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Examples of non-flat bundles of rank one

Exemples de fibrés en droites qui ne sont pas plats
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Abstract. It is expected that there exist line bundles on a quasi-affine non-singular surface which do not admit
a flat connection. However, to the best of our knowledge there is no known example of such a line bundle.
In this article we give several explicit examples of line bundles on certain non-singular, quasi-affine surfaces
that cannot be equipped with a flat connection.

Résumé. On s’attend à ce qu’il existe des fibrés en droites sur une surface non-singulière quasi-affine qui
n’admettent pas de connexion plate mais, à notre connaissance, aucun exemple d’un tel fibré n’est connu.
Dans cet article, nous en donnons plusieurs exemples explicites.
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1. Introduction

Existence of connections on modules defined over isolated surface singularities have been exten-
sively studied (see [1, 3–6]). However, in these literatures the authors stress that they cannot pro-
duce a single example of a maximal Cohen–Macaulay (MCM) module over a surface singularity
that does not admit a flat connection (see [5, p. 106], [4, p. 1562], [1, p. 903]), even with the help
of a computer (see [3, p. 322]). By flat connection, we mean a connection with zero curvature. In
this article we produce numerous examples of maximal Cohen–Macaulay modules over certain
isolated surface singularities that cannot be equipped with a flat connection. In particular, we
prove:
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Theorem 1. Let (X , x) be the germ of a normal surface singularity such that the fundamental
group of the link is perfect. Suppose that (X , x) contains a smooth curve passing through x. Then,
there exists a line bundle on X \ {x} that cannot be equipped with a flat connection. Moreover, one
can associate to any such smooth curve (i.e., passing through x), an unique (up to isomorphism)
line bundle on X \ {x} that cannot be equipped with a flat connection.

Note that, given a line bundle L on X \ {x}, the pushforward i∗L is a reflexive sheaf on
X , where i is the inclusion of X \ {x} into X (see [7, Proposition 1.6]). Furthermore, if X is a
normal, integral surface, then reflexive sheaves on it are maximal Cohen–Macaulay. Therefore,
as a corollary we produce explicit examples of maximal Cohen–Macaulay modules that cannot
be equipped with a flat connection.

Corollary 2. Let (p, q,r ) be a triple of positive integers that are pairwise coprime and r > pq.
Denote by G(p, q,r ) the surface in C3 defined by the polynomial X p +Y q + Z r and by U (p, q,r )
the regular locus of G(p, q,r ). Then, there exists line bundles on U (p, q,r ) that cannot be equipped
with a flat connections.

The study of the obstruction to the existence of flat connection on MCM modules has appli-
cations in Lie–Rinehart cohomology (see [6]) and Chern–Simmons theory (see [1]).
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2. Example of non-flat invertible sheaves

We give examples of rank 1 invertible sheaves which cannot be equipped with a flat connection.
We will assume familiarity with reflexive sheaves. See [7] for basic properties of reflexive sheaves.

2.1. Brieskorn–Pham surfaces

Given positive integers (p, q,r ), denote by G(p, q,r ) ⊂ C3 the zero locus of the polynomial
X p +Y q + Z r . The resulting surface is the Brieskorn–Pham type surface. The origin 0 is the only
singularity of the surface. Denote by

S := {C ⊂G(p, q,r ) |C is a non-singular curve passing through the origin 0}.

The following theorem proves the existence of smooth curves through the singularity of G(p, q,r ).

Theorem 3. Assume (p, q,r ) = 1 and p ≤ q ≤ r . Then, S ̸= ; if and only if at least one of the
following conditions hold:

(1) two of the three integers (p, q,r ) are coprime and the other one is divisible by at least one
of the two coprime numbers,

(2) the inequality r > pq/gcd(p, q) holds.

Proof. See [8, Theorem 3]. □
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2.2. Proof of Theorem 1

Denote by U the regular locus of (X , x), i.e. U = X \ {x}. Note that the fundamental group π1(U )
is the same as the fundamental group of the link L of (X , x). By hypothesis, the fundamental
group of L is perfect. This means that the abelianization π1(U )ab of the fundamental group
π1(U ) is trivial. Since GL1(C) = C∗ is abelian, any 1-dimensional group representation of π1(U )
factors through π1(U )ab, which is trivial. Therefore, every 1-dimensional representation of π1(U )
is trivial. By the Riemann–Hilbert correspondence, this implies that there does not exist any non-
trivial line bundle on U that can be equipped with a flat connection. Therefore, it suffices to show
the existence of non-trivial line bundles on U .

By hypothesis, there exists C ⊂ X a smooth curve contained in the surface X passing through
the singular point. Denote by I C the ideal sheaf of C . We now show that the restriction MU

of M := H omX (I C ,O X ) to U is a non-trivial line bundle. Indeed, MU is trivial if and only if
i∗(MU ) ∼= M is trivial (M is reflexive, and reflexive sheaves are uniquely determined by their
restriction to the open subset U ), where i : U → X is the natural inclusion. Furthermore, since
M is a reflexive module, M is trivial if and only if M∨ is trivial (double dual of a reflexive module
is isomorphic to itself). Consider the short exact sequence:

0 −→I C −→O X −→OC −→ 0 (1)

By the depth comparison in exact sequences (see [2, Proposition 1.2.9]), we have that I C is a
reflexive O X -module. This implies that

M∨ ∼=I∨∨
C

∼=I C .

This implies, MU is trivial if and only if I C is trivial. By (1), I C is trivial if and only if C is a Cartier
divisor. So, it suffices to show that C is a Weil divisor which is not Cartier.

We prove this by contradiction. In particular, suppose that C is a Cartier divisor. We are going
to give a contradiction to the non-smoothness of X . Let f ∈ O X be a function defining C (the
existence of f is guaranteed as C is Cartier) and m (resp. m′) the maximal ideal of O X (resp.
O X /( f )). We then have the following short exact sequence of O X -modules:

0 −→ ( f ) −→m−→m′ −→ 0. (2)

Since C is a smooth curve, the dimension as a complex vector space of m′/(m′)2 is one. Let c ′ ∈m′

be a generator of m′/(m′)2. By the surjectivity of (2), there exists an element c ∈m that is mapped
onto c ′. We will now show that m/(m)2 is generated as a C-vector space by f and c. Indeed, let g
be any element in m. If g maps to 0 in m′ then by the exact sequence (2), g =β f for some β ∈O X .
If g maps to a non-zero element in m′, then there exists α ∈ O X such that g −αc is mapped to
zero in m′. Hence by the exactness of (2), there exists β ∈ O X such that β f = g −αc. Therefore, g
is a O X -linear combination of f and c in both cases. Since g was arbitrary, this implies that the
dimension as a complex vector space of m/(m)2 is two (generated by f and c). But this will mean
X is smooth at the origin, which is a contradiction. Hence, C cannot by a Cartier divisor. This
proves the theorem. □

Proof of Corollary 2. Let (p, q,r ) be a triple of positive integers that are pairwise coprime. By [9,
p. 7], the link of (G(p, q,r ),0) is an integer homology sphere. Hence, the fundamental group of the
link is perfect. By Theorem 3 there exists a smooth curve in G(p, q,r ) passing through the origin.
The corollary then follows from Theorem 1. □

Example 4. Let f = x2+y3+z7. By Corollary 2, the hypersurface in C3 defined by f admits MCM
modules of rank one that cannot be equipped with a flat connection.
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