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Abstract. We study periodic homogenization and 3D-2D dimension reduction by Γ(π)-con-vergence of
heterogeneous thin films whose the stored-energy densities have no polynomial growth. In particular, our
results are consistent with one of the basic facts of nonlinear elasticity, namely the necessity of an infinite
amount of energy to compress a finite volume of matter into zero volume. However, our results are not
consistent with the noninterpenetration of the matter.
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1. Introduction

Consider a heterogeneous thin film occupying in a reference configuration the bounded open set
Σε ⊂R3 given by

Σε :=Σ×
]
−ε

γ

2
,
εγ

2

[
,

where γ ∈ ]0,∞[ is fixed, ε> 0 and Σ⊂ R2 is Lipschitz, open and bounded. The small parameters
εγ and ε represent respectively the film thickness and the length scale of heterogeneity and
material microstructure, and the meaning of the coefficient γ is as follows:

• γ< 1 means that the film thickness is much larger than heterogeneity;
• γ= 1 means that the film thickness is comparable to heterogeneity;
• γ> 1 means that the film thickness is much smaller than heterogeneity.

A point of Σε is denoted by (x, x3) with x ∈ Σ and x3 ∈ ]− εγ

2 , ε
γ

2

[
. In order to model x-periodic

heterogenities of the material, we assume that its stored-energy density is a Borel measurable
function

W :R2 ×M3×3 → [0,∞]

with the following properties:
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(C1) W is p-coercive with p > 1, i.e. there exists C > 0 such that W (x,F ) ≥ C |F |p for all
(x,F ) ∈R2 ×M3×3;

(C2) W is 1-periodic with respect to x, i.e. W (x + z,F ) = W (x,F ) for all (x,F ) ∈ R2 ×M3×3 and
all z ∈Z2.

In order to take into account the fact that an infinite amount of energy is required to compress a
finite volume into zero volume1, i.e.

W (x,F ) →∞ as detF → 0, (1)

where detF denotes the determinant of the 3×3 matrix F , we assume that

(C3) W is p-ample, i.e. there exist c > 0 such that Z W (x,F ) ≤ c(1 + |F |p ) for all (x,F ) ∈
R2 ×M3×3, where Z W :R2 ×M3×3 → [0,∞] is defined by

Z W (x,F ) := inf

{ˆ
Y

W (x,F +∇ϕ(x, x3))dxdx3 :ϕ ∈W 1,∞
0 (Y ;R3)

}
(2)

with Y := ]− 1
2 , 1

2

[3.

Note that (C3) does not imply that W is of p-polynomial growth, and is compatible with (1) (see
Section 5). The object of this paper is to show that as ε→ 0 the three-dimensional free energy
functional Eε : W 1,p (Σε;R3) → [0,∞] (with p > 1) defined by

Eε(u) := 1

εγ

ˆ
Σε

W
( x

ε
,∇u(x, x3)

)
dxdx3 (3)

Γ(π)-converges to the two-dimensional free energy functional E : W 1,p (Σ;R3) → [0,∞] given by

E(v) :=
ˆ
Σ

W
(∇v(x)

)
dx (4)

with W : M3×2 → [0,∞]. Usually, E is called the homogenized nonlinear membrane energy
associated with the two-dimensional elastic material with respect to the reference configuration
Σ. Furthermore, we wish to give a representation formula for W .

In the homogeneous case, i.e. W (x,F ) = W (F ), the problem of deriving membrane model as
variational limit of non-linear three dimensional elasticity began at the begining of the nineties
with the works of Le Dret and Raoult (see [13, 14]) who solved the problem in the case where
W is bounded, i.e. W (F ) ≤ c(1 + |F |p ). In the unbounded case, the problem was solved in [3]
for the constraint “det∇u ̸= 0” and in [4] for the constraint “det∇u > 0” (see also [5, 6]). Note
that the answer of the problem of deriving membrane model as variational limit of non-linear
three dimensional elasticity under the constraint “det∇u > 0” is the result of several works on
the subject: mainly, the attempt of Percivale in 1991 (see [15]), the rigorous answer by Le Dret
and Raoult in the p-polynomial growth case and especially the substantial contributions of Ben
Belgacem (see [8–10]).

In the heterogeneous and bounded case, the problem was solved by Braides, Fonseca and
Francfort (see [11]) for γ = 1 and by Shu (see [16]) for γ ̸= 1. In the present paper we deal
with the heterogeneous and unbounded case. Our results (see Theorem 1 and Corollary 13)
are compatible with the constraint “det∇u ̸= 0” but not with the constraint “det∇u > 0”. To
our knowledge, in the heterogeneous case, incorporating the constraint “det∇u > 0” is an open
problem.

The plan of the paper is as follows. In the next section we state our main result (see Theorem 1)
establishing the Γ(π)-convergence (whose definition is recalled in Section 3.1) of Eε in (3) to E
in (4) together with a representation formula for W which depends on γ. The proof of Theorem 1
is given in Section 4 by using two results: unbounded relaxation (see Corollary 8) and bounded
homogenization and 3D-2D dimension reduction (see Theorem 11). These results, proved in [1]

1However, we do not prevent orientation reversal.
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and [11,16] respectively, are recalled in Section 3.2. In Section 5 we give applications of Theorem 1
(see Corollary 13).

Notation. For k = 2 or 3,M3×k denotes the space of real 3×k matrices. For L :R2×M3×k → [0,∞],
the function QL : R2 ×M3×k → [0,∞] is defined as follows: for each x ∈ R2, QL(x, · ) is the
quasiconvex envelope2 of L(x, · ) :M3×k → [0,∞]. The symbol

ffl
stands for the mean-value integral

with respect to the Lebesgue measure L k on Rk , i.e.
ffl

Q = 1
L k (Q)

ffl
Q .

2. Main result

Let L2 denote the class of λ ∈ L∞(R2; [0,∞[) such that λ is continuous almost everywhere with
respect to L 2 and let I p and J p be classes of Borel measurable functions W :R2×M3×3 → [0,∞]
defined by:

I p :=
{

W :R2 ×M3×3 → [0,∞] : W satisfies (C1), (C3) and (C4)
}

; (5)

J p :=
{

W :R2 ×M3×3 → [0,∞] : W satisfies (C1), (C3) and (C5)
}

, (6)

where (C4) and (C5) are given by:

(C4) there exists λ ∈L2 for every x, x ′ ∈R2 and every F ∈M3×3,

W (x,F ) ≤ |λ(x)−λ(x ′)|(1+W (x ′,F ))+W (x ′,F );

(C5) there exist a finite family {V j } j∈J of open disjoint subsets of R2, with L 2(∂V j ) = 0 for
all j ∈ J and L 2(R2 \ ∪ j∈J V j ) = 0, and a finite family {H j : M3×3 → [0,∞]} j∈J of Borel
measurable functions such that

W (x,F ) = ∑
j∈J
1V j (x)H j (F ).

Let us set:

I
p

per :=
{

W ∈I p : W satisfies (C2)
}

;

J
p
per :=

{
W ∈J p : W satisfies (C2)

}
=

{
W ∈J p :1V j is 1-periodic for all j ∈ J

}
.

In what follows, given L :R2 ×M3×3 → [0,∞], we consider L̂ :R2 →M3×2 → [0,∞] defined by

L̂(x,ξ) := inf
ζ∈R3

L(x, [ξ | ζ]),

and H L :M3×3 → [0,∞], Ĥ L :M3×2 → [0,∞] and H L̂ :M3×2 → [0,∞] defined by:

H L(F ) := inf
k∈N∗ inf

ϕ∈W
1,p
0 (kY ;R3)

 
kY

L(x,F +∇ϕ(x, x3))dxdx3;

Ĥ L(ξ) := inf
k∈N∗ inf

ϕ∈Ŵ
1,p
0 (kŶ ×]− 1

2 , 1
2 [;R3)

 
kŶ ×]− 1

2 , 1
2 [

L(x, [ξ+∇xϕ(x, x3) | ∂3ϕ(x, x3)])dxdx3;

H L̂(ξ) := inf
k∈N∗ inf

ϕ∈W
1,p
0 (kŶ ;R3)

 
kŶ

L̂(x,ξ+∇ϕ(x))dx,

2By the quasiconvex envelope of L(x, · ) we mean the greatest quasiconvex function from M3×k to [0,∞] which less
than or equal to L(x, ·). Clearly, L(x, · ) is quasiconvex if and only if QL(x, · ) = L(x, · ).
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where [ξ | ζ] denotes the element ofM3×3 corresponding to (ξ,ζ) ∈M3×2×R3 and, for each k ∈N∗,
W 1,p

0 (kY ;R3), Ŵ 1,p
0 (kŶ ×]− 1

2 , 1
2 [;R3) and W 1,p

0 (kŶ ;R3) are given by:

W 1,p
0 (kY ;R3) :=

{
ϕ ∈W 1,p (kY ;R3) :ϕ= 0 on ∂kY

}
;

Ŵ 1,p
0

(
kŶ ×

]
−1

2
,

1

2

[
;R3

)
:=

{
ϕ ∈W 1,p

(
kŶ ×

]
−1

2
,

1

2

[
;R3

)
:ϕ= 0 on ∂kŶ ×

]
−1

2
,

1

2

[}
;

W 1,p
0 (kŶ ;R3) :=

{
ϕ ∈W 1,p (kŶ ;R3) :ϕ= 0 on ∂kŶ

}
,

where Y := ]− 1
2 , 1

2

[3 and Ŷ := ]− 1
2 , 1

2

[2. The main result of the paper is the following.

Theorem 1. If W ∈ I
p

per ∪J
p
per then as ε→ 0, Eε in (3) Γ(π)-converges to E in (4), i.e. for every

v ∈W 1,p (Σ;R3), (
Γ(π)- lim

ε→0
Eε

)
(v) = E(v)

with W :M3×2 → [0,∞] given as follows:

(i) if γ< 1 then W =QáH Z W ;
(ii) if γ= 1 then W = Ĥ Z W ;

(iii) if γ> 1 then W =H �Z W .

Remark 2. From (C1) and (C3) we see that for every (x,F ) ∈R2 ×M3×3,

C |F |p ≤Z W (x,F ) ≤ c(1+|F |p ),

and so, for every (x,ξ) ∈R2 ×M3×2,

C |ξ|p ≤ �Z W (x,ξ) ≤ c(1+|ξ|p ).

Consequently, for every γ ∈ ]0,∞[,

C |ξ|p ≤W (ξ) ≤ c(1+|ξ|p ).

On the other hand, under (C3), Z W = QW by Lemma 10, and consequently in Theorem 1 we
have

W =


QáH QW if γ< 1

Ĥ QW if γ= 1

H �QW if γ> 1.

The distinguishing feature of Theorem 1 is that it can be applied with stored-energy densities
W having a singular behavior of type (1) (see Section 5).

3. Auxiliary results

3.1. Γ(π)-convergence

To accomplish our asymptotic analysis, we use the notion of convergence introduced by Anzel-
lotti, Baldo and Percivale in [7] in order to deal with dimension reduction problems in mechanics.
Let π= {πε}ε be the family of maps πε : W 1,p (Σε;R3) →W 1,p (Σ;R3) defined by

πε(u) := 1

εγ

ˆ εγ

2

− εγ

2

u( · , x3)dx3.

Definition 3. We say that Eε Γ(π)-converges to E as ε→ 0, and we write E = Γ(π)- limε→0 Eε, if the
following two assertions hold:

(i) for all v ∈W 1,p (Σ;R3) and all {uε}ε ⊂W 1,p (Σε;R3),

if πε(uε) → v in Lp (Σ;R3) then E(v) ≤ lim
ε→0

Eε(uε);
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(ii) for all v ∈W 1,p (Σ;R3), there exists {uε}ε ⊂W 1,p (Σε;R3) such that:

πε(uε) → v in Lp (Σ;R3) and E(v) ≥ lim
ε→0

Eε(uε).

In fact, Definition 3 is a variant of De Giorgi’s Γ-convergence. This is made clear by Proposi-
tion 5. Consider Êε : W 1,p (Σ;R3) → [0,∞] defined by

Êε(v) := inf
{
Eε(u) :πε(u) = v

}
.

Definition 4. We say that Êε Γ-converges to E as ε→ 0, and we write E = Γ- limε→0 Êε if for every
v ∈W 1,p (Σ;R3), (

Γ- lim
ε→0

Êε

)
(v) =

(
Γ- lim

ε→0
Êε

)
(v) = E(v),

where: (
Γ- lim

ε→0
Êε

)
(v) := inf

{
lim
ε→0

Êε(vε) : vε→ v in Lp (Σ;R3)

}
;(

Γ- lim
ε→0

Êε

)
(v) := inf

{
lim
ε→0

Êε(vε) : vε→ v in Lp (Σ;R3)

}
.

For a deeper discussion of the Γ-convergence theory we refer to the book [12]. Clearly, Defini-
tion 4 is equivalent to assertions (i) and (ii) in Definition 3 with “π(uε) → v” replaced by “vε→ v”.
It is then obvious that

Proposition 5. E = Γ(π)- limε→0 Eε if and only if E = Γ- limε→0 Êε.

As, for every ε> 0, we have

inf
{
Eε(u) :πε(u) = v

}= inf
{

Eε(u) :πε(u) = v
}

,

where Eε : W 1,p (Σε;R3) → [0,∞] is the relaxed functional of Eε : W 1,p (Σε;R3) → [0,∞], i.e. for
every u ∈W 1,p (Σε;R3),

Eε(u) = inf

{
lim

n→∞
Eε(un) : un → u in Lp (Σε;R3)

}
, (7)

from proposition 5 we deduce that the following result which is used in the proof of Theorem 1.

Proposition 6. The Γ(π)-limit is stable by substituting Eε by its relaxed functional Eε.

3.2. Relaxation in the heterogeneous and unbounded case

Let W : R2 ×M3×3 → [0,∞] be a Borel measurable function, let p > 1, let Ω ⊂ R3 be a bounded
open set such that L 3(∂Ω) = 0, let I : W 1,p (Ω;R3) → [0,∞] be defined by

I (u) :=
ˆ
Ω

W (x,∇u(x, x3))dxdx3

and let I : W 1,p (Ω;R3) → [0,∞] the relaxed functional of I , i.e.

I (u) := inf

{
lim

n→∞
I (un) : un → u in Lp (Ω;R3)

}
.

In [1, Theorems 3.8 and 3.15] we proved the following integral representation theorem.

Theorem 7. If W ∈I p ∪J p , where I p and J p are defined in (5) and (6) respectively, then

I (u) =
ˆ
Ω

Z W (x,∇u(x))dx

for all u ∈W 1,p (Ω;Rm).

Given ε> 0, set Wε(x,F ) = 1
εγ W

( x
ε ,F

)
. It is easy to see that:
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• if (C1) holds then Wε(x,F ) ≥ C
εγ |F |p for all (x,F ) ∈R2 ×M3×3, i.e. Wε is p-coercive;

• if (C3) holds then Z Wε(x,F ) ≤ c
εγ (1+|F |p ) for all (x,F ) ∈R2 ×M3×3, i.e. Z Wε is p-ample;

• if (C4) holds then Wε(x,F ) ≤ |λε(x)−λε(x ′)|(1+Wε(x ′,F ))+Wε(x ′,F ) for all x, x ′ ∈R2 and
all F ∈M3×3 where λε( · ) := 1

εγλ( ·
ε ) ∈L2;

• if (C5) holds then Wε(x,F ) = ∑
j∈J 1V ε

j
(x)Hε

j (F ) where, for each j ∈ J , Hε
j := 1

εγ H j and

V ε
j := εV j ; moreover, as L 2(∂V j ) = 0 for all j ∈ J and L 2(R2 \

⋃
j∈J V j ) = 0, we have

L 2(∂εV j ) = 0 for all j ∈ J and L 2(R2 \
⋃

j∈J εV j ) = 0.

Hence if W ∈I p ∪J p then Wε ∈I p ∪J p . So, by applying Theorem 7 withΩ=Σε and I = Eε,
with Eε defined in (3), we obtain the following result which is used in the proof of Theorem 1.

Corollary 8. If W ∈I p ∪J p then, for every ε> 0,

Eε(u) = 1

εγ

ˆ
Σε

Z W
( x

ε
,∇u(x, x3)

)
dxdx3

for all u ∈W 1,p (Σε;R3) where Eε, defined in (7), is the relaxed functional of Eε.

Remark 9. Because of the following lemma (see [2, Theorem 2.3-bis]) which makes clear the
link between the quasiconvex envelope QW of W and Z W defined in (2), in Theorem 7 and
Corollary 8, Z W can be replaced by QW .

Lemma 10. If Z W is finite then QW =Z W .

3.3. Homogenization and 3D-2D dimension reduction in the bounded case

In the bounded case, instead of (C3), we consider the following condition:

(Cb
3 ) W is of p-polynomial growth, i.e. there exists c > 0 such that W (x,F ) ≤ c(1+|F |p ) for all

(x,F ) ∈R2 ×M3×3,

and we also assume that

(Clip
3 ) W is p-locally lipschitz with respect to F in the following sense: there exists θ > 0 such

that |W (x,F )−W (x,F ′)| ≤ θ|F −F ′|(1+|F |p−1 +|F ′|p−1) for all x ∈R2 and all F,F ′ ∈M3×3.

To establish Theorem 1 we need the following result which was proved by Braides, Fonseca
and Francfort (see [11]) for γ= 1 and by Shu (see [16]) for γ ̸= 1.

Theorem 11. If (C1), (C2), (Cb
3 ) and (Clip

3 ) hold then as ε→ 0, Eε in (3) Γ(π)-converges to E in (4),
i.e. for every v ∈W 1,p (Σ;R3), (

Γ(π)- lim
ε→0

Eε

)
(v) = E(v)

with W :M3×2 → [0,∞] given as follows:

(i) if γ< 1 then W =Q�H W ;
(ii) if γ= 1 then W = Ĥ W ;

(iii) if γ> 1 then W =H Ŵ .

Contrary to Theorem 1, due to the fact that W is of p-polynomial growth, Theorem 11 is not
compatible with (1).

4. Proof of Theorem 1

As, by Proposition 6, the Γ(π)-limit is stable by substituting Eε by its relaxed functional Eε, i.e.

Eε(u) = inf

{
lim

n→∞
Eε(un) : un → u in Lp (Σε;R3)

}
= 1

εγ
inf

{
lim

n→∞

ˆ
Σε

W
( x

ε
,∇un(x, x3)

)
dxdx3 : un → u in Lp (Σε;R3)

}
,
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it suffices to prove that for every v ∈W 1,p (Σ;R3),(
Γ(π)- lim

ε→0
Eε

)
(v) =

ˆ
Σ

W (∇v(x))dx (8)

with W :M3×2 → [0,∞] given by (i), (ii) or (iii). Since W ∈I p ∪J p , by Corollary 8 we have

Eε(u) = 1

εγ

ˆ
Σε

Z W
( x

ε
,∇u(x, x3)

)
dxdx3

for all ε> 0 and all u ∈W 1,p (Σε;R3) with Z W :R2×M3×3 → [0,∞] given by (2). It is clear that Z W
is p-coercive and 1-periodic with respect to x. Moreover, Z W is of p-polynomial growth and so,
by Lemma 10, Z W = QW , hence, for each x ∈ R2, Z W (x, · ) is quasiconvex. Consequently Z W
is p-locally lipschitz and the result follows by applying Theorem 11 to Z W . □

5. Applications

Let K be the class of Borel measurable function H :M3×3 → [0,∞] defined by

K :=
{

H :M3×3 → [0,∞] : H is p-coercive and satisfies (C6)
}

,

where (C6) is given by

(C6) there exist α,β> 0 such that for every F ∈M3×3,

if |detξ| ≥α then H(F ) ≤β(1+|F |p ).

Note that (C6) is compatible with the singular behavior

H(F ) →∞ as detF → 0. (9)

A typical example of a function belonging to the class K is given by

H(F ) = |F |p +h(detF )

where h : R → [0,∞] is a Borel measurable function for which there exist δ,δ′ > 0 such that
h(t ) ≤ δ′ for all |t | ≥ δ. For example, given s > 0 and T ≥ 0 (possibly very large), this latter condition
is satisfied with δ= 2T and δ′ = max

{ 1
(2T )s ,T

}
when h is of type

h(t ) =


T if t <−T

∞ if t ∈ [−T,0]
1

t s if t > 0.

Let S1, S2 and S3 be classes of Borel measurable functions W :R2×M3×3 → [0,∞] defined by:

S1 :=
{

W :R2 ×M3×3 → [0,∞] : W satisfies (C7)
}

;

S2 :=
{

W :R2 ×M3×3 → [0,∞] : W satisfies (C8)
}

;

S3 :=
{

W :R2 ×M3×3 → [0,∞] : W satisfies (C5) with H j ∈K for all j ∈ J
}

,

where (C7) and (C8) are given by:

(C7) there exist H ∈K and a 1-periodic a ∈L2 with a(x) ≥ η for all x ∈R2 and some η> 0 such
that

W (x,F ) = a(x)H(F );
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(C8) there exist Borel measurable functions H1, H2 :M3×3 → [0,∞] with{
H2 ∈K

H2 ≤ H1 ≤ γH2 for some γ> 1

such that
W (x,F ) =1E1 (x)H1(F )+1E2 (x)H2(F ),

where E1 is a 1-periodic open subset of R2 such that |∂E1| = 0 and E2 := R2 \ E1, with 1E1

and 1E2 denoting the characteristic functions of E1 and E2 respectively.

Due to the fact that any H ∈ K is compatible with (9), for every i ∈ {1,2,3}, any W ∈ Si is
compatible with (1). The following result was proved in [1, Lemmas 2.11, 2.16 and 2.21].

Proposition 12. The following inclusions hold: S1 ⊂I
p

per, S2 ⊂I
p

per and S3 ⊂J
p
per.

As a consequence of Theorem 1 and Proposition 12 we have

Corollary 13. If W ∈S1∪S2∪S3 then as ε→ 0, Eε in (3) Γ(π)-converges to E in (4) with W given
by (i), (ii) or (iii) in Theorem 1.
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