

Comptes Rendus Mathématique

Nguyen Van Phu

A note on the weighted log canonical threshold

Volume 361 (2023), p. 969-971

Published online: 7 September 2023

https://doi.org/10.5802/crmath.456

This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN: 1778-3569 **2023**, Vol. 361, p. 969-971 https://doi.org/10.5802/crmath.456

Complex analysis and geometry / Analyse et géométrie complexes

A note on the weighted log canonical threshold

Nguyen Van Phu^a

 a Faculty of Natural Sciences, Electric Power University, Hanoi, Vietnam E-mail: ltphudk@gmail.com

Abstract. In this paper, we introduce and study a set relative to singularities of plurisubharmonic functions. We prove that this set is countable under the condition h > 0 on $\mathbb{B} \setminus \{0\}$.

Mathematical subject classification (2010). 32U05, 32U15, 32U40, 32W20.

Manuscript received 28 October 2022, revised 11 December 2022, accepted 18 December 2022.

1. Introduction

Let Ω be a domain in $\mathbb{C}^n, z_0 \in \Omega$ and φ be a plurisubharmonic function on Ω (briefly, psh). Following Demailly and Kollár [3], we introduce the log canonical threshold of φ at z_0 :

$$c_{\varphi}(z_0) = \sup\{c > 0 : e^{-2c\varphi} \text{ is } L^1(dV_{2n}) \text{ on a neighborhood of } z_0\}, \tag{1}$$

where dV_{2n} denotes the Lebesgue measure of \mathbb{C}^n .

It is an invariant of the singularity of φ at z_0 . We refer the readers to [1, 2, 4–7, 9, 10] for further information and applications to this number.

For every non-negative Radon measures μ on a neighbourhood of $z_0 \in \mathbb{C}^n$. Following Pham in [8], we introduce the weighted log canonical threshold of φ with weight μ at z_0 to be:

$$c_{\mu,\varphi}(z_0) = \sup \left\{ c > 0 : \exists \ r > 0 , \int_{\mathbb{R}(0,r)} e^{-2c\varphi(z+z_0)} d\mu(z) < +\infty \right\}. \tag{2}$$

In the case if $\mu = h dV_{2n}$ where $h \in L^1(dV_{2n}), h > 0$ on $\mathbb{B} \setminus \{0\}, h \in L^{\infty}(\mathbb{B})$ then we introduce the weighted log canonical threshold of φ with weight μ at z_0 to be:

$$c_{hdV_{2n},\varphi}(z_0) = \sup \left\{ c > 0 : \exists \ r > 0 , \int_{\mathbb{B}(z_0,r)} e^{-2c\varphi(z)} h(z - z_0) dV_{2n}(z) < +\infty \right\}.$$
 (3)

From the definition of $c_{h\mathrm{d}V_{2n},\varphi}(z_0)$ and $c_{\varphi}(z_0)$, we have $c_{h\mathrm{d}V_{2n},\varphi}(z_0) \geq c_{\varphi}(z_0)$. In the paper, we study properties of the set $E_{h,\varphi} = \{z \in \Omega : c_{h\mathrm{d}V_{2n},\varphi}(z) > c_{\varphi}(z)\}$. The main result of the paper prove that the set $E_{h,\varphi}$ is a countable set.

2. Main Theorem

Theorem 1. If $h \in L^1(dV_{2n}), h > 0$ on $\mathbb{B} \setminus \{0\}, h \in L^{\infty}(\mathbb{B})$ then

$$E_{h,\omega} = \{z \in \Omega : c_{hdV_{2n},\omega}(z) > c_{\omega}(z)\}$$

is a countable set.

Proof. We have

$$E_{h,\varphi} = \cup_{c \in \mathbb{Q}} \{ z \in \Omega : c_{\varphi}(z) < c < c_{hdV_{2n},\varphi}(z) \}.$$

It means that we need to prove the following set

$$E_{c,h,\varphi} = \{ z \in \Omega : c_{\varphi}(z) < c < c_{hdV_{2n},\varphi}(z) \}$$

is a countable set. Indeed, let $z_0 \in E_{c,h,\varphi}$. We have

$$c_{\varphi}(z_0) < c < c_{hdV_{2n},\varphi}(z_0).$$

Since $c < c_{hdV_{2n},\varphi}(z_0)$ we can find r > 0 such that

$$\int_{\mathbb{B}(z_0,r)} e^{-2c\varphi(z)} h(z-z_0) \mathrm{d}V = \int_{\mathbb{B}(0,r)} e^{-2c\varphi(z+z_0)} h(z) \mathrm{d}V_{2n} < +\infty.$$

Since h > 0 on $\mathbb{B}(0,r) \setminus \{0\}$ (h(0) = 0), we have $\forall w \in \mathbb{B}(z_0,r) \setminus \{z_0\}$ there exists $\delta > 0$ such that $\mathbb{B}(w,\delta) \subset \mathbb{B}(z_0,r) \setminus \{z_0\}$ and

$$\int_{\mathbb{B}(0,\delta)} e^{-2c\varphi(z+w)} \mathrm{d}V_{2n}(z) < +\infty.$$

We obtain that $c_{\varphi}(z) > c$, $\forall w \in \mathbb{B}(z_0, r) \setminus \{z_0\}$. Thus, if $z_0 \in E_{c,h,\varphi}$ then

$$E_{c,h,\omega} \cap \mathbb{B}(z_0,r) \setminus \{z_0\} = \varnothing.$$

So we have $E_{c,h,\omega}$ is a countable set. From

$$E_{h,\varphi} = \bigcup_{c \in \mathbb{O}} E_{c,h,\varphi}$$

we have $E_{h,\varphi}$ is a countable set.

The following proposition shows a corollary of main theorem.

Corollary 2. Let Ω be a domain of \mathbb{C}^n and $f:\Omega \longrightarrow \mathbb{C}$ be a holomorphic function. Assuming that $h \in L^1(dV_{2n}), h > 0 \text{ on } \mathbb{B} \setminus \{0\}, h \in L^{\infty}(\mathbb{B}). \text{ Then }$

$$E_{h,\log|f|} \subset \{z \in \Omega : f = 0\}_{\text{sing}},$$

where $\{z \in \Omega : f = 0\}_{sing}$ is the singularities of the hypersurface $\{z \in \Omega : f = 0\}$.

Proof. By Theorem 1, we have $E_{h,\log|f|}$ is a countable subset of $\{z \in \Omega : f = 0\}$. Take $z_0 \in \{z \in \Omega : f = 0\}$. f = 0_{reg}. We only need to prove that $z_0 \notin E_{h,\log|f|}$. Indeed, we have $f(z) = h^m$ in a neighborhood of the point z_0 , where $\{z \in \Omega : f = 0\}$ defined locally at the point z_0 by h. On the other hand, from the proof of Theorem 1 we have

$$c_{\varphi}(z_0) \leq c_{hdV_{2n},\varphi}(z_0) \leq \lim_{r \to 0} \min\{c_{\varphi}(z) : z \in \mathbb{B}(z_0,r) \setminus \{z_0\}\}.$$

Therefore

$$c_{\log|f|}(z_0) = c_{hdV_{2n},\log|f|}(z_0) = \frac{1}{m}.$$

This implies that $z_0 \not\in E_{h,\log|f|}$.

Example. We choose $f(z) = z_1^{m_1} + \dots + z_n^{m_n}$ and $h(z) = ||z||^{2t}$ (t > 0). Then

- (1) $E_{h,\log|f|} = \{0\} \text{ if } \sum_{j=1}^{n} \frac{1}{m_j} < 1.$ (2) $E_{h,\log|f|} = \emptyset \text{ if } \sum_{j=1}^{n} \frac{1}{m_i} \ge 1.$

971 Nguyen Van Phu

References

- [1] J.-P. Demailly, "Monge-Ampère operators, Lelong Numbers and Intersection theory", in Complex analysis and geometry, The University Series in Mathematics, Plenum Press, 1993, p. 115-193.
- [2] J.-P. Demailly, P. H. Hiệp, "A sharp lower bound for the log canonical threshold", Acta Math. 212 (2014), no. 1, p. 1-9.
- [3] J.-P. Demailly, J. Kollár, "Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds", Ann. Sci. Éc. Norm. Supér. 34 (2001), no. 4, p. 525-556.
- [4] T. de Fernex, L. Ein, M. Mustață, "Bounds for log canonical thresholds with applications to birational rigidity", Math. Res. Lett. 10 (2003), no. 2-3, p. 219-236.
- [5] ______, "Shokurov's ACC Conjecture for log canonical thresholds on smooth varieties", Duke Math. J. 152 (2010), no. 1, p. 93-114.
- [6] L. M. Hai, P. H. Hiệp, T. Tung, "Estimates of level sets of holomorphic functions and applications to the weighted log canonical thresholds", J. Geom. Anal. (2021), p. 3783-3819.
- [7] P. H. Hiệp, "A comparison principle for log canonical threshold", C. R. Acad. Sci. Paris 351 (2013), no. 11-12, p. 441-
- [8] ——, "The weighted log canonical threshold", *C. R. Acad. Sci. Paris* **352** (2014), no. 4, p. 283-288. [9] ——, "Continuity properties of certain weighted log canonical thresholds", *C. R. Acad. Sci. Paris* **355** (2017), no. 1, p. 34-39.
- [10] ______, "Log canonical thresholds and Monge-Ampère masses", Math. Ann. 370 (2018), no. 1-2, p. 556-566.