . . , a2m] is the finite continued fraction expansion (and a1 > 1), then

they define [ r

s

]
q

:= [a1]q + q a1

[a2]q−1 + q−a2

[a3]q + q a3

[a4]q−1 + q−a4

. . . + q a2m−1

[a2m]q−1

They also gave several other ways to compute these expressions, including some determinan-
tal formulas, a recursive procedure involving triangulated polygons, and using products of q-
deformed matrices in PSL2(Z). We will briefly describe this last interpretation in terms of matri-
ces (for more details, see [6] and [9]).

Define the following two matrices:

A =
(
1 1
0 1

)
and B =

(
1 0
1 1

)
.

They generate PSL2(Z), and the group acts transitively onQ∪ {∞} by the rule:(
a b
c d

)
· x := ax +b

cx +d
.
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Define q-deformed versions of these matrices:

Aq =
(

q 1
0 1

)
and Bq =

(
q 0
q 1

)
.

Let PSLq
2 (Z) be the group generated by Aq and Bq , modulo scaling by monomials q±n . In general,

for any M ∈ PSL2(Z), we get a corresponding element [M ]q ∈ PSLq
2 (Z). This group acts on the set

of power series Z[[q]]∪ {∞} by the same formula as above. The following result gives another,
more conceptual, definition of q-rational numbers.

Theorem 3 ([6, Prop. 3.2]). The q-deformation x 7→ [x]q commutes with the PSL2(Z) action. This
means if x ∈Q and M ∈ PSL2(Z), then [M · x]q = [M ]q · [x]q .

Example 4. The continued fraction expansion of 7
3 is [2,3]. Using the definition, we get[

7

3

]
q
= [2]q + q2

[3]q−1
= (1+q)+ q2

1+q−1 +q−2 = 1+2q +2q2 +q3 +q4

1+q +q2 .

Alternatively, we can use Theorem 3 to compute. Notice that the generators A and B act by
A · x = x +1 and B · x = x

x+1 , and we can obtain 7
3 as A2B 2 ·1:

1
B−−→ 1

2
B−−→ 1

3
A−−→ 4

3
A−−→ 7

3
.

According to Theorem 3, we can start with 1 and apply A2
q B 2

q to compute
[ 7

3

]
q . Notice that the

action of Aq and Bq are given by Aq · x = 1+qx and Bq · x = qx
1+qx .

1
Bq−−→ q

1+q

Bq−−→ q2

1+q +q2

Aq−−−→ 1+q +q2 +q3

1+q +q2

Aq−−−→ 1+2q +2q2 +q3 +q4

1+q +q2 .

2.1. Combinatorial Interpretations

Let
[ r

s

]
q = R(q)

S (q) . One of the interpretations given in [9] says that the coefficient of qk in R(q) is
the number of “k-vertex closures” in a certain directed graph. Although worded differently, this is
equivalent to the following interpretation in terms of posets (see [8]).

Definition 5. Define a poset F
( r

s

)
on the set {x1, x2, . . . , xN−1}, where N = ∑2m

i=1 ai , with cover
relations:

x1 < x2 < ·· · < xa1 > xa1+1 > ·· · > xa1+a2 < ·· · .

In other words, the Hasse diagram is a “fence” which goes up (a1 −1) times, then down a2 times,
then up a3 times, . . . , and finally up a2m−1 times, and down (a2m −1) times.

Let L
( r

s

)
be the lattice of order ideals in F

( r
s

)
. In this language, what Morier-Genoud and

Ovsienko call a “k-vertex closure” is the same as a lower order ideal of F
( r

s

)
. In particular we

have the following.

Theorem 6 ([9, Thm. 4]). R(q) is the rank generating function of L
( r

s

)
.

Remark 7. The connection between these posets and F -polynomials in cluster algebras has been
noted in [1,4,9,11,16]. These posets were called “fence posets” in [8] and “piece-wise linear posets”
in [1]. It was shown in [9] that R(q) can be obtained from an F -polynomial by specialization of
the variables.

Example 8. We continue with the running example of r
s = 7

3 from Example 4. Recall that the
continued fraction for 7

3 is [2,3]. The corresponding fence F
( 7

3

)
is
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The Lattice L
( 7

3

)
of order ideals in F

( 7
3

)
is pictured in Figure 2. Notice the number of elements of

rank k is the coefficient of qk in R(q) = 1+2q +2q2 +q3 +q4.

Figure 2. Poset structure of L
( 7

3

)
. Each order ideal is indicated by putting red circles around

its elements.

Remark 9. Two properties that are common for q-analogues are unimodality and palindromic-
ity. A polynomial is “unimodal” if its coefficients form a unimodal sequence. In [8], it was shown
in some special cases that R(q) is unimodal, using the language of fence posets. Unimodality of
R(q) was proven in full generality in [13], again using the language of fence posets. A polynomial
is “palindromic” if its sequence of coefficients is a palindrome. The polynomials R(q) are not
palindromic in general (as seen in earlier examples). However, it was shown in [7] that traces of
the PSLq

2 (Z)-matrices used to compute the q-rationals (as in Example 4) are palindromic.

2.2. Snake Graphs

Yet another equivalent description can be given in terms of certain planar graphs, which are
called “snake graphs” in the cluster algebra literature (e.g. [2, 10, 15]). These graphs are built out
of square tiles, such that each tile is either above or to the right of the previous one. Equivalently,
they are skew Young diagrams containing no 2×2 blocks. To each snake graph G we can naturally
associate a word W (G) in the alphabet {R,U }, indicating whether going from one tile to the next
is “right” or “up”. Some examples are shown in Figure 3.

Definition 10. Let R =U and U = R. If w = w1w2 · · ·wk is a word in the alphabet {R,U }, define the
dual word to be w∗ = w1w2w3w4 · · ·w2n−1w2n or w∗ = w1w2w3w4 · · ·w2n w2n+1 (depending on
parity). In other words, w∗ is obtained by toggling the odd-indexed letters. Extend this definition
to snake graphs by defining G∗ to be the snake graph so that W (G∗) =W (G)∗.

Remark 11. Snake graphs have appeared numerous times in the cluster algebra literature (see
for example [2, 4, 10, 11, 15, 16]). The dual construction (G∗ rather than G) seems to be more
popular in the literature (in [15], Propp first constructs G∗ and refers to G as the “dual” snake).
As explained in [4] and [15], there is a bijection between perfect matchings of G∗ and north-east
lattice paths on G . In what follows, results from the literature are paraphrased in terms of G rather
than G∗, so as to use lattice paths instead of perfect matchings.
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W (G) = RR

G =G(4/1)

4/1 = [3,1]

W (G) =U RU R

G =G(13/8)

13/8 = [1,1,1,1,1,1]

W (G) = RU RR

G =G(11/4)

11/4 = [2,1,2,1]

Figure 3. Examples of snake graphs. For each example, we indicate the word W (G), the
corresponding rational number, and its continued fraction expansion.

Definition 12 (The “dual” version of [2, Def. 3.1]). Given a continued fraction r
s = [a1, . . . , a2m],

define a snake graph G
( r

s

)
such that its word is W (G) = Ra1−1U a2 Ra3U a4 · · ·Ra2m−1U a2m−1. See

Figure 3 for examples.

Definition 13. Given a snake graph G, let P (G) be the set of lattice paths on G, going from the
bottom-left corner to the top-right corner, which only take steps right or up. We also use the notation
P

( r
s

)= P
(
G

( r
s

))
.

The following result was mentioned in [15, §4], and the “dual” version (in terms of perfect
matchings of G∗) also appears in [2, Thm. 3.4].

Theorem 14. The number of lattice paths on G
( r

s

)
is r . In other words,

∣∣P ( r
s

)∣∣= r .

We now give a q-analogue of Theorem 14, where r is replaced by R(q), the numerator of the
corresponding q-rational. Note that there is a natural partial order on P (G) so that a ≤ b if the set
of boxes above a is a subset of the boxes above b. Let |a| denote the number of boxes above the
path a. The following is an equivalent reformulation of Theorem 6.

Theorem 15. R(q) is the rank-generating function of the poset P
( r

s

)
. In other words,

R(q) = ∑
p∈P

( r
s

) q |p|.

Proof. It is easy to see that P
( r

s

)
is isomorphic to the poset L

( r
s

)
described earlier. The points

of F
( r

s

)
correspond to the boxes of the snake graph, and the order ideals of F

( r
s

)
are the sets of

boxes above the lattice paths.
More specifically, we can construct G

( r
s

)
from F

( r
s

)
as follows (see Figure 4 for an illustration).

Start with the Hasse diagram of F
( r

s

)
, and reflect it over a horizontal line. Next, rotate it 45◦

counter-clockwise. Then draw a square around each vertex. This will be G
( r

s

)
. □

Example 16. The poset P
( 7

3

)
is shown in Figure 5. Compare with L

( 7
3

)
from Example 8 and

Figure 2.

The snake graph interpretation allows to make a nice analogy with the situation for q-binomial
coefficients. In particular, P

( r
s

)
is also isomorphic to an interval in Young’s lattice. This follows

from the observation that any snake graph is a skew Young diagram of shape λ/µ where λ is
determined by the bottom boundary of G , and µ is determined by the top boundary of G .
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F
( r

s

)
reflect rotate G

( r
s

)
Figure 4. Illustration of the equivalence of Theorem 6 and Theorem 15

Figure 5. Poset structure of P
( 7

3

)
Definition 17. If G is a snake graph, let λ(G) be the partition such that G is the subset of boxes
adjacent to the bottom boundary of λ. Also, let µ(G) <λ(G) be the partition such that G is the skew
Young diagram of shape λ(G)/µ(G). If G =G

( r
s

)
, then we use the notations λ

( r
s

)
and µ

( r
s

)
.

Example 18. Some examples of λ and µ, along with their corresponding fractions r
s , are shown

in Figure 6.

r
s = 4

1 = [3,1]

W (4/1) = RR

λ= (3), µ=;

r
s = 12

5 = [2,2,1,1]

W (12/5) = RUU R

λ= (3,2,2), µ= (1,1)

r
s = 31

18 = [1,1,2,1,1,2]

W (31/18) =U RRU RU

λ= (4,4,3,1), µ= (3,2)

Figure 6. Examples of λ
( r

s

)
and µ

( r
s

)
. The partition µ is shaded in gray.

In order to state the next result, we introduce the following notation. We will write partitions
as λ = (λb1

1 ,λb2
2 , . . . ), where λ

bi
i means that λi is repeated bi times. For example, (34,2,12) =

(3,3,3,3,2,1,1).
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Proposition 19. Suppose r
s = [a1,b1, . . . , am ,bm]. The partitionsλ

( r
s

)
andµ

( r
s

)
are given explicitly

as follows.

(a) λ= (λbm
1 ,λbm−1

2 , . . . ,λb1
m ), where λk =∑m+1−k

i=1 ai .
(b) µ= (µc1

1 , . . . ,µcm
m ), where µk =λk −1, and ck = bm+1−k −δ1,k .

Proof. (a). We will induct on m. Recall the definition of the snake graph G
( r

s

)
. It is defined by the

word W
( r

s

) = Ra1−1U b1 Ra2U b2 · · ·RamU bm−1. By definition of λ
( r

s

)
, the partition λ will have the

same bottom boundary as G
( r

s

)
. Suppose m = 1. Then W (r /s) = Ra1−1U b1−1. The young diagram

which has this as its bottom boundary is the rectangle with width a1 and height b1 (i.e. λ= (ab1
1 )).

Now suppose the result is true for all continued fractions r ′
s′ = [a1,b1, . . . , am−1,bm−1]. Then

by induction λ
(

r ′
s′

)
= λ′ = (λbm−1

1 ,λbm−2
2 , . . . ,λb1

m−1), where λk = ∑m−k
i=1 ai . The snake graph for

r
s = [a1,b1, . . . , am ,bm] is built from the previous one by adding some more boxes to the end.
This means the parition λ will be obtained from λ′ by adding some more rows to the top.

First let us point out a subtle point. The word W
(

r ′
s′

)
ends with U bm−1−1, but W

( r
s

)
contains

U bm−1 . This means we must add one more box going up at the end of G
(

r ′
s′

)
before continuing to

build G
( r

s

)
. This simply means the rows of λ′ will not be changed. Now that we have added an

extra U , the next part of W
( r

s

)
is Ram . This means we add another row on top of λ′ which has am

more boxes than the previous row. By induction, the previous row has
∑m−1

i=1 ai boxes, and so this
new row has

∑m
i=1 ai boxes. Finally, W

( r
s

)
ends with U bm−1, and so there are a total of bm rows at

the top, all of this length.

(b). The statement says µ is obtained from λ by subtracting one from all parts (i.e. µi = λi −1),
and then the multiplicities are the same for all but the first (i.e. the greatest) part, which is one
less. To see this, consider a part of the word W

( r
s

)
of the form RaU b . When the snake graph goes

right a times, this corresponds to the bottom-most row of the Young diagram of some length λi .
After this, every time it goes up (except the last), we get another row of length λi . The exception
is the last time it goes up, since if the snake graph continues to go right again after this, the final
“up” will be part of a longer row.

At each of these “up” steps, the corresponding part of µ will have length (λi − 1). If this part
RaU b is not the end of the snake graph, then by part (a), b is the number of parts of λ of length
λi . However, in the special case that U bm−1 is the end of the snake graph, we only get bm −1 parts
of length µm (but there are bm parts of length λm). □

The following is yet another equivalent restatement of Theorem 6 and Theorem 15.

Proposition 20. Let λ= λ
( r

s

)
and µ= µ

( r
s

)
. The poset P

( r
s

)
is isomorphic to the interval [µ,λ] in

Young’s lattice, and

R(q) = 1

q |µ|
∑

µ≤ν≤λ
q |ν|.

Proof. There is the natural bijection between P
( r

s

)
and the interval [µ,λ] in Young’s lattice, where

a lattice path corresponds to the Young diagram (inside λ) whose boxes lie above the path. Under
this bijection, the rank of a path corresponding to a partition ν is |ν| − |µ|, which is the number
of boxes in the snake graph above the path. The formula for R(q) follows from this bijection
together with Theorem 15. □

3. Schubert Varieties

3.1. Definitions

Let K be a field, and consider the Grassmannian Grk (Kn) of k-planes in Kn . We will identify
Grk (Kn) with the set of k ×n matrices of rank k, modulo left multiplication by elements of GLk .
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The following definitions and results are all well-known (see [5] for a standard reference, although
here we use notational conventions as in [14]).

There is a simple bijection between the interval [;, (n −k)k ] in Young’s lattice (i.e. partitions
which fit inside a k × (n −k) rectangle) and the set

([n]
k

)
of k-element subsets of [n] = {1,2, . . . ,n},

given as follows. Recall from Section 1.2 the bijection Yn,k → Pn,k that associates to a Young
diagram λ the lattice path from (0,0) to (n − k,k) which is formed by the bottom boundary of
λ. If the path is traversed backwards, and the steps are labelled 1,2, . . . ,n, then taking the subset
of vertical steps gives an element Iλ ∈

([n]
k

)
.

Definition 21. The open Schubert cell Ω◦
λ
⊆ Grk (Kn) is the subset whose representatives, when

written in echelon form, have the identity matrix in the columns indexed by Iλ. The remaining
non-zero entries (to the right of the pivots) form the shape of λ (but backwards).

From this definition, it is easy to see that dim(Ω◦
λ

) = |λ|. Once the matrices are in echelon form,
there is a clear parameterization byK|λ|.

Example 22. The partition λ= (3,2,2,1) fits inside a 3×4 rectangle (corresponding to Gr4(K7)).
The corresponding column set is Iλ = {1,3,4,6}. The open Schubert cell Ω◦

λ
contains all matrices

whose echelon form has the shape shown in Figure 7. Notice that the ∗’s are in the shape of λ,
reflected horizontally.

1

3

4

6

Iλ = {1,3,4,6}


1 ∗ 0 0 ∗ 0 ∗
0 0 1 0 ∗ 0 ∗
0 0 0 1 ∗ 0 ∗
0 0 0 0 0 1 ∗



Figure 7. (left) The subset Iλ ∈
([n]

k

)
corresponding to the partition λ= (3,2,2,1). (right) The

echelon form of a matrix representative inΩ◦
λ

Definition 23. The Schubert variety (or closed Schubert cell) is the union of all open Schubert
cells of µ≤λ:

Ωλ := ⋃
µ≤λ

Ω◦
µ.

In particular, the Grassmannian is the “biggest” closed Schubert cellΩ◦
λ

, where λ= (n −k)k is
the entire k × (n −k) rectangle, and thus Grk (Kn) is the disjoint union of all the open Schubert
cells. This gives a connection between the geometric and combinatorial interpretations of the
q-binomial coefficients given earlier in Sections 1.1 and 1.2. If we take K = Fq , then clearly∣∣Ω◦

λ

∣∣= q |λ|. The fact that the Grassmannian is the disjoint union of all open Schubert cells implies
that ∣∣∣Grk (Fn

q )
∣∣∣= ∑

λ≤(n−k)k

∣∣Ω◦
λ

∣∣= ∑
λ∈Yn,k

q |λ| =
(

n

k

)
q

.

3.2. Numerators of q-Rationals

Finally, we return to the discussion of R(q), then numerator of the q-rational
[ r

s

]
q , and we will

show that it is the size of a certain subvariety of Grk (Fn
q ), where k and n can be determined by the

continued fraction r
s = [a1, a2, . . . , a2m].
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Definition 24. For two partitions µ≤ λ which fit inside the k × (n −k) rectangle, let Ω[µ,λ] be the
union of open Schubert cells in the interval [µ,λ]:

Ω[µ,λ] := ⋃
µ≤ν≤λ

Ω◦
ν.

Theorem 25. Let r
s = [a1, . . . , a2m] ∈Q, with r

s > 1, with corresponding q-rational
[ r

s

]
q = R(q)

S (q) . Let

µ=µ
( r

s

)
and λ=λ

( r
s

)
. Then up to a factor of q |µ|, the numerator R(q) is the number of Fq -points

ofΩ[µ,λ]:
R(q) = q−|µ| ∣∣Ω[µ,λ]

∣∣ .

Moreover, this is a subvariety of the Grassmannian Grk (Fn
q ), with n =∑2m

i=1 ai and k =∑m
i=1 a2i .

Proof. Recall from Proposition 20 that the numerator R(q) is the rank generating function of the
interval [µ,λ] in Young’s lattice (scaled by q |µ|). The width of the snake graph (also the width of
λ) is

∑m
i=1 a2i−1, and the height is

∑m
i=1 a2i . Therefore the dimensions of the k × (n −k) rectangle

which surrounds λ are given by k =∑m
i=1 a2i and n −k =∑m

i=1 a2i−1.
Since q |ν| is the size of the open Schubert cellΩ◦

ν, the result follows. □

Example 26. If r
s = n

1 or r
s = n+1

n , then the snake graph G
( r

s

)
is a straight row or column of

boxes. In this case, the partition µ is empty, and λ is the full n × 1 or 1 × n rectangle. In this
case Theorem 25 reduces to a special case described in Example 1, which simply says that
|Pn−1| = [n]q . The interpretation given in Theorem 25 in terms of Schubert cells just states that
Pn−1 = ⋃n−1

k=0 Xk , where Xk consists of those points whose homogeneous coordinates have the
form

[x0 : x1 : · · · : xn−1] = [0 : 0 : · · · : 0 : 1 : ∗ : · · · : ∗]

where xk = 1 and xi = 0 for i < k. Clearly |Xk | = qn−1−k , and so
∑

k |Xk | = 1+q +·· ·+qn−1 = [n]q .

Example 27. Continuing with Example 8 and Example 16, let r
s = 7

3 = [2,3]. The corresponding
q-rational is [

7

3

]
q
= R(q)

S (q)
= 1+2q +2q2 +q3 +q4

1+q +q2 .

The snake graph G
( 7

3

)
has word W (G) = RUU , and is pictured (along with the poset P

( 7
3

)
) in

Figure 5. The snake graph has width 2 and height 3, which means the corresponding Ω[µ,λ] lives
in Gr3(F5

q ) (since k = 3 and n −k = 2).
In the notation of Theorem 25, we have λ= (2,2,2) and µ= (1,1). In this case Theorem 25 says

that q2R(q) counts the number of points inΩ[µ,λ], which consists of all 3-dimensional subspaces
of F5

q which have a matrix representative of one of the following seven forms:
1 0 0 ∗ ∗
0 1 0 ∗ ∗
0 0 1 ∗ ∗

 ,


1 0 ∗ 0 ∗
0 1 ∗ 0 ∗
0 0 0 1 ∗

 ,


1 0 ∗ ∗ 0

0 1 ∗ ∗ 0

0 0 0 0 1

 ,


1 ∗ 0 0 ∗
0 0 1 0 ∗
0 0 0 1 ∗

 ,


0 1 0 0 ∗
0 0 1 0 ∗
0 0 0 1 ∗

 ,


1 ∗ 0 ∗ 0

0 0 1 ∗ 0

0 0 0 0 1

 ,


0 1 0 ∗ 0

0 0 1 ∗ 0

0 0 0 0 1

 .

Further Directions

Lastly, we mention some remaining open questions and interesting directions for further study.
As mentioned in Remark 9, the authors of [6] and [7] studied the traces of q-deformed

matrices, showed that they are palindromic, and gave an enumerative interpretation in terms
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of triangulated annuli. It would be interesting to see if these traces have interpretations similar to
the ones discussed in this paper.

For instance, is there some version of Theorem 25 for traces of q-deformed matrices? Is there
some variety over Fq whose size is counted by the trace of the corresponding q-deformed matrix?

In [7], the authors mention (in section 5.2) that their combinatorial generating function for
these q-deformed traces can be phrased in terms of closures of a directed graph. They also
mention, as in Section 2.1 of the present paper, that this can be re-stated in terms of order ideals of
the corresponding “circular fence poset”. It might be interesting to see the equivalent statement in
terms of snake graphs (or the circular versions, sometimes called “band graphs”, which appeared
in [3, 10, 11]).

Also, in [12] it was shown that the traces of certain products of matrices in PSL2(R) correspond-
ing to closed loops on a surface are given by a generating function for perfect matchings of a
band graph. There should be some sense in which the combinatorial formulation of [7] is a q-
specialization of the formulas in [12], in the same way that [9] (Appendix B) explains how the nu-
merators R(q) are certain q-specializations of cluster variables. It would be interesting to make
this formulation and connection more precise.
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[2] İ. Çanakçı, R. Schiffler, “Cluster algebras and continued fractions”, Compos. Math. 154 (2018), no. 3, p. 565-593.
[3] ——— , “Snake graphs and continued fractions”, Eur. J. Comb. 86 (2020), article no. 103081.
[4] A. Claussen, “Expansion Posets for Polygon Cluster Algebras”, 2020, https://arxiv.org/abs/2005.02083.
[5] W. Fulton, Young tableaux: with applications to representation theory and geometry, London Mathematical Society

Student Texts, vol. 35, Cambridge University Press, 1997.
[6] L. Leclere, S. Morier-Genoud, “q-Deformations in the modular group and of the real quadratic irrational numbers”,

Adv. Appl. Math. 130 (2021), article no. 102223 (28 pages).
[7] ——— , “Quantum continuants, quantum rotundus and triangulations of annuli”, 2022, https://arxiv.org/abs/2207.

08906.
[8] T. McConville, B. E. Sagan, C. Smyth, “On a rank-unimodality conjecture of Morier–Genoud and Ovsienko”, Discrete

Math. 344 (2021), no. 8, article no. 112483 (13 pages).
[9] S. Morier-Genoud, V. Ovsienko, “q-Continued Fractions”, Forum Math. Sigma 8 (2020), article no. e13 (55 pages).

[10] G. Musiker, R. Schiffler, “Cluster expansion formulas and perfect matchings”, J. Algebr. Comb. 32 (2010), no. 2, p. 187-
209.

[11] G. Musiker, R. Schiffler, L. Williams, “Positivity for cluster algebras from surfaces”, Adv. Math. 227 (2011), no. 6,
p. 2241-2308.

[12] G. Musiker, L. Williams, “Matrix formulae and skein relations for cluster algebras from surfaces”, Int. Math. Res. Not.
2013 (2013), no. 13, p. 2891-2944.
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