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Abstract. An analogue of the Euclidean algorithm for square matrices of size 2 with integral non-negative
entries and positive determinant n defines a finite set R(n) of Euclid-reduced matrices corresponding to
elements of {(a,b,c,d) ∈N4 | n = ab−cd , 0 ≤ c,d < a,b}. With Popeye’s help1 on the use of sails of lattices we

show that R(n) contains
∑

d |n, d2≥n

(
d +1− n

d

)
elements.
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1. Introduction

We let N = {0,1,2, . . .} denote the set of all non-negative integers and we let P ={(
a b
c d

)∣∣a,b,c,d ∈N, ad −bc > 0
}

denote the set of all square matrices of size 2 with entries
inN and positive determinant. The subset of matrices of determinant n in P is written as P (n).

An elementary reduction of a matrix M is a matrix which belongs to the set
{E M ,E t M , ME , ME t } where E = (

1 −1
0 1

)
. Elementary reductions of M subtract a row/column

from the other row/column of M .
A matrix M in P is Euclid-reduced if and only if P contains no elementary reduction of M .

Equivalently, M = (
a b
c d

)
in P is Euclid-reduced if min(a,d) > max(b,c).

Euclid-reduced matrices are sort of a 2-dimensional analogue of the greatest common di-
visor computed by Euclid’s algorithm: Given two natural integers A,B , replace max(A,B) by
max(A,B)−min(A,B) until AB = 0. Here we do the same with rows and columns of 2×2-matrices
and we stop if we get negative entries.

We let R denote the subset of Euclid-reduced matrices in P and we let R(n) = R ∩P (n)
denote the subset of R corresponding to Euclid-reduced matrices of determinant n.

The main result of this paper describes the number ♯(R(n)) of elements in the set R(n) of
Euclid-reduced matrices of determinant n:

1Acknowledged by his appearance in the title (he refused co-authorship on the flimsy pretext of a weak contribution
due to a poor spinach-harvest).
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Theorem 1. The number of elements (a,b,c,d) in N4 such that n = ab − cd and min(a,b) >
max(c,d) is given by

∑
d |n, d 2≥n

(
d +1− n

d

)
. (1)

The map (a,b,c,d) 7−→ ( a c
d b

)
is a one-to-one correspondence between such solutions and elements

in the set R(n) of Euclid-reduced matrices having determinant n.

Remark 2. The finite set occuring in Theorem 1 has two natural descriptions: In terms of
matrices in R(n) or as solutions of the Diophantine equation occuring at the beginning of
Theorem 1. Natural notations for both descriptions are unfortunately somewhat incompatible.
We have opted for the Diophantine viewpoint in Theorem 1 and in the sequel. This makes the
coeffients of the associated matrices a bit awkward.

All summands occurring in (1) are positive and the last summand (corresponding to the trivial
divisor d = n of n) equals n. We have therefore ♯(R(n)) ≥ n with equality for n > 1 if and only if n
is a prime number. Our proof of Theorem 1 shows that solutions associated with a prime number
p are in one-to-one correspondence with the p sublattices of index p in Z2 which do not contain
the vector (1,1).

Similarly, ♯(R(n)) = n +1 if and only if n = p2 is the square of prime number p.
Cardinalities of the sets R(1),R(2), . . . are given by the integer sequence

1,2,3,5,5,8,7,11,10,14,11,19,13,20,18,24,17,30,19,31, . . .

defining sequence A357259 of the Online-Encyclopedia of Integer Sequences [4].
Klein’s Vierergruppe V (underlying the 2-dimensional vector space over the field of two ele-

ments) acts on solutions (a,b,c,d) by permuting the first two entries, the last two entries or the
first two and the last two entries. We let O = {(a,b,c,d), (b, a,c,d), (a,b,d ,c), (b, a,d ,c)} denote
the orbit of a solution (a,b,c,d) under the action of V. The following lists give lexicographically
largest representants of all orbits for the sets of solutions associated with the prime numbers
11,13 and 17:

a b c d ♯(O )
11 1 0 0 2
6 2 1 1 2
4 3 1 1 2
5 3 2 2 2
5 4 3 3 2
6 6 5 5 1

11

a b c d ♯(O )
13 1 0 0 2
7 2 1 1 2
5 3 2 1 4
4 4 3 1 2
5 5 4 3 2
7 7 6 6 1

13

a b c d ♯(O )
17 1 0 0 2
9 2 1 1 2
6 3 1 1 2
5 4 3 1 4
7 3 2 2 2
5 5 4 2 2
7 6 5 5 2
9 9 8 8 1

17

For n = 12,14,15 we get

♯(R12) = (4+1−3)+ (6+1−2)+ (12+1−1) = 19,

♯(R14) = (7+1−2)+ (14+1−1) = 20,

♯(R15) = (5+1−3)+ (15+1−1) = 18.
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The associated lexicographically largest solutions in orbits are given by

a b c d ♯(O )
12 1 0 0 2
6 2 0 0 2
6 2 1 0 4
4 3 0 0 2
4 3 1 0 4
4 3 2 0 4
4 4 2 2 1

19

a b c d ♯(O )
14 1 0 0 2
7 2 0 0 2
7 2 1 0 4
5 3 1 1 2
4 4 2 1 2
6 3 2 2 2
5 4 3 2 4
6 5 4 4 2

20

a b c d ♯(O )
15 1 0 0 2
5 3 0 0 2
5 3 1 0 4
5 3 2 0 4
8 2 1 1 2
4 4 1 1 1
6 4 3 3 2
8 8 7 7 1

18

It is perhaps worthwhile to note that non-negative integral solutions of n = ab + cd with
min(a,b) > max(c,d) are also interesting: For n = p an odd prime there are (p +1)/2 solutions.
If p is congruent to 1 modulo 4, the number (p +1)/2 of such solutions is odd and the action of
Klein’s Vierergruppe has a fixed point expressing p as a sum of two squares, see [2].

The sequel of this paper is organized as follows:
Section 2 uses Moebius inversion in order to obtain the number of elements with coprime

entries in R(n).
Section 3 recalls a well-known formula for the number of sublattices of index n in Z2. We give

an elementary proof.
Unless stated otherwise, a lattice is always a discrete subgroup isomorphic to Z2 of the

Cartesian coordinate plane R2 considered as a vector space.
Section 4 describes the sail of a latticeΛ contained in the Cartesian coordinate plane R2.
Section 5 is devoted to the proof of Theorem 1.
Section 6 contains a few complements: An elementary proof for finiteness of the set R(n), a

short discussion on matrices of larger size or of determinant 0. It ends with the description of a
perhaps interesting variation over the ring of Gaußian integers.

2. Coprime solutions

We let R′(n) denote the subset of R(n) containing all Euclid-reduced matrices with co-
prime entries. Dividing all entries of matrices in R(n) by their greatest common divisor, we
get a bijection between R(n) and the union

⋃
d ,d 2|n R′(n/d 2) showing the identity ♯(R(n)) =∑

d , d 2|n ♯(R′(n/d 2)). Moebius inversion of this identity yields now the formula

♯(R′(n)) = ∑
d 2|n

µ(d)♯(R(n/d 2)) (2)

(where the Moebius function µ is defined by µ(n) = (−1)e if n is a product of e distinct primes and
µ(n) = 0 if n has a non-trivial square-divisor).

Observe that R′(n) =R(n) if and only if µ(n) ̸= 0.
Cardinalities of R′(1),R′(2), . . . yield the integer sequence

1,2,3,4,5,8,7,9,9,14,11,16,13,20,18,19,17,28,19,26, . . .

defining A357260 of [4].

3. Sublattices of finite index inZ2

The following well-known result (see Remark 4 below) is a crucial ingredient for proving Theo-
rem 1. We give an elementary proof for the comfort of the reader.
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Theorem 3. The lattice Z2 has
∑

d ,d |n d different sublattices of index n.

Proof. Let Λ be a sublattice of index n in Z2. The order d of (1,0) in the finite quotient group
Z2/Λ is therefore a divisor of n and we have Λ∩Z(1,0) = Z(d ,0). Hence there exists a unique
element a in {0, . . . ,d −1} such that Λ = Z(d ,0)+Z(a,n/d). This shows that the lattice Z2 has d
different sublattices of index n intersecting Z(1,0) in Z(d ,0) for every divisor d of n. Summing
over all divisors yields the result. □

Remark 4. More generally, the number of sublattices of index n in Zd is given by∏
p|n

(
ep+d−1

d−1

)
p

(3)

(see e.g. [3] or [5]) where
∏

p|n pep = n is the factorization of n into prime-powers and where(
ep+d−1

d−1

)
p
=

d−1∏
j=1

pep+ j −1

p j −1

is the evaluation of the q-binomial[
ep+d−1

d−1

]
q
= [ep +d −1]q !

[ep ]q ! [d −1]q !

(with [k]q ! =∏k
j=1

q j −1
q−1 ) at the prime-divisor p of n.

Formula (3) boils of course down to
∑

k,k|n k if d = 2.

4. The sail of a lattice

Sails of lattices inRd , introduced and studied by V. Arnold, cf. e.g. [1], are a possible generalization
of continued fraction expansions to higher dimension. We define and discuss here only the case
d = 2 corresponding to ordinary continued fractions.

We let QI = {(x, y) |0 ≤ x, y} denote the closed first quadrant containing all points with non-
negative coordinates of the Cartesian coordinate plane R2.

The sail S =S (Λ) of a lattice Λ⊂R2 is the boundary with respect to the closed first quadrant
QI of the convex hull of all non-zero elements (Λ\ (0,0))∩QI ofΛ contained in QI.

The sail S of a lattice Λ is a piecewise linear path with vertices in Λ which intersects every 1-
dimensional subspace of finite positive slope in a unique point. Affine pieces of sails have finite
negative slopes. Any affine line intersecting a sail in two points has therefore finite negative slope.

Each coordinate axis intersects a sail either in a unique point (this happens if and only if the
coordinate axis contains infinitely many points of the underlying lattice Λ) or is an asymptote of
the sail (ifΛ contains no non-zero elements of the coordinate axis).

The sail S (Λ) of a sublatticeΛof index n inZ2 is always bounded with endpoints (αx ,0), (0,ωy )
for two divisors αx and ωy of n such that αxωy ≥ n.

Two distinct lattice elements u, v ∈Λ on the sail S = S (Λ) of a lattice Λ are consecutive if the
open segment joining u and v is contained in S \Λ.

Lemma 5. Two distinct lattice elements u, v on the sail S (Λ)∩Λ of a lattice Λ generate Λ if and
only if they are consecutive.

Proof. Since all non-zero lattice points in QI belong to S or to the unbounded convex region of
QI \ S , the closed triangle ∆ = ∆(u, v) with vertices (0,0),u, v contains no other element of Λ if
and only if u and v are consecutive.

Pairs of consecutive points u, v generate Λ since ∆∪ (−∆) is a fundamental domain for the
lattice spanned by u and v . □
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A sailbasis of a lattice Λ is a basis of Λ consisting of two consecutive elements in the sail S of
Λ. Every lattice has a sailbasis.

Two linearly independent elements u, v in the first quadrant QI form a sailbasis of the lattice
Zu +Zv generated by u and v if and only if the affine line containing u and v has finite negative
slope.

Remark 6. Sails are generalisations of continued fractions: Given a real number θ, vertices
of the sail for the lattice e−i arctan(θ)(Z+ iZ) correspond essentially to convergents of θ, see for
example [1].

5. Proof of Theorem 1

A sailbasis u, v of a lattice is central if the open segment joining u and v intersects the diagonal
line x = y . The two elements of a central sailbasis belong therefore to different connected
components of R2 \R(1,1). Every lattice has at most one central sailbasis.

A latticeΛ is bad if it has no central sailbasis. Equivalently, a lattice is bad if its sail S intersects
the setΛ∩R(1,1) of diagonal lattice-elements.

A sailbasis u, v of a bad lattice Λ = Zu +Zv is normalized if u in R(1,1) is a diagonal element
and v belongs to the open halfplane {(x, y) | x > y} below the diagonal line. Lemma 5 shows that
a bad lattice Λ has a unique normalized sailbasis given by u = S ∩R(1,1) and by the unique
consecutive element v in S ∩Λ of u which lies below the diagonal line x = y .

Proposition 7. The lattice Z2 contains∑
d , d 2<n, d |n

d + ∑
d , d 2≥n, d |n

(n/d −1)

bad sublattices of index n.

Proof. Bad lattices are in one-to-one correspondence with their normalized sailbases. We count
them by adapting the proof of Theorem 3.

Let u = (d ,d) in Λ∩S be the diagonal element of a normalized sailbasis u, v generating a
bad sublattice Λ = Zu +Zv of index n in Z2. The image of the element (1,1) in the quotient
groupZ2/Λ is therefore of order d dividing n. Since u, v is a sailbasis, the coefficients vx , vy of the
remaining basis element v = (vx , vy ) satisfy the inequalities 0 ≤ vy < d < vx . Since Λ = Zu +Zv
is a sublattice of index n in Z2, the element v of N2 belongs to the line (n/d ,0)+R(1,1). We have
therefore v = (n/d +a, a) for a suitable non-negative integer a.

If d < p
n, the trivial inequalities d < n/d ≤ n/d + a = vx imply vx > d for all choices of a in

N. The inequality vy < d implies that a = vy belongs to the set {0,1,2, . . . ,d −1} of the d smallest
non-negative integers. For every divisor d <p

n there are therefore d bad sublattices of index n
containing (d ,d) in their sail.

If d is a divisor of n such that d ≥p
n, the inequality d < vx = n/d+a implies a ≥ d−n/d+1 ≥ 0.

We have also a = vy < d . This shows that a belongs to the set {d −n/d +1,d −n/d +2, . . . ,d −1}
containing n/d −1 elements.

Summing over all contributions given by divisors of n ends the proof. □

Proof of Theorem 1. Solutions of ab − cd = n with min(a,b) > max(c,d) are in one-to-one
correspondence with central sailbases (a,d), (d ,b) generating sublattices of index n in Z2. The
number of elements in R(n) is therefore obtained by subtracting the number

∑
d , d 2<n, d |n d +∑

d , d 2≥n, d |n(n/d−1) of bad lattices of index n inZ2 given by Proposition 7 from the total number∑
d ,d |n d of lattices of index n in Z2 given by Theorem 3. Simplification yields the result. □
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6. Complements

6.1. Finiteness

We discuss in this Section a few finiteness properties of Euclid-reduced sets.
First, we give an elementary proof of finiteness for the number of Euclid-reduced matrices in

P of fixed positive determinant which does not make use of Theorem 1.
We consider then briefly the case of square matrices of size larger than 2 and of square matrices

of size two with determinant 0.

6.2. An easy bound on entries of Euclid-reduced matrices

Proposition 8. Matrices in R(n) involve only entries in {0,1, . . . ,n}.

Corollary 9. There are at most (n + 1)4 matrices in the set R(n) of Euclid-reduced matrices of
determinant n.

We leave the obvious proof of the Corollary to the reader.

Proof of Proposition 8. Let n = ab − cd with min(a,b) > max(c,d) be a solution corresponding
to the Euclid-reduced matrix

( a c
d b

)
with max(a,b) maximal among entries occurring in elements

of R(1), . . . ,R(n). Up to exchanging a and b we can suppose that a ≥ b. Since n = ab − cd ≥
ab − (b − 1)2 > 0 we can assume c = d = b − 1. Restricting ax − (x − 1)2 to x in [1, . . . , a] we can
furthermore assume either x = 1 or x = a. In the first case we get n ≥ a · 1− 02 = a and in the
second case we get n ≥ a2 − (a − 1)2 = 2a − 1 showing the inequality max(a,b) = a ≤ n in both
cases. □

6.3. Finiteness for size larger than two

Euclidean reduction for square matrices of size 2 has an obvious generalization to square ma-
trices of arbitrary size with coefficients in N: Subtract (if possible) a different row or column
from a given row or column. This leads in general to infinite sets of matrices of given positive

determinant which have no further reductions: The matrix
(4+x 2+x 1+x

x 1+x 3+x
1+x 1+x 2+x

)
has determinant 1 and

is “Euclid-reduced” for any natural integer x.

6.4. Finiteness for determinant zero

All square matrices of size two with (at least) three zero entries and an arbitrary entry in N are
Euclid-reduced and every Euclid-reduced matrix with determinant 0 and entries in N is of this
form: If a matrix M (of square size two with entries in N has determinant 0 then its rows (or
columns) are linearly dependent. Subtracting the smaller row iteratively from the larger one we
end up with a matrix having a zero-row. Working with columns we get finally a matrix having a
unique non-zero entry.

Requiring the entries of such a matrix to have a given non-zero greatest divisor ensures
uniqueness up to the location of the non-zero entry. There are therefore exactly four Euclid-
reduced matrices (of square size 2) with determinant 0 and greatest common divisor of entries a
given positive integer d ≥ 1.
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6.5. Gaußian integers

We discuss briefly an analogue of R(n) over the ring of Gaußian integers (the case of integers in
an imaginary quadratic number field is probably similar).

Given a non-zero Gaußian integer z, we define the set S (z) containing all solutions of
ab + cd = z satisfying min(|a|, |b|) > max(|c|, |d |) with a,b,c,d in the set Z[i ] of Gaußian integers.

The two identities

2m +1 = (2n + (2n2 −m −1)i )(2n − (2n2 −m −1)i )− (2n2 −m)2

and
2m = (2n +1+ (2n2 +2n −m)i )(2n +1− (2n2 +2n −m)i )− (2n2 +2n −m +1)2

show that the sets S (z) are always infinite for z ∈Z\ {0}.
More generally, S (z) is infinite for every Gaußian integer z of the form z = nu2 for n in N\ {0}

a sum of two squares (i.e. containing no odd power of a prime congruent to 3 modulo 4 in its
prime-factorization) and for u ∈Z[i ] \ {0} an arbitrary non-zero Gaußian integer.

Solutions can be fairly large as shown by the identity

2+3i =−(7−18)2 + (3+19i )(−15+12i )

contributing to S (2+3i ) which has seemingly only finitely many elements.
There are obvious bijections between S (z),S (z),S (−z),S (±i z). Moreover, S (z) infinite

implies S (sst 2z) infinite for non-zero Gaußian integers s, t in Z[i ] \ {0}.
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