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Abstract. In this paper we are interested in the large time behavior of linear kinetic equations with heavy-
tailed local equilibria. Our main contribution concerns the kinetic Lévy–Fokker–Planck equation, for which
we adapt hypocoercivity techniques in order to show that solutions converge exponentially fast to the
global equilibrium. Compared to the classical kinetic Fokker–Planck equation, the issues here concern the
lack of symmetry of the non-local Lévy–Fokker–Planck operator and the understanding of its regularization
properties. As a complementary related result, we also treat the case of the heavy-tailed BGK equation.

Résumé. Dans cet article, on s’intéresse au comportement en temps long d’équations cinétiques linéaires
dont les équilibres locaux sont à queue lourde. Notre contribution principale concerne l’équation de Lévy–
Fokker–Planck cinétique, pour laquelle nous adaptons des techniques d’hypocoercivité afin de démontrer
la convergence exponentielle des solutions vers un équilibre global. En comparant au cas de l’équation de
Fokker–Planck cinétique classique, les enjeux ici sont liés au manque de symétrie de l’opérateur non-local
de Lévy–Fokker–Planck et à la compréhension de ses propriétés de régularisation. En complément de notre
analyse, nous traitons également le cas de l’équation de BGK à queue lourde.
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1. Introduction

We consider a distribution function f ≡ f (t , x, v) depending on time t ≥ 0, position x ∈ Td =
Rd /Zd and velocity v ∈Rd which satisfies the fractional kinetic Fokker–Planck equation

∂t f + v ·∇x f =∇v · (v f )− (−∆v )α/2 f . (1)

Here we assume α ∈ (0,2) and the fractional Laplacian −(−∆v )α/2 is such that for any Schwartz
function g : Rd → R, one has F ((−∆v )α/2g )(ξ) = |ξ|αF (g )(ξ) where F ( · ) denotes the Fourier
transform. There are many equivalent definitions of the fractional Laplacian (see [12]). Among
them we shall use

(−∆v )α/2g (v) =Cd ,αP.V.
∫
Rd

g (v)− g (w)

|v −w |d+α dw , (2)

where P.V. stands for the principal value and the constant is given by Cd ,α =
2αΓ( d+α

2 )/(πd/2|Γ(−α
2 )|) where Γ( · ) is the Gamma function. In the following we drop the

principal value in the notations. We denote the Lévy–Fokker–Planck operator appearing on the
right-hand side of (1) by

Lαg =∇v · (v g )− (−∆v )α/2g .

By passing to Fourier variables one has F (Lαg )(ξ) =−ξ ·∇ξ ĝ (ξ)−|ξ|α ĝ (ξ), where ĝ =F (g ). From
this formula, one sees that the function

µα(v) = Z−1
d ,αF−1

(
e−|ξ|

α/α
)

with Zd ,α chosen such that
∫
µα = 1 is a probability distribution such that Lαµα = 0. Observe that

away from the origin, the Fourier transform of µα is smooth and rapidly decaying at infinity. The
singularity at ξ = 0 behaves like |ξ|α at principal order which yields that µα(v) should decay as
|v |−α−d when |v | → ∞. Actually, one has the following more precise bounds coming from [4,
Theorem 3.1] and references in the proof (see also the references in [1]). There are positive
constants C1 =C1(α,d) > 0 and C2 =C2(α,d) > 0 such that for all v ∈Rd one has

C−1
1 ≤ (|v |d+α+1)µα(v) ≤C1 , (3)

and
C−1

2 |v | ≤ (|v |2+d+α+1)|∇vµα(v)| ≤C2|v | . (4)

In the following, given some measurable non-negative function ν ≡ ν(v) we denote by L2
v (ν)

and L2
x,v (ν) the spaces of measurable functions g of respectively the v and the (x, v) variables such

that |g |2ν is integrable. We endow these spaces with their canonical scalar product and norm. We
also introduce the corresponding Sobolev space H 1

x,v (ν) associated with the norm

‖g‖2
H 1

x,v (ν)
= ‖g‖2

L2
x,v (ν)

+‖∇x g‖2
L2

x,v (ν)
+‖∇v g‖2

L2
x,v (ν)

.

Finally given an integrable function g , we denote 〈g 〉 =Î
Td×Rd g (x, v)dv dx the global mass of g .

The main result of this paper is the following.

Theorem 1. Let f solve the kinetic Lévy–Fokker–Planck equation (1) with initial data f in ∈
H 1

x,v (µ−1
α ). Then, for all t ≥ 0 one has

‖ f (t )−〈 f in〉µα‖H 1
x,v (µ−1

α ) ≤C ‖ f in −〈 f in〉µα‖H 1
x,v (µ−1

α ) e−λt

for some constant C ≥ 1 and λ> 0 depending only on d and α.

Let us mention that these results have been obtained as a preliminary step towards the con-
ception and analysis of numerical schemes preserving the long-time behavior of these equations.
This topic is an ongoing work [2] in the spirit of what has previously been done in [3] and [8] in the
case of the classical Fokker–Planck equation. The compatibility of our schemes with anomalous
diffusion limit will also be investigated (see [7] for more details).
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Before going into the analysis of our problem, let us recall that results on large time behavior
of solutions to the homogeneous version of (1), namely ∂t f (t , v) = Lα f (t , v), have been obtained
in [9] in spaces of type L2

v (µ−1
α ) (among others) and later in [13] in larger Lebesgue spaces.

Notice that the presence of the transport operator in our equation (1) makes the analysis more
intricate and requires the use of hypocoercivity techniques. In the present note, we use H 1 type
hypocercivity as presented in [14] or [10] for example. Note also that fractional hypocoercivity
has already been studied recently in [5] where a L2-hypocoercivity approach is developed. In
this sense, their framework is quite different, note however that it is also more general than ours
(in terms of phase space and linear operators). Their results in particular imply an exponential
convergence towards equilibrium in the torus in L2 for our models.

In the same spirit of our work, let us also mention the paper [11] in which some hypoelliptic
estimates are obtained on the non homogeneous fractional Kolmogorov equation (there is no
drift term in the studied equation). The method of proof is quite close (based on the use of
weighted Lyapunov functional) but the final goal is different in the latter since the main concern
is about regularization properties of the equation and not convergence towards the equilibrium.

In the present study we focus on a good understanding of the structure of the Lévy–Fokker–
Planck operator since we endeavour to carry out our computations as simply as possible in order
to adapt our analysis to a discrete framework in [2]. In particular let us point out that we do not
need fractional derivatives in our Lyapunov functionals and our proof does not rely on Fourier
transform. In this sense our method differs completely from that of [11] and the recent [5] in
which a mode by mode analysis is developed.

Outline of the note. From Section 2 to Section 4, we carry out the analysis of the properties of the
Lévy–Fokker–Planck operator that will be useful for proving our main result. Then, the proof of
Theorem 1 is done in Section 5. In the last section we state and prove the equivalent of Theorem 1
for the BGK equation with heavy-tailed equilibrium.

Notation. For simplicity, in the subsequent proofs, we denote by C a positive constant depend-
ing only on fixed numbers (including d and α) and its value may change from line to line.

2. The Lévy–Fokker–Planck operator as bilinear form

The following quite simple decomposition is actually one of the key elements of our hypocoercive
analysis carried out in Section 5. Compared to the non-fractional case, we here have a lack of
symmetry of our operator in L2

v (µ−1
α ) and the following splitting is very helpful to simplify the

computations. Moreover, in the non-fractional case, there is a gain of weight in velocity which
comes from the particular form of the gradient of the Gaussian equilibrium. Even though we no
longer have such a gain in our case, we are still able to close our estimates thanks to the following
splitting.

Proposition 2. One has the decomposition

−〈Lα f , g 〉L2
v (µ−1

α ) =Sv ( f , g ) + Av ( f , g ) ,

where Sv and Av are bilinear forms that are respectively symmetric and skew-symmetric and
defined by

Sv ( f , g ) = Cd ,α

2

Ï
Rd×Rd

[
( f µ−1

α )(v)− ( f µ−1
α )(w)

][
(gµ−1

α )(v)− (gµ−1
α )(w)

]
|v −w |d+α µα(v)dw dv ,

C. R. Mathématique, 2020, 358, n 3, 333-340
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and

Av ( f , g ) = Cd ,α

2

Ï
Rd×Rd

( f µ−1
α )(w)(gµ−1

α )(v)− ( f µ−1
α )(v)(gµ−1

α )(w)

|v −w |d+α µα(v)dw dv

+ 1

2

∫
Rd

( f v ·∇v (gµ−1
α ) − g v ·∇v ( f µ−1

α ))dv ,

where Cd ,α is defined in (2).

We skip the proof of this proposition since it is based on simple computations using the
formula (2), integration by parts and the fact that Lαµα = 0.

Observe that a direct consequence of the Cauchy–Schwarz inequality is

Sv ( f , g ) ≤Sv ( f , f )1/2 Sv (g , g )1/2 , (5)

for f , g ∈ D(Lα). Moreover, the symmetric form Sv is non-negative and Sv ( f , f ) vanishes when
f µ−1

α is constant. This yields that the nullspace of Lα is exactly given by Rµα. From there the
orthogonal projectionΠ onto the nullspace of Lα is given by

(Πg )(v) =
(∫
Rd

g (w)dw

)
µα(v) .

3. Coercivity results for the Lévy–Fokker–Planck operator

One has the following coercivity result taken from [9, Theorem 2] and originating from [6]. While
the previous references derive the inequality via a semigroup approach, let us mention that an
elementary analytical proof is given by Wang [15] and came to our attention thanks to [5].

Lemma 3 ( [6], [9], [15]. . . ). There is a constant CP ≡CP (α,d) > 0 such that for all f ∈ D(Lα),

‖ f −Π f ‖2
L2

v (µ−1
α )

≤CP Sv ( f , f ) . (6)

We now show that the dissipation Sv ( f , f ) also provides some fractional Sobolev regularity.
We introduce the fractional Sobolev space H s

v with s ∈ (0,1) with norm defined by ‖ · ‖2
H s

v
=

‖ · ‖2
L2

v
+ ‖ · ‖2

Ḣ s
v

where the homogeneous Sobolev norm is given by ‖g‖2
Ḣ s

v
:= ‖(−∆)s/2g‖2

L2
v

. One

can prove that there exists a positive constant C̃d ,s such that

‖g‖2
Ḣ s

v
= C̃d ,s

Ï
Rd×Rd

| f (v)− f (w)|2|v −w |−(d+2s) dw dv . (7)

Lemma 4. There exists CR ≡CR (α,d) > 0 such that for all f ∈ D(Lα),

Sv ( f , f ) ≥C−1
R

(
‖ f µ−1/2

α ‖2
Ḣα/2

v
−‖ f µ−1/2

α ‖2
L2

v

)
.

Proof. Using that (a +b)2 ≥ a2/2−b2, we have

Sv ( f , f ) ≥ Cd ,α

2

Ï
|v−w |≤1

|(µ−1
α f )(v)− (µ−1

α f )(w)|2
|v −w |d+α µα(v)dw dv ≥ Cd ,α

2

(1

2
I1 − I2

)
.

The first term is

I1 =
Ï

|v−w |≤1

|(µ−1/2
α f )(v)− (µ−1/2

α f )(w)|2
|v −w |d+α dw dv

= C̃−1
d , α2

‖µ−1/2
α f ‖2

Ḣα/2
v

−
Ï

|v−w |≥1

|(µ−1/2
α f )(v)− (µ−1/2

α f )(w)|2
|v −w |d+α dw dv

≥ C̃−1
d , α2

‖µ−1/2
α f ‖2

Ḣα/2
v

−C‖µ−1/2
α f ‖2

L2
v
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where C̃d , α2
is defined in (7) and for the last inequality, we used the integrability of |v −

w |−d−α1|v−w |≥1, once in v and once in w . The second term is

I2 =
Ï

|v−w |≤1

|µ1/2
α (v)−µ1/2

α (w)|2
|v −w |d+α | f (w)|2|µ−1

α (w)|2 dw dv .

To treat I2, we use Taylor formula to write

I2 =
Ï

|w |≤1

∣∣∣∫ 1
0 ∇(µ1/2

α )(v −θw) ·w dθ
∣∣∣2

|w |d+α µ−1
α (v −w)| f (v −w)µ−1/2

α (v −w)|2 dw dv .

Performing now the changes of variables v → v −θw and then θ→ 1−θ, we get:

I2 ≤
Ï

|w |≤1

∫ 1

0

|∇(µ1/2
α )(v)|2

|w |d+α−2
µ−1
α (v −θw)| f (v −θw)µ−1/2

α (v −θw)|2 dθdw dv .

Notice that, using (3) and since |w | ≤ 1, we have µ−1
α (v −θw) ≤C (1+|v |d+α). Then, using (4), one

can prove that |∇(µ1/2
α )(v)|2µ−1

α (v −θw) ≤C . Consequently, we obtain

I2 ≤C
Ï

|w |≤1

∫ 1

0

1

|w |d+α−2
| f (v −θw)µ−1/2

α (v −θw)|2 dθdw dv

and thus performing a change of variable I2 ≤C‖ f µ−1/2
α ‖2

L2
v

. This ends the proof. �

Proposition 5. There is CF ≡CF (α,d) such that for all f ∈ D(Lα),

‖( f −Π f )µ−1/2
α ‖2

Hα/2
v

≤CF Sv ( f , f ) . (8)

Proof. Let us now summarize the estimates that we have obtained in the two previous lemmas.
We have Sv ( f , f ) ≥C−1

P ‖ f −Π f ‖2
L2

v (µ−1
α )

and Sv ( f , f ) ≥C−1
R

(‖ f µ−1/2
α ‖2

Ḣα/2
v

−‖ f µ−1/2
α ‖2

L2
v

)
. Moreover,

one can notice that Sv ( f , f ) = Sv ( f −Π f , f −Π f ). As a consequence, an appropriate convex
combination of the two previous inequalities shows (8). �

4. An interpolation inequality

In this section we prove an interpolation result which is crucial in the proof of Theorem 1.

Proposition 6. For all ε> 0, there is K (ε) ≡ K (ε,α,d) > 0 such that

‖∇v f ‖2
L2

v (µ−1
α )

≤ K (ε)
(
Sv ( f , f ) + ‖Π f ‖2

L2
v (µ−1

α )

)
+ εCF Sv (∇v f ,∇v f ) (9)

where the constant CF is defined in Proposition 5.

Proof. One can use the chain rule and an interpolation of Ḣ 1
v between Ḣα/2

v and Ḣ 1+α/2
v (easily

shown in Fourier variables) to get

‖(∇v f )µ−1/2
α ‖2

L2
v
≤ 2‖∇v ( f µ−1/2

α )‖2
L2

v
+2‖ f (∇vµ

−1/2
α )‖2

L2
v

≤ K (ε)‖ f µ−1/2
α ‖2

Ḣα/2
v

+ε‖∇v ( f µ−1/2
α )‖2

Ḣα/2
v

+2‖ f (∇vµ
−1/2
α )‖2

L2
v

≤ K (ε)‖ f µ−1/2
α ‖2

Hα/2
v

+ε‖(∇v f )µ−1/2
α ‖2

Hα/2
v

+C ‖ f µ−1/2
α ‖2

L2
v

≤ K (ε)‖ f µ−1/2
α ‖2

Hα/2
v

+ε‖(∇v f )µ−1/2
α ‖2

Hα/2
v

up to changing the value of K (ε) and where we used the fact that |(∇vµα)µ−1
α | ∈ L∞(Rd ) to bound

the third term. Now observe that

‖ f µ−1/2
α ‖2

Hα/2
v

≤ 2
(
‖( f −Π f )µ−1/2

α ‖2
Hα/2

v
+‖(Π f )µ−1/2

α ‖2
Hα/2

v

)
,

and that ‖(Π f )µ−1/2
α ‖Hα/2

v
= ‖Π f ‖L2

v (µ−1
α )‖µ1/2

α ‖Hα/2
v

with ‖µ1/2
α ‖Hα/2

v
≤ C since µ1/2

α ∈ H 1
v from (3)

and (4). Moreover, one has ∇v f =∇v f −Π∇v f . One can conclude by using (8) twice. �
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5. Proof of Theorem 1

Up to changing f in by f in−〈 f in〉µα, we assume that
Î
Td×Rd f (t , x, v)dv dx = 0 at t = 0, so that by

conservation it also holds for all time t > 0. We introduce a new norm on the weighted Sobolev
space H 1

x,v (µ−1
α ). It is defined by

� f �2 = ‖ f ‖2
L2

x,v (µ−1
α )

+ a‖∇x f ‖2
L2

x,v (µ−1
α )

+ b ‖∇v f ‖2
L2

x,v (µ−1
α )

+2c 〈∇x f ,∇v f 〉L2
x,v (µ−1

α ) , (10)

where a, b and c are positive constants to be determined later on. Observe that as soon as c2 < ab,
one has that � · � is equivalent to ‖ · ‖H 1

x,v (µ−1
α ). Let us note that the commutators [∇x , v · ∇x ] and

[∇x ,Lα] vanish while [∇v , v ·∇x ] =∇x and [∇v ,Lα] =∇v . Also observe that v ·∇x is skew-symmetric
in L2

x,v (µ−1
α ). Let us estimate the evolution of each term appearing in the new norm defined in (10)

for f a solution of (1) with initial data f i n satisfying 〈 f i n〉 = 0. In the following the notation Sx,v

denotes the integral of Sv in the x variable. One has

1

2

d

dt
‖ f ‖2

L2
x,v (µ−1

α )
=−Sx,v ( f , f ) ,

1

2

d

dt
‖∇x f ‖2

L2
x,v (µ−1

α )
=−Sx,v (∇x f ,∇x f ) ,

1

2

d

dt
‖∇v f ‖2

L2
x,v (µ−1

α )
=−Sx,v (∇v f ,∇v f )+ ‖∇v f ‖2

L2
x,v (µ−1

α )
− 〈∇x f ,∇v f 〉L2

x,v (µ−1
α ) ,

d

dt
〈∇x f ,∇v f 〉L2

x,v (µ−1
α ) =−‖∇x f ‖2

L2
x,v (µ−1

α )
−2Sx,v (∇x f ,∇v f )+〈∇x f ,∇v f 〉L2

x,v (µ−1
α ) .

Notice here that the keystone of the proof of the last equality is the splitting obtained in Propo-
sition 2 and the Hilbertian setting. Indeed given any g = e tLαg0 and operators A and B , one
has formally that d

dt 〈Ag ,B g 〉 = 〈[A,Lα]g ,B g 〉+〈Ag , [B ,Lα]g 〉−2Sx,v (Ag ,B g ). Therefore the skew
symmetric part of the operator Lα only appears in commutators. This observation enables us
to avoid loss of moments in velocities in forthcoming estimates which one would face with bad
rearrangements of the terms. By gathering all the previous estimates one gets

1

2

d

dt
� f �2 =−Sx,v ( f , f )−aSx,v (∇x f ,∇x f )−bSx,v (∇v f ,∇v f )− c‖∇x f ‖2

L2
x,v (µ−1

α )

+b‖∇v f ‖2
L2

x,v (µ−1
α )

− b〈∇x f ,∇v f 〉L2
x,v (µ−1

α )

−2c Sx,v (∇x f ,∇v f )+ c〈∇x f ,∇v f 〉L2
x,v (µ−1

α ) .

The first four terms are dissipation terms and the last four terms are remainder terms. Let us
control the latter by the former ones. By integrating (5) in x and using Young’s inequality one gets∣∣2c Sx,v (∇x f ,∇v f )

∣∣≤ 2c2

b
Sx,v (∇x f ,∇x f )+ b

2
Sx,v (∇v f ,∇v f ) .

Then since
∫ ∇v f dv = 0, one has

b
∣∣∣〈∇x f ,∇v f 〉L2

x,v (µ−1
α )

∣∣∣= b
∣∣∣〈∇x f −Π(∇x f ),∇v f 〉L2

x,v (µ−1
α )

∣∣∣
≤ b C 1/2

P Sx,v (∇x f ,∇x f )1/2‖∇v f ‖L2
x,v (µ−1

α )

≤ b CP

2
Sx,v (∇x f ,∇x f )+ b

2
‖∇v f ‖2

L2
x,v (µ−1

α )
,

where we used (6). Similarly

c
∣∣∣〈∇x f ,∇v f 〉L2

x,v (µ−1
α )

∣∣∣≤ c2CP

2b
Sx,v (∇x f ,∇x f )+ b

2
‖∇v f ‖2

L2
x,v (µ−1

α )
.

For the last remainder term we use (9) integrated in x, namely

‖∇v f ‖2
L2

x,v (µ−1
α )

≤ K (ε)
(
Sx,v ( f , f ) + ‖Π f ‖2

L2
x,v (µ−1

α )

)
+ εCF Sx,v (∇v f ,∇v f ) .
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We can use the Poincaré inequality on the torus (since f is mean-free) and the Jensen inequality
to get ‖Π f ‖2

L2
x,v (µ−1

α )
≤ C̃P‖∇x f ‖2

L2
x,v (µ−1

α )
where C̃P ≡ C̃P (d) is the Poincaré constant of the d-

dimensional torus. Thus eventually, one has

1

2

d

dt
� f �2 +D( f , f ) ≤ 0, (11)

where the dissipation is given by

D( f , f ) = (1−2b K (ε))Sx,v ( f , f ) +
(

a − c2

b

(
2+ CP

2

)
− bCP

2

)
Sx,v (∇x f ,∇x f )

+
(

b

2
−2bεCF

)
Sx,v (∇v f ,∇v f )+ (

c −2bC̃P K (ε)
) ‖∇x f ‖2

L2
x,v (µ−1

α )
.

Now choose consecutively ε,b,c and a such that 0 < ε < 1/(4CF ), 0 < b < 1/(2K (ε)), c >
2bC̃P K (ε) and finally a large enough so that a > c2 (2+CP /2)/b + bCP /2. It yields that the
dissipation is non-negative and even that there is a constant λ > 0 (depending on a,b,c,ε) such
that D( f , f ) ≥ λ� f �2. By a Gronwall type argument we have that � f (t )� decays exponentially to
0 when t →∞. �

6. The case of the heavy-tailed BGK equation

In this last section we consider another simple kinetic model

∂t f + v ·∇x f =ΠM f − f , with (ΠM f )(t , x, v) = M(v)
∫
Rd

f (t , x, w)dw , (12)

for which the local equilibrium satisfies the following assumptions

M(v) > 0,
∫
Rd

M = 1, and ∇v ln(M) ∈ L∞ . (13)

This allows for heavy-tailed distributions, namely M such that M(v) ∼|v |→∞ |v |−d−α with α ∈
(0,2).

Theorem 7. Assume that (13) holds and let f solve the BGK equation (12) starting from the initial
data f in ∈ H 1

x,v (M−1). Then, for all t ≥ 0 one has

‖ f (t )−〈 f in〉M‖H 1
x,v (M−1) ≤C ‖ f in −〈 f in〉M‖H 1

x,v (M−1) e−λt

for some constant C ≥ 1 and λ> 0 depending only on d and ‖∇v ln(M)‖L∞ .

The proof is similar and simpler than that of Theorem 1. We skip many details as the reader
may go back to the proof of Theorem 1 in order to recover them.

Proof of Theorem 7. Consider f a solution to (12) with initial data f i n satisfying 〈 f i n〉 = 0. Let
us observe that the commutators [∇x , v · ∇x ] and [∇x ,ΠM ] vanish while [∇v , v · ∇x ] = ∇x and
also [∇v ,ΠM ] =∇v ln(M)ΠM . Now with this in mind, and defining the triple norm of f as in (10)
with µα replaced by M , one gets

1

2

d

dt
� f �2 =−‖ f −ΠM f ‖2

L2
x,v (M−1)

−a‖∇x f −ΠM∇x f ‖2
L2

x,v (M−1)
−b‖∇v f ‖2

L2
x,v (M−1)

−c‖∇x f ‖L2
x,v (M−1)

+b〈∇v ln(M)ΠM f ,∇v f 〉L2
x,v (M−1) − b〈∇x f ,∇v f 〉L2

x,v (M−1)

−2c〈∇x f ,∇v f 〉L2
x,v (M−1) + c〈∇v ln(M)ΠM f ,∇x f 〉L2

x,v (M−1) .

First, we notice that 〈∇x f ,∇v f 〉L2
x,v (M−1) = 〈∇x f −ΠM∇x f ,∇v f 〉L2

x,v (M−1) to deal with the third and
fourth remainder terms with Cauchy–Schwarz inequality. The last remainder term requires some
special care. Indeed, observe that since 〈∇v ln(M)ΠM f ,ΠM g 〉 vanishes for any g , one thus has

〈∇v ln(M)ΠM f ,∇x f 〉L2
x,v (M−1) ≤ ‖∇v ln(M)‖L∞ ‖ΠM f ‖L2

x,v (M−1) ‖∇x f −ΠM∇x f ‖L2
x,v (M−1) .
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We also have that

〈∇v ln(M)ΠM f ,∇v f 〉L2
x,v (M−1) ≤ ‖∇v ln(M)‖L∞ ‖ΠM f ‖L2

x,v (M−1) ‖∇v f ‖L2
x,v (M−1) .

Finally, we recall that ‖ΠM f ‖L2
x,v (M−1) ≤ C̃P ‖∇x f ‖L2

x,v (M−1) with C̃P the Poincaré constant of the
d-dimensional torus. Then using four times Young’s inequality with well chosen weights, one
obtains (11) with the dissipation

D( f , f ) = ‖ f −ΠM f ‖2
L2

x,v (M−1)
+ (

a −b −4c2/b −CM c/2
)‖∇x f −ΠM∇x f ‖2

L2
x,v (M−1)

+ (b −b/4−b/4−b/4)‖∇v f ‖2
L2

x,v (M−1)
+ (c −bCM − c/2)‖∇x f ‖L2

x,v (M−1)

with CM = ‖∇v ln(M)‖2
L∞C̃ 2

P . One concludes as in Theorem 1 after choosing any b > 0, c > 2b CM

and finally a > 4c2/b +b +Cd ,M c/2. �
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