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Abstract. Let ℓm be a sequence of m points on a line with consecutive points at distance one. Answering a
question raised by Fox and the first author and independently by Arman and Tsaturian, we show that there is
a natural number m and a red/blue-colouring of En for every n that contains no red copy of ℓ3 and no blue
copy of ℓm .
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1. Introduction

Let En denote n-dimensional Euclidean space, that is, Rn equipped with the Euclidean metric.
Given two sets X1, X2 ⊂ En , we write En → (X1, X2) if every red/blue-coloring of En contains
either a red copy of X1 or a blue copy of X2, where a copy for us will always mean an isometric
copy. Conversely, En ↛ (X1, X2) means that there is some red/blue-coloring of En which contains
neither a red copy of X1 nor a blue copy of X2.

The study of which sets X1, X2 ⊂ En satisfy En → (X1, X2) is a particular case of the Euclidean
Ramsey problem, which has a long history going back to a series of seminal papers [6–8] of Erdős,
Graham, Montgomery, Rothschild, Spencer and Straus in the 1970s. Despite the vintage of the
problem, surprisingly little progress has been made since these foundational papers (though
see [9, 12] for some important positive results). For instance, it is an open problem, going back
to the papers of Erdős et al. [7], as to whether, for every n, there is m such that En ↛ (X , X ) for
every X ⊂ En with |X | = m.

Write ℓm for the set consisting of m points on a line with consecutive points at distance
one. Perhaps because it is a little more accessible than the general problem, the question of
determining which n and X satisfy the relation En → (ℓ2, X ) has received considerable attention.
For instance, it is known [11, 14] that E2 → (ℓ2, X ) for every four-point set X ⊂ E2 and that
E2 → (ℓ2,ℓ5). On the other hand [5], there is a set X of 8 points in the plane, namely, a regular
heptagon with its center, such that E2 ↛ (ℓ2, X ).

∗Corresponding author.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.452
mailto:dconlon@caltech.edu
mailto:yu-han.wu@ens.psl.eu
https://comptes-rendus.academie-sciences.fr/mathematique/


898 David Conlon and Yu-Han Wu

In higher dimensions, by combining results of Szlam [13] and Frankl and Wilson [10], it was
observed by Fox and the first author [4] that En → (ℓ2,ℓm) provided m ≤ 2cn for some positive
constant c (see also [1, 2] for some better bounds in low dimensions). Our concern here will
be with a question raised independently by Fox and the first author [4] and also by Arman and
Tsaturian [1], namely, as to whether an analogous result holds with ℓ2 replaced by ℓ3. That is, for
every natural number m, is there a natural number n such that En → (ℓ3,ℓm)? We answer this
question in the negative.

Theorem 1. There exists a natural number m such that En ↛ (ℓ3,ℓm) for all n.

Before our work, the best result that was known in this direction was a 50-year-old result of
Erdős et al. [6], who showed that En ↛ (ℓ6,ℓ6) for all n. Their proof uses a spherical colouring,
where all points at the same distance from the origin receive the same colour. We will also use a
spherical colouring, though, unlike the colouring in [6], which is entirely explicit, our colouring
will be partly random.

2. Preliminaries

In this short section, we note two key lemmas that will be needed in our proof. The first says that
certain real-valued quadratic polynomials are reasonably well-distributed modulo a prime q .

Lemma 2. Let p(x) = x2 + αx + β, where α and β are real numbers, and let q be a prime
number. Then, for m = q3, the set {p(i )}m

i=1 overlaps with at least q/6 of the intervals [ j , j +1) with
0 ≤ j ≤ q −1 when considered mod q.

Proof. By a standard argument using the pigeonhole principle, there exists some k ≤ q2 such
that |kα| ≤ 1/q mod q . We split into two cases, depending on whether k is a multiple of q or not.

Suppose first that k ̸≡ 0 mod q and consider the set of values {p(ki )}q
i=1. Note first that {i 2}q

i=1
is a set of (q +1)/2 distinct integers mod q , so, since k is not a multiple of q , the same is also true
of the set {k2i 2}q

i=1. Hence, letting p1(x) = x2 +β, we see that the set {p1(ki )}q
i=1 overlaps with at

least q/2 of the intervals [ j , j +1) with 0 ≤ j ≤ q −1 when considered mod q . But |kiα| ≤ 1 mod q
for all 1 ≤ i ≤ q , so that |p(ki )−p1(ki )| ≤ 1 for all 1 ≤ i ≤ q . Therefore, since exactly three different
intervals are within distance one of any particular interval, the set {p(ki )}q

i=1 overlaps with at least
q/6 of the intervals [ j , j +1) mod q .

Suppose now that k = sq for some s ≤ q . Then sqα= r q + ϵ for some |ϵ| ≤ 1/q , which implies
that α = r

s + ϵ′, where |ϵ′| ≤ 1/q2. Without loss of generality, we may assume that r and s have
no common factors. Consider now the polynomial p2(x) = x2 + r

s x and the set {p2(si )}q
i=1. Since

p2(si ) = s2i 2+r i , it is easy to check that p2(si ) ≡ p2(s j ) mod q if and only if s2(i+ j )+r ≡ 0 mod q .
Since r and s are coprime, this implies that the set {p2(si )}q

i=1 takes at least q/2 values mod q .
Hence, letting p3(x) = x2 + r

s x +β, we see that the set {p3(si )}q
i=1 overlaps with at least q/2 of the

intervals [ j , j +1) with 0 ≤ j ≤ q −1 when considered mod q . But, since |α− r /s| ≤ 1/q2, we have
that |p(si )−p3(si )| = |α− r

s |si ≤ 1, so that, as above, the set {p(si )}q
i=1 overlaps with at least q/6

of the intervals [ j , j +1) mod q . □

Given M real polynomials p1, . . . , pM in N variables, a vector σ ∈ {−1,0,1}M is called a sign
pattern of p1, . . . , pM if there exists some x ∈ RN such that the sign of pi (x) is σi for all 1 ≤ i ≤ M .
The second result we need is the Oleinik–Petrovsky–Thom–Milnor theorem (see, for example, [3]),
which, for N fixed, gives a polynomial bound for the number of sign patterns.

Lemma 3. For M ≥ N ≥ 2, the number of sign patterns of M real polynomials in N variables, each
of degree at most D, is at most

( 50DM
N

)N
.
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3. Proof of Theorem 1

Suppose that a1, a2, a3 ∈ Rn form a copy of ℓ3 with |a1 − a2| = |a2 − a3| = 1. If the points are at
distances x1, x2 and x3, respectively, from the origin o and the angle a1a2o is θ, then we have

x2
1 = x2

2 +1−2x2 cosθ

and
x2

3 = x2
2 +1+2x2 cosθ.

Adding the two gives
x2

1 +x2
3 = 2x2

2 +2.

Similarly, if a1, a2, . . . , am ∈Rn form a copy of ℓm with |ai −ai+1| = 1 for all i = 1,2, . . . ,m −1, then,
again writing xi for the distance of ai from the origin, we have

x2
i−1 +x2

i+1 = 2x2
i +2

for all i = 2, . . . ,m − 1. Given these observations, our aim will be to colour R≥0 so that there is
no red solution to y1 + y3 = 2y2 +2 and no blue solution to the system yi−1 + yi+1 = 2yi +2 with
i = 2, . . . ,m−1. Assuming that we have such a colouring χ, we can simply colour a point a ∈Rn by
χ(|a|2) and it is easy to check that there is no red copy of ℓ3 and no blue copy of ℓm .

We have therefore moved our problem to one of finding a natural number m and a colouring
χ of R≥0 with no red solution to y1 + y3 = 2y2 +2 and no blue solution to the system yi−1 + yi+1 =
2yi +2 with i = 2, . . . ,m−1. Let q be a prime number. We will take m = q3 and defineχ by choosing
an appropriate colouring χ′ of Zq and then setting χ(y) = χ′(⌊y⌋ mod q) for all y ∈ R≥0. Our aim
now is to show that there is a suitable choice for χ′. For this, we consider a random red/blue-
colouring χ′ of Zq and show that, for q sufficiently large, the probability that χ contains either of
the banned configurations is small.

Concretely, suppose that Zq is coloured randomly in red and blue with each element of Zq

coloured red with probability p = q−3/4 and blue with probability 1− p. With this choice, the
expected number of solutions in red to any of the equations y1 + y3 = 2y2 + c with c ∈ {1,2,3} is at
most

3p3q2 +9p2q < 12q−1/4 < 1

2
,

where we used that there are at most 3q solutions to any of our 3 equations with two of the
variables {y1, y2, y3} being equal and that q is sufficiently large. Note that if there are indeed no
red solutions to these three equations over Zq , then there is no red solution to y1 + y3 = 2y2 +2 in
the colouring χ of R. Indeed, if yi = ni +ϵi with 0 ≤ ϵi < 1, then ni is coloured red in χ′ and

n1 +n3 = 2n2 +2+2ϵ2 −ϵ1 −ϵ3.

But |2ϵ2 −ϵ1 −ϵ3| < 2, so we must have

n1 +n3 = 2n2 + c

for c ∈ {1,2,3}. However, we know that there are no red solutions to any of these equations in the
colouring χ′, so there is no red solution to y1 + y3 = 2y2 +2 in the colouring χ.

For the blue configurations, we first observe that if the yi satisfy the equations yi−1 + yi+1 =
2yi + 2 with i = 2, . . . ,m − 1 with y1 = a and y2 = a +d , then yi = a + (i − 1)d + (i 2 − 3i + 2). In
particular, by Lemma 2, at least q/6 elements of the sequence y1, . . . , ym lie in different intervals
[ j , j +1) with 0 ≤ j ≤ q −1 when considered mod q .

Our aim now is to apply Lemma 3 to count the number of different ways in which a set of
solutions (y1, y2, . . . , ym) to our system of equations can overlap the collection of intervals [ j , j +1)
mod q . Without loss of generality, we may assume that 0 ≤ a,d < q . Since, under this assumption,
any set of solutions over R to our system of equations is contained in the interval [0,2m2), it will
suffice to count the number of feasible overlaps with the intervals [ j , j +1) with 0 ≤ j ≤ 2m2 −1.
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Since we need to check at most two linear inequalities in the two variables a and d to check
whether each of the m points are placed in each of the 2m2 intervals, we can apply Lemma 3 with
N = 2, D = 1 and M = 2 ·m ·2m2 = 4m3 to conclude that the points y1, . . . , ym overlap the intervals
[ j , j +1) with 0 ≤ j ≤ 2m2 −1 in at most (100m3)2 = 104m6 different ways. But now, since at least
q/6 of the yi must always be in distinct intervals, a union bound implies that the probability we
have a blue solution to our system of equations is at most

104m6(1−q−3/4)q/6 < 1

2
for m sufficiently large. Combined with our earlier estimate for the probability of a red solution to
y1+ y3 = 2y2+2, we see that for m sufficiently large (m = 1050 will suffice) there exists a colouring
with no red ℓ3 and no blue ℓm , as required.

4. Concluding remarks

We say that a set X ⊂ Ed is Ramsey if for every natural number r there exists n such that every
r -colouring of En contains a monochromatic copy of X . In [4], it was shown that a set X is
Ramsey if and only if for every natural number m and every fixed K ⊂ Em there exists n such
that En → (X ,K ). We suspect that there may be an even simpler characterisation.

Conjecture 4. A set X is Ramsey if and only if for every natural number m there exists n such that
En → (X ,ℓm).

Of course, by the result mentioned above, we already know that if X is Ramsey, then En →
(X ,ℓm) for n sufficiently large. It therefore remains to show that if X is not Ramsey, then there
exists m such that En ↛ (X ,ℓm) for all n. To prove this in full generality might be difficult.
However, an important result of Erdős et al. [6] says that if X is Ramsey, then it must be spherical,
in the sense that it must be contained in the surface of a sphere of some dimension. Thus, a first
step towards Conjecture 4 might be to prove the following.

Conjecture 5. For every non-spherical set X , there exists a natural number m such that En ↛
(X ,ℓm) for all n.

The simplest example of a non-spherical set is the line ℓ3, so our main result may be seen as a
verification of Conjecture 5 in this particular case. The next case of interest seems to be when X
consists of three points a1, a2, a3 on a line, but now with |a1 − a2| = 1 and |a2 − a3| = α for some
irrational α.
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