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Abstract. Let G = (V ,E) be an undirected graph with maximum degree ∆ and vertex conductance Ψ∗(G).
We show that there exists a symmetric, stochastic matrix P , with off-diagonal entries supported on E , whose
spectral gap γ∗(P ) satisfies

Ψ∗(G)2/log∆≲ γ∗(P )≲Ψ∗(G).

Our bound is optimal under the Small Set Expansion Hypothesis, and answers a question of Olesker-Taylor
and Zanetti, who obtained such a result with log∆ replaced by log |V |.

In order to obtain our result, we show how to embed a negative-type semi-metric d defined on V into
a negative-type semi-metric d ′ supported in RO(log∆), such that the (fractional) matching number of the
weighted graph (V ,E ,d) is approximately equal to that of (V ,E ,d ′).

Manuscript received 9 March 2022, revised 21 July 2022 and 26 August 2022, accepted 22 November 2022.

1. Introduction

Let G = (V ,E , w) be a simple, undirected graph with non-negative weights w : E → R≥0. In this
note, we consider weights w that can be written in the form w(u, v) = ∥ f (u)− f (v)∥q for some
function f : V → R|V | and q ≥ 1, where ∥ · ∥ denotes the usual Euclidean or ℓ2 norm. That is, w
can be obtained as the restriction to the edges of G of a function w̃ : V ×V → R≥0, where w̃1/q

embeds isometrically into Euclidean space for some finite q ≥ 1. The special case q = 2 is known
as a metric of negative-type and has been extensively studied in connection with semi-definite
relaxations of combinatorial optimization problems [6]; in particular, it is known that all finite ℓp

metric spaces, for 1 ≤ p ≤ 2, embed isometrically into a metric space of negative-type [5].
Recall that a fractional matching of a weighted graph G = (V ,E , w) is a function h : E → [0,1]

such that for all v ∈V ,
∑

e:v∈e h(e) ≤ 1. A matching corresponds to maps h : E → {0,1}.
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Let M (respectively, Mfrac) denote a maximum weight matching (respectively, fractional
matching) of (G , w). Here, the weight of a (fractional) matching h : E → [0,1] is defined by

w(h) := ∑
e∈E

h(e)w(e).

The weight of a maximum weight (fractional) matching of (G , w) is called the (fractional) match-
ing number of (G , w).

It follows from Linear Programming (LP) duality that the fractional matching number of (G , w)
is equal to the value of the following linear program:

min
g :V →R≥0

∑
u∈V

g (u)

s.t. g (u)+ g (v) ≥ w(u, v) ∀ {u, v} ∈ E (1.1)

Motivated by the problem of the Fastest Mixing Markov Chain (see Section 1.1), we consider
the following natural dimension reduction question: what is the minimum dimension of a
Euclidean space Rm for which there is a function f ′ : V → Rm such that (G , w ′) = (V ,E , w ′),
with w ′(u, v) = ∥ f ′(u)− f ′(v)∥q , has approximately the same (fractional) matching number as
(G , w) = (V ,E , w)?

A direct application of the classical Johnson-Lindenstrauss lemma shows that m =
Oq (logn/ε2) suffices to preserve the (fractional) matching number to within a multiplicative
factor of (1±ε). Our main result completely removes the dependence on the number of vertices
and provides an essentially optimal bound depending only on the maximum degree of the graph.

Theorem 1 (Informal, see Theorem 7 for a precise version). With notation as above, for any
q ≥ 1 and any weighted graph (G , w) = (V ,E , w) with maximum degree at most ∆, there exists a
function f ′ : V → Rm , with m = O(log(∆/εq))/ε2, such that the (fractional) matching number of
(G , w ′) = (V ,E , w ′), with w ′(u, v) = ∥ f ′(u)− f ′(v)∥q , is within a factor of (1±ε) from the (fractional)
matching number of (G , w).

Remark. If we also demand that wπ(E) ≥ e−εq w(E) (which holds with high probability in our
setting; see Section 2) then the factor of log(∆) in our bound on d cannot be improved under the
Small Set Expansion Hypothesis (SSE) of Raghavendra and Steurer [12], the reason being that an
improved dependence on ∆ in Theorem 7 translates to a corresponding improved dependence
on ∆ in Theorem 4, which contradicts SSE (see the remark after Theorem 4).

Theorem 1 is analogous to, and motivated by, a growing body of work (see, e.g., the recent
work [4] and the references therein) showing that for various geometric optimization problems
in Euclidean space such as k-means clustering or low-rank approximation, the optimum cost and
the optimizer are approximately preserved, even under an embedding of the problem into much
fewer dimensions than a naïve application of the Johnson-Lindenstrauss lemma would suggest.
Our result shows that a similar phenomenon holds for the classical combinatorial optimization
problem of maximum matching.

Although Theorem 1 suffices for the application in Theorem 4, it raises the intriguing question
of whether a stronger statement is true, namely that an embedding into Oq,ε(log(∆)) dimensions
is sufficient to preserve all edge weights within a multiplicative factor of (1 ± ε). We do not
know whether this is true (although see the related work on local dimension reduction [1] and
the references therein); however, we remark that if this were true, then the embedding must
necessarily be non-linear1. In contrast, by using combinatorial information about maximum

1this follows, for instance, by taking the underlying graph to be a matching, mapping the left end point of each edge
to 0, and mapping the right end point of the edges to xi − x j , where x1, . . . , xn is a set of points for which the Johnson-

Lindenstrauss lemma is tight up to a constant [8]. We thank Ashwin Sah for this example.
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matchings, we are able to show that the embedding in Theorem 1 can be simply taken to be a
(suitably rescaled) random matrix with i.i.d. sub-Gaussian entries of mean 0 and variance 1.

1.1. Fastest Mixing Markov Chain (FMMC)

In the Fastest Mixing Markov Chain (FMMC) problem, introduced by Boyd, Diaconis, and
Xiao [3], we are given a finite, undirected graph G = (V ,E) and are asked to design a symmet-
ric |V |× |V | matrix P such that

(i) Pi j ≥ 0 for all i , j and Pi j > 0 only if {i , j } ∈ E or i = j ;
(ii)

∑
j Pi j = 1 for all i ; and

(iii) denoting the eigenvalues of P in decreasing order by λ1(P ) ≥ λ2(P ) ≥ ·· · ≥ λn(P ), the
second largest eigenvalue modulus (SLEM), defined by

µ(P ) := max
i=2,...,n

|λi (P )|,
is as small as possible.

We denote the set of all symmetric V ×V matrices, satisfying properties (i), (ii), (iii) by M (G).
In words, we are asked to design a discrete-time, time-homogeneous Markov chain with state

space V , whose transitions are supported on the edges of E and which is reversible with respect
to the uniform distribution on V , with the smallest possible SLEM among all such Markov chains.
Since µ(P ) ≤ 1, this is equivalent to asking for the largest possible spectral gap, defined by

γ(P ) := 1−µ(P ).

Definition 2 (Optimal spectral gap). Let G = (V ,E) be a finite, undirected graph. With notation
as above, we define the optimal spectral gap (among reversible chains supported on E) by

γ∗(G) := sup{γ(P ) : P ∈M (G)}.

For an extensive discussion of the history of this problem, we refer the reader to [11, Sec-
tion 1.4], limiting ourselves here to only the most relevant results. All of these results involve the
vertex conductance of a graph, whose definition we now recall.

Definition 3 (Vertex conductance). The vertex conductance Ψ∗(G) of a graph G = (V ,E) is
defined as

Ψ∗(G) := min
;̸=S⊆V :|S|≤|V |/2

|{v ∉ S : ∃ u ∈ S s.t. {u, v} ∈ E }|
|S|

Roch [13] showed that γ∗(G) ≲Ψ∗(G), thereby identifying the vertex conductance of the host
graph as a barrier to designing Markov chains with large spectral gaps. In the other direction,
Cheeger’s inequality shows that γ∗(G)≳Ψ∗(G)2/∆2, where ∆ denotes the maximum degree of G .
Put together, we have

Ψ∗(G)2/∆2 ≲ γ∗(G)≲Ψ∗(G) (1.2)

Simple examples (see [11]) show that the quadratic dependence on Ψ∗(G) in the lower bound
and the linear dependence onΨ∗(G) in the upper bound cannot be improved in general, leaving
open the question of resolving the dependence on ∆ (or removing it altogether).

Recently, Olesker-Taylor and Zanetti [11] provided a new lower bound on γ∗(G), where the
quadratic dependence on ∆ is replaced by logarithmic dependence on |V |:

Ψ∗(G)2/log |V |≲ γ∗(G)≲Ψ∗(G), (1.3)

thereby providing an exponential improvement over (1.2) for dense graphs. However, in general,
the lower bounds in (1.2) and (1.3) are incomparable, and Olesker-Taylor and Zanetti asked if
log |V | in (1.3) may be replaced by log∆, which would provide a common refinement of (1.2)
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and (1.3) and moreover, would be tight under the Small Set Expansion Hypothesis [12] (see
the remark after Theorem 4). As an application of Theorem 7, we answer this question in the
affirmative.

Theorem 4. Let G = (V ,E) be a graph of maximum degree ∆. Then, γ∗(G) satisfies

Ψ∗(G)2/log∆≲ γ∗(G)≲Ψ∗(G)

Remark. Work of Louis, Raghavendra, and Vempala [9] shows that under the Small Set Expan-
sion Hypothesis [12], for all sufficiently small ε> 0, there is no polynomial-time algorithm to dis-
tinguish between Ψ∗(G) ≤ ε and Ψ∗(G) ≳

√
ε log∆ for graphs with maximum degree ∆ satisfy-

ing log∆≍ 1/ε. As noted in [11], a lower bound of the formΨ∗(G)2/o(log∆) ≲ γ∗(G) would allow
us to distinguish between the two scenarios (using γ∗(G) ≤ ε versus γ∗(G) =ω(ε)), which would
contradict the Small Set Expansion Hypothesis since γ∗(G) can be computed in time polynomial
in the size of the graph.

Example 5. A popular use of Markov Chain Monte Carlo methods is to sample from the uniform
distribution on an exponentially sized subset V of a product space {1, . . . ,r }n (where r ≍ 1 and
n is large) using “local chains”. In our notation, the transitions of the graph are supported on
G = (V ,E), where E connects vertices within Hamming distance s, where s ≍ 1. Thus, ∆ ≍
log |V | ≍ n. Therefore, (1.2) gives the lower bound γ∗(G) ≳ Ψ∗(G)2/n2, (1.3) gives the lower
bound γ∗(G) ≳Ψ∗(G)2/n, whereas Theorem 4 gives the lower bound γ∗(G) ≳Ψ∗(G)2/logn. In
examples supporting “rapidly mixing Markov chains”,Ψ∗(G) =Ω(1/polylog |V |) =Ω(1/poly(n)),
so that the improvement from Theorem 4, compared to (1.3), is of order polynomial in the vertex
conductance.

Example 6. We now illustrate that, even in very simple examples, the improvement coming
from Theorem 4 over Cheeger’s inequality or (1.3) is substantial, and can possibly essentially
capture the truth. Let G = (V ,E) denote the standard hypercube graph, with vertex set V = {0,1}n

and edges E connecting vertices which differ in exactly one coordinate. It is well-known that
Ψ∗(G) ≍ 1p

n
, whereas the edge conductance

Φ∗(G) := min
;̸=S⊆V :|S|≤|V |/2

|{{u, v} ∈ E : u ∈ S, v ∉ S}|
n|S|

satisfies Φ∗(G) ≍ 1
n . Moreover, the spectral gap γ(G) of the lazy random walk on the hypercube

satisfies γ(G) ≍ 1
n ≍ γ∗(G) [2]. Cheeger’s inequality implies that 1

n2 ≲ γ(G) ≲ 1
n whereas (1.3)

implies that 1
n2 ≲ γ∗(G) ≲ 1p

n
; in both cases, the lower bound on the spectral gap is a factor of

1/n worse than the truth. On the other hand, Theorem 4 implies that
1

n logn
≲ γ∗(G)≲

1p
n

,

so that the lower bound on the spectral gap is within only a logarithmic factor of the truth.

1.2. Concurrent work

Shortly after the appearance of our manuscript on the arXiv, we were informed of upcoming
work of Kwok, Lau, and Tung [7], which proves Theorem 4 using a different proof technique (in
particular, Theorem 7 does not appear in [7]), as well as a weighted version of Theorem 4, which
is not considered in our work.

1.3. Acknowledgements

We thank Sidhanth Mohanty for bringing several typos to our attention as well as anonymous
referees for several suggestions, which have improved the presentation.
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2. Proof of Theorem 7

In this section, we prove Theorem 1 in the following precise form.

Theorem 7. For every K > 0, there exists a constant C7 =C7(K ) ≥ 1 for which the following holds.
Let G = (V ,E , w) with |V | = n and assume that w can be written in the form w = w̃ |E , where
w̃(u, v) = ∥ f (u)− f (v)∥q for some f : V → Rn and q ≥ 1. Let ∆ denote the maximum degree of G.
Let M (respectively, Mfrac) denote a maximum weight matching (respectively, fractional matching)
of (G , w).

For ε ∈ (0,1/10) and d ≥ C7q log(∆/εq)/ε2, let Πn,d be a d ×n random matrix whose entries
are i.i.d. copies of a centered random variable with variance 1/d and sub-Gaussian norm at most
K /

p
d. For u, v ∈ V , let w̃Πn,d (u, v) := ∥Πn,d f (u) −Πn,d f (v)∥q . Let MΠn,d (respectively, M

Πn,d

frac )
denote a maximum weight matching (respectively, fractional matching) of (G , wΠn,d ).

Then, except with probability at most exp(−dε2/
p

C7) over the realisation π∼Πn,d , we have

e−εq w(M) ≤ wπ(Mπ) ≤ eεq w(M),

e−εq w(Mfrac) ≤ wπ(Mπ
frac) ≤ eεq w(Mfrac).

We begin by recalling some preliminary notions related to dimension reduction.

Definition 8 (cf. [10, Definition 2.1]). Let Πn,d denote a distribution on linear maps from Rn →
Rd . For constants q ≥ 1 and c,C > 0, we say that Πn,d is a (q,c,C )-good random dimension

reduction if for all 1/10 > ε > C
p

qp
d

, there exist 0 < δ,ρ < exp(−cε2d) satisfying the following
properties.

(1) For all x, y ∈Rn , Pπ∼Πn,d [∥π(x)−π(y)∥ ∉ e±ε∥x − y∥] ≤ δ.
(2) For all x, y ∈Rn , letting Ex,y be the event that ∥π(x)−π(y)∥ ≥ eε∥x − y∥, we have

Eπ∼Πn,d

[
1Ex,y

(∥π(x)−π(y)∥q

∥x − y∥q −eεq
)]

≤ ρ.

Lemma 9 (see, e.g., [10, Lemma C.1]). For every K9 > 0, there exist constants c9,C9 > 0 for which
the following holds. Let Πn,d denote a d × n random matrix whose entries are i.i.d. copies of a
centered random variable with variance 1/d and sub-Gaussian norm at most K9/

p
d. Then, Πn,d

is a (q,c9,C9)-good random dimension reduction for all q ≥ 1.

We are now ready to prove Theorem 7. Below, we use the notation introduced in the statement
of Theorem 7. For later use, we will prove a slightly stronger statement, which shows that in
addition to the conclusion of Theorem 7, we also have that∑

u,v∈V
w̃π(u, v) ≥ e−εq

∑
u,v∈V

w(u, v).

Proof of Theorem 7. We start by giving a high-level overview of the proof. It is quite immediate to
show that the weight of any fixed matching (in particular, a maximum matching) is preserved with
high probability under the passage from w to wπ. The challenge, then, is to show that there are
no unexpectedly large matchings (in terms of additive error) corresponding to wπ (note that we
cannot use simple union bound due to the extremely large number of matchings). To address this,
we consider the (random) set of edges which have unexpectedly high weights under wπ and show
that, with high probability, the total wπ-weight of this random set of edges is at most ε/poly(∆)
times the total w-weight of all edges and hence, at most ε/poly(∆) times the w-matching number
of the graph. Thus, while it is possible for the wπ-weight of a matching to be unexpectedly larger
(in a multiplicative sense) than its w-weight, the magnitude of this increase is much smaller than
the w-matching number of the graph and so, cannot significantly alter the wπ-matching number.
We now proceed to the formal details.
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By Lemma 9, Πn,d is a (q,c ′,C ′)-good random dimension reduction, where c ′,C ′ > 0 depend
only on K . Let π ∼ Πn,d , and consider the following random subsets of

(V
2

)
, corresponding to

heavy edges, light edges, and light pairs.

H = {{u, v} ∈ E : wπ(u, v) ≥ eεq w(u, v)},

L1 =
{
{u, v} ∈ E : wπ(u, v) ≤ e−εq w(u, v)

}
,

L2 =
{

{u, v} ∈
(

V

2

)
: wπ(u, v) ≤ e−εq w(u, v)

}
.

These random subsets naturally give rise to the following quantities corresponding to the excess
cost of heavy edges, the total original weight of light edges, and the total original weight of light
pairs:

Diff(H ) := ∑
{u,v}∈H

(
wπ(u, v)−eεq w(u, v)

)
;

Cost(L1) := ∑
{u,v}∈L1

w(u, v);

Cost(L2) := ∑
{u,v}∈L2

w̃(u, v).

We show that, in expectation, all of these quantities are sufficiently small. First, since any graph
of maximum degree ∆ can be written as a disjoint union of at most (∆+1) matchings, it follows
that w(M) ≥ 1

∆+1

∑
{u,v}∈E w(u, v). Then, from Lemma 9 and Definition 8, it immediately follows

that

Eπ[Diff(H )] ≤ ρ ∑
{u,v}∈E

w(u, v) ≤ ρ(∆+1)w(M),

Eπ[Cost(L1)] ≤ δ ∑
{u,v}∈E

w(u, v) ≤ δ(∆+1)w(M),

Eπ[Cost(L2)] ≤ δ ∑
{u,v}∈(V

2

) w̃(u, v) = δw̃

((
V

2

))
.

Therefore, by Markov’s inequality, the union bound, and using max{δ,ρ} ≤ exp(−c ′ε2d), we see
that except with probability at most 3exp(−c ′ε2d/2), the following event holds:

G =
{

Diff(H ) ≤p
ρ(∆+1)w(M),Cost(L1) ≤

p
δ(∆+1)w(M),Cost(L2) ≤

p
δw̃

(
V

2

)}
.

Let π be a realisation of Πn,d for which G holds. Then, for any (fractional) matching M ′, we
have

wπ(M ′) =∑
e

M ′(e)wπ(e) = ∑
e∉H

M ′(e)wπ(e)+ ∑
e∈H

M ′(e)eεq w(e)+ ∑
e∈H

M ′(e)(wπ(e)−eεq w(e))

≤ eεq w(M ′)+Diff(H ) ≤ eεq w(M ′)+p
ρ(∆+1)w(M)

≤ (eεq +p
ρ(∆+1))w(M).

Moreover, we see that for M ′ = M or M ′ = Mfrac, we have

wπ(M ′) = ∑
e∉L1

M ′(e)wπ(e)+ ∑
e∈L1

M ′(e)we +
∑

e∈L1

M ′(e)(wπ(e)−w(e))

≥ e−εq w(M ′)−Cost(L1)

≥ (e−εq −
p
δ(∆+1))w(M ′).
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A similar computation shows that

w̃π

((
V

2

))
≥ (e−εq −

p
δ)w̃

((
V

2

))
.

Finally, by taking C to be sufficiently large depending on c ′,C ′, we can ensure that

max{
p
δ,
p
ρ}(∆+1) ≤ εq/10,

so that the desired conclusion follows by rescaling ε. □

3. Application to the Fastest Mixing Markov Chain: Proof of Theorem 4

We will need the following proposition due to Olesker-Taylor and Zanetti.

Proposition 10 ([11]). Let G = (V ,E) be a simple, undirected graph with |V | = n, vertex conduc-
tance Ψ∗(G), and optimal spectral gap γ∗(G). For 1 ≤ m ≤ n, let λ∗

m denote the optimum value of
the following problem:

min
f :V →Rm ,g :V →R≥0

∑
u∈V g (u)∑

u∈V ∥ f (u)∥2

s.t.
∑

v∈V
f (v) = 0, and g (u)+ g (v) ≥ ∥ f (u)− f (v)∥2 ∀ {u, v} ∈ E

Let m∗ = min{1 ≤ m ≤ n :λ∗
n ≤λ∗

m ≤ 2λ∗
n}. Then,

Ψ∗(G)2/m∗ ≲ γ∗(G)≲Ψ∗(G).

Given the previous proposition, Theorem 4 follows from Theorem 7 and LP duality (1.1).

Proof of Theorem 4. By Proposition 10, and since λ∗
m decreases as m increases, it suffices to

show that for d = O(log∆), λ∗
d ≤ 2λ∗

n . To this end, let F : V → Rn be such that
∑

v∈V F (v) = 0,
and that the value of the program

min
g :V →R≥0

∑
u∈V g (u)∑

u∈V ∥F (u)∥2 s.t. g (u)+ g (v) ≥ ∥F (u)−F (v)∥2 ∀ {u, v} ∈ E

is λ∗
n .

By LP duality (1.1), λ∗
n is the fractional matching number of the graph G = (V ,E , w/SF ), where

w(u, v) := ∥F (u)−F (v)∥2 and SF :=∑
u,v∈V ∥F (u)−F (v)∥2. Here, we have used that

∑
u,v∈V ∥F (u)−

F (v)∥2 =∑
u∈V ∥F (u)∥2, which holds since

∑
v∈V F (v) = 0.

We now appeal to the slight extension of Theorem 7 (with K = 1) proved in the previous
section. Let ε= 1/100, d = 2C7(1) log(∆/2ε)/ε2 =O(log∆), and π ∈G . Here G is the event defined
in the previous subsection, where it was also shown to be nonempty. Let f : V → Rd be defined
by f (v) =π(F (v)). Then

∑
v∈V f (v) = 0 and hence, λ∗

d is at most

min
g :V →R≥0

∑
u∈V g (u)∑

u,v∈V ∥ f (u)− f (v)∥2 s.t. g (u)+ g (v) ≥ ∥ f (u)− f (v)∥2 ∀ {u, v} ∈ E .

Once again, by LP duality (1.1), λ∗
d is at most the fractional matching number of the graph

G = (V ,E , w ′/S′
f ), where w ′(u, v) := ∥ f (u)− f (v)∥2 and S′

f :=∑
u,v∈V ∥ f (u)− f (v)∥2.

In the previous section, we showed that for π ∈ G , S′
f ≥ e−2εSF and the fractional matching

number of (V ,E , w ′) is at most e2ε times the fractional matching number of (V ,E , w). By the
choice of ε, this shows that λ∗

d ≤ 2λ∗
n , as desired. □



876 Vishesh Jain, Huy Pham and Thuy-Duong Vuong

References

[1] Y. Bartal, B. Recht, L. J. Schulman, “Dimensionality reduction: beyond the Johnson-Lindenstrauss bound”, in
Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, SIAM, 2011, p. 868-887.

[2] S. Boyd, P. Diaconis, P. Parrilo, L. Xiao, “Fastest mixing Markov chain on graphs with symmetries”, SIAM J. Optim. 20
(2009), no. 2, p. 792-819.

[3] S. Boyd, P. Diaconis, L. Xiao, “Fastest mixing Markov chain on a graph”, SIAM Rev. 46 (2004), no. 4, p. 667-689.
[4] M. Charikar, E. Waingarten, “The Johnson–Lindenstrauss Lemma for Clustering and Subspace Approximation: From

Coresets to Dimension Reduction”, https://arxiv.org/abs/2205.00371, 2022.
[5] M. M. Deza, M. Laurent, Geometry of cuts and metrics, Algorithms and Combinatorics, vol. 15, Springer, 1997.
[6] M. X. Goemans, “Semidefinite programming in combinatorial optimization”, Math. Program. 79 (1997), no. 1, p. 143-

161.
[7] T. C. Kwok, L. C. Lau, K. C. Tung, “Cheeger Inequalities for Vertex Expansion and Reweighted Eigenvalues”, https:

//arxiv.org/abs/2203.06168, 2022.
[8] K. G. Larsen, J. Nelson, “Optimality of the Johnson-Lindenstrauss lemma”, in 2017 IEEE 58th Annual Symposium on

Foundations of Computer Science (FOCS), IEEE, 2017, p. 633-638.
[9] A. Louis, P. Raghavendra, S. Vempala, “The complexity of approximating vertex expansion”, in 2013 IEEE 54th Annual

Symposium on Foundations of Computer Science, IEEE, 2013, p. 360-369.
[10] K. Makarychev, Y. Makarychev, I. Razenshteyn, “Performance of Johnson-Lindenstrauss transform for k-means and

k-medians clustering”, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019,
p. 1027-1038.

[11] S. Olesker-Taylor, L. Zanetti, “Geometric Bounds on the Fastest Mixing Markov Chain”, in 13th Innovations in
Theoretical Computer Science Conference (ITCS 2022), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[12] P. Raghavendra, D. Steurer, “Graph expansion and the unique games conjecture”, in Proceedings of the forty-second
ACM symposium on Theory of computing, 2010, p. 755-764.

[13] S. Roch, “Bounding fastest mixing”, Electron. Commun. Probab. 10 (2005), p. 282-296.

https://arxiv.org/abs/2205.00371
https://arxiv.org/abs/2203.06168
https://arxiv.org/abs/2203.06168

	1. Introduction
	1.1. Fastest Mixing Markov Chain (FMMC)
	1.2. Concurrent work
	1.3. Acknowledgements

	2. Proof of thm:matching
	3. Application to the Fastest Mixing Markov Chain: Proof of thm:FMMC
	References

