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Abstract. In this paper, we consider a general single species model in a heterogeneous environment of n
patches (n ≥ 2), where each patch follows a generalized logistic law. First, we prove the global stability of the
model. Second, in the case of perfect mixing, i.e. when the migration rate tends to infinity, the total population
follows a generalized logistic law with a carrying capacity which in general is different from the sum of the
n carrying capacities. Next, we give some properties of the total equilibrium population and we compute its
derivative at no dispersal. In some particular cases, we determine the conditions under which fragmentation
and migration can lead to a total equilibrium population which might be greater or smaller than the sum of
the n carrying capacities. Finally, we study an example of two-patch model where the first patch follows a
logistic law and the second a Richard’s law, we give a complete classification of the model parameter space as
to whether dispersal is beneficial or detrimental to the sum of two carrying capacities.
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1. Introduction

The simplest realistic model of population dynamics is the one with exponential growth

dx

dt
= r x,

where r is the intrinsic growth rate. To remove unrestricted growth, Verhulst [39] considered that
a stable population would have a saturation level characteristic of the environment. To achieve
this the exponential model was augmented by a multiplicative factor 1− x

K , which represents the
fractional deficiency of the current size from the saturation level K . In Lotka’s analysis [29] of the
logistic growth concept, the rate of population growth dx/dt , at any moment t is a function of
the population size at that moment, x(t ), namely,

dx

dt
= f (x).

Since a zero population has zero growth, x = 0 is an algebraic root of the function f (x). By
expanding f as a Taylor series near x = 0 and setting f (0) = 0, Lotka obtained the following power
series: f (x) = x( f ′(0)+ x

2 f ′′(0)), where higher terms are assumed negligible. By setting f ′(0) = r
and f ′′(0) = −2r /K , where r is the intrinsic growth rate of the population and K is the carrying
capacity, one is led to the Verhulst logistic equation

dx

dt
= r x

(
1− x

K

)
. (1)

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.460
mailto:elbetchbilal@gmail.com
https://comptes-rendus.academie-sciences.fr/mathematique/


912 Bilel Elbetch

Turner and co-authors [38] proposed a modified Verhulst logistic equation (1) which they termed
the generic growth function. It has the form

dx

dt
= r x1+µ2(1−µ3)

[
1−

( x

K

)µ2
]µ3

, (2)

where µ2,µ3 are positive exponents and µ2 < 1+ 1
µ3

.
Blumberg [6] introduced another growth equation based on a modification of the Verhulst

logistic growth equation (1) to model population dynamics or organ size evolution. Blumberg
observed that the major limitation of the logistic curve was the inflexibility of the inflection point.
Blumberg therefore introduced what he called the hyperlogistic function, accordingly

dx

dt
= r xµ1

(
1− x

K

)µ3
. (3)

Blumberg’s equation (3) is consistent with the Turner and co-author’s generic equation (2) when
µ1 = 2−µ3,µ3 < 2, and µ2 = 1. Von Bertalanffy [5] introduced his growth equation to model fish
weight growth. He proposed the form given below which can be seen to be a special case of the
Bernoulli differential equation:

dx

dt
= r x

2
3

[
1−

( x

K

) 1
3
]

. (4)

The Turner model does not contain the Bertalanffy one, as the values of the exponents µ1 =
2/3,µ2 = 1/3,µ3 = 1, violate the condition µ1 = 1+µ2(1−µ3) stipulated by Turner et al. [38]. It
cannot therefore be seen as a special case of Blumberg’s equation (3). Richards [33] extended the
growth equation developed by Von Bertalanffy to fit empirical plant data.

Richards’s suggestion was to use the following equation which is also a Bernoulli differential
equation

dx

dt
= r x

[
1−

( x

K

)µ2
]

. (5)

Unlike its Von Bertalanffy antecedent however, the Richards growth function does follow from the
Turner model (2) in the case where µ3 = 1. For µ2 = 1, (5) trivially reduces to the Verhulst logistic
growth equation (1), but for µ2 > 1 the maximum slope of the curve is when x > K /2, and when
0 <µ2 < 1, the maximum slope of the curve is when x < K /2. This allows a wider range of curves to
be produced, but as µ2 tends towards zero, the lowest value of x at the point of inflexion remains
greater than K /e, where e represents the universal constant, the base of the natural logarithm.
In fact, as µ2 tends towards zero the Richards growth curve tends towards the Gompertz growth
curve, which can be derived from the following form of the logistic equation as a limiting case:

dx

dt
= r

µ2
µ3

x
[

1−
( x

K

)µ2
]µ3 = r

K µ2µ3
x

(
K µ2 −xµ2

µ2

)µ3

.

When µ2 → 0, we obtain the growth rate modelled by the Gompertz function given by:

dx

dt
= r x

[
ln

( x

K

)]µ3
, (6)

with µ3 > 0 and µ3 ̸= 1. This special case is more usually known as the hyper Gompertz,
generalized ecological growth function, or simply generalized Gompertz function. For µ3 = 1 the
equation (6) is the ordinary Gompertz growth (see [24, 31]).

In [37], Tsoularis et al. proposed a new growth rate that includes all the previous growth rates
given by:

dx

dt
= r xµ1

[
1−

( x

K

)µ2
]µ3

, (7)

where µ1,µ2 and µ3 are positive real numbers. Unlike Lotka’s derivation of the Verhulst logistic
growth equation from the truncation of the Taylor series expansion of f (x) near x = 0, (7) cannot
be derived from such an expansion unless µ1,µ2 and µ3 are all positive integers.
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Many complex systems in sciences and engineering can be modeled by coupled systems of
differential equations on networks. A network can be mathematically treated as a weighted di-
graph (directed graph), consisting of a set of n vertices and a set of directed arcs. In 1977, Freed-
man and Waltman [18] consider a two-patch model with a single species in logistic population
growth as follows: 

dx1

dt
= r1x1

(
1− x1

K1

)
+ϵ(x2 −x1),

dx2

dt
= r2x2

(
1− x2

K2

)
+ϵ(x1 −x2),

(8)

where xi represents the population density in patch i , the parameter ri is the intrinsic growth
rate, Ki is carrying capacity and ϵ is the dispersal rate. Freedman and Waltman show that
under certain conditions, the total population abundance can be larger than the total carrying
capacities K1 + K2. Holt [25] generalized these results to a source-sink system. In 2015, Arditi
et al. [1] gave a full mathematical analysis of the model (8) of Freedman and Waltman with
symmetric dispersal.

In 2018, Arditi et al. [2] extended the model (8) by considering asymmetric dispersal, i.e. the
model: 

dx1

dt
= r1x1

(
1− x1

K1

)
+ϵ(γ12x2 −γ21x1),

dx2

dt
= r2x2

(
1− x2

K2

)
+ϵ(γ21x1 −γ12x2),

(9)

where ϵγ12 and ϵγ21 with γi j > 0, i ̸= j and ϵ≥ 0, are the migration terms which describe the flows
of individuals from the patch 2 to the patch 1, and from the patch 1 to the patch 2 respectively.
These flows can for example depend on the distance between the patches. By noting that the
positive equilibrium (x∗

1 , x∗
2 ) of model (9) is the unique positive solution to

r1x1

(
1− x1

K1

)
+ r2x2

(
1− x2

K2

)
= 0,

x2 = 1

γ12

(
γ21x1 − r1

ϵ
x1

(
1− x1

K1

))
,

i.e., the intersection of an ellipse and a parabola, they used a graphical method to completely
analyze model (9) in order to determine when dispersal is either favorable or unfavorable to total
population abundance

In [12], I suggested to study the two-patch coupled model where each patches follows a
Richard’s law, i.e., the model:

dx1

dt
= r1x1

(
1−

(
x1

K1

)µ)
+ϵ(γ2x2 −γ1x1),

dx2

dt
= r2x2

(
1−

(
x2

K2

)µ)
+ϵ(γ1x1 −γ2x2),

(10)

where x1 and x2 represent population densities of the species in patch 1 and 2, respectively. The
parameters Ki and ri represents the carrying capacity and the growth rate respectively. Parameter
ϵ represents the dispersal rate and µ is a positive parameter. γ12 denote the migration rate from
patch 2 to the patch 1 and γ21 from patch 1 to patch 2. For this model, I interested in the effect of
this choice, which generalize the logistic, on the dynamic of the total population in two patches.
I have given a complete classification of the model parameters regarding when the dispersion
causes a total biomass smaller or greater than the sum of capacities. I used for this classification,
the geometric method of Arditi et al. [2].
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In 2021, Elbetch et al. [15] have considered the model of multi-patch logistic growth, coupled
by asymmetric linear migration terms

dxi

dt
= ri xi

(
1− xi

Ki

)
+ϵ

n∑
j=1, j ̸=i

(
γi j x j −γ j i xi

)
, i = 1, . . . ,n, (11)

where n is the number of patches in the system. The parameters ri and Ki are respectively the
intrinsic growth rate and the carrying capacity of patch i . The term on the right hand side of
the system (11) describes the effect of the linear migration between the patches, where ϵ is the
migration rate and Γ := (γi j ) is the matrix representing the migrations between the patches.
Note that, the system (11) is studied also by Elbetch et al. [14] and Takeuchi [35] in the case
when the matrix Γ is symmetric. We recall that, when the matrix of migration Γ is irreducible,
System (11) admits a unique positive equilibrium which is globally asymptotically stable (GAS),
see [4, Theorem 1] [3, Theorem 2.2] or [14, Theorem 6.1], when ϵ→∞, this equilibrium tend to∑

i δi ri∑
i δ

2
i αi

(δ1, . . . ,δn),

where αi = ri
Ki

and (δ1, . . . ,δn)T the vector which generate the vector space kerΓ (for more
properties of the vector space kerΓ, see Subsection 4.1).

In [14, 15], Elbetch et al. have answered in some particular cases of the model (11) to the
following important question: Is it possible, depending on the migration rate, that the total
equilibrium population be larger than the sum of the capacities

∑
i Ki ? This question is of

ecological importance since the answer gives the conditions under which the linear dispersal is
either beneficial or detrimental to total equilibrium population. Note that, this question has been
studied by many researches (see [1, 2, 9–11, 14–18, 21], [4, 41] for source-sink models, and [20, 22]
for SIS patch-model). They proved that, if all the patches do not differ with respect to the intrinsic
growth rate (i.e., r1 = ·· · = rn), then the effect of linear migration is always detrimental. In the
case when (K1, . . . ,Kn)T ∈ kerΓ (if the matrix Γ is symmetric, the condition (K1, . . . ,Kn)T ∈ kerΓ
means that the patches do not differ with respect to the carrying capacity), linear migration has
no effect on the total equilibrium population. An example when the effect of linear migration
is always beneficial, is in the case when Γ is symmetric and all the patches do not differ with
respect to the parameter α = r /K quantifying intraspecific competition (i.e., α1 = ·· · = αn) (see
also [15, Proposition 4.2]).

For general information of the effects of patchiness and migration in both continuous and
discrete cases, and the results beyond the logistic model, the reader is referred to the work of
Levin [26, 27], DeAngelis et al. [10, 11] and Freedman et al. [16].

Our aim in this work is to study the model of n patches coupled by migration terms. In
particular, we are interested in studying the effect of dispersion and the specific growth rate on
the dynamics of population, and to compare some results for the generalized logistic equation
with those obtained for multi-patch logistic equation (11). Thus, we extended the result obtained
in [14, 15].

This paper is organized as follows: The introduction consists of giving an overview of the
different growth models of a population and the links that may exist between them, as well as
of the two-patch migration models of a single population and also for n patches. In Section 2,
we introduce the mathematical model and we give some definitions and notations. Next, in
Section 3, we prove the global stability of the model (12). In Section 4, we study the behavior
of the system (12) in the case when the migration rate goes to infinity by direct method and also
by using perturbation arguments. In Section 5, we compare the total equilibrium population with
the sum of the n carrying capacities for some parameter space. In Section 6, using the method
graphic of Arditi et al. [2], we give a complete analysis of two-patch case where the first patch
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follows a logistic law and the second Richards law. Two-patch model where one growth rate is
much larger than the second one is examined. We ends with a conclusion in Section 7.

2. Mathematical model

Let us consider the growth of single specie which can disperse among n patches described by:

dxi

dt
= xiϕi (xi )+ϵ

n∑
j=1, j ̸=i

(γi j x j −γ j i xi ), i = 1, . . . ,n, (12)

where xi represents the population density of the species in the i-th patch and ϕi (xi ) represents
the specific growth rate of the population in the i-th patch. Since the specific growth rate may
depend on each patch environment, the functionϕi (xi ) is supposed to be different in each patch.
The second term of the right hand side in (12) describes the diffusion effect between patches
where ϵ is the growth of migration and γi j ≥ 0, for all i ̸= j is the term of asymmetrical migration
which describes the flows of individuals from the patch j to the patch i . These flows can for
example depend on the distance between the patches. We list the following hypotheses, the first
two of which are standard in single species models (see [16, 35]):

(H1) All solutions of the initial value problem (12) exist, are unique and are continuable for all
positive time.

(H2) ϕi (0) > 0, dϕi
dxi

(xi ) < 0, there exist Ki > 0 such that ϕi (Ki ) = 0 and xiϕi (xi ) → −∞ as
xi →+∞ for all i = 1, . . . ,n.

(H3) The matrix Γ := (γi j ) where

γi i =−
n∑

j=1, j ̸=i
γ j i (13)

is irreducible.

In term of graph theory, given a network represented by digraph G with n vertices, n ≥ 2, a
coupled generalized logistic system can be built on G by assigning each vertex its own internal
dynamics and then coupling these vertex dynamics based on directed arcs in G (see Figure 1).

ϵγ j i xi

ϵγi j x j
dxi
dt = xiϕi (xi )

dx j

dt = x jϕ j (x j )

Figure 1. A coupled generalized logistic system on a network

The system (12) can be written in matrix form as follows:

dx

dt
= diag(ϕ1(x1), . . . ,ϕn(xn))x +ϵΓx, (14)

where x = (x1, . . . , xn)T .
In hypothesis (H2), Ki is the carrying capacity of the i-th patch. All patches are source since

ϕi (0) > 0 for all i . We remark that growth functions of patches can be very different; that
is, system (12) allows patch-specific population dynamics. To model this specification using
continuous space model, one needs to deal with partial differential equations with spatially
varying coefficients, which are particularly challenging in stability analysis.
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The matrix Γ being irreducible means that the set of patches cannot be partitioned into two
nonempty disjoint subsets, I and J , such that there is no migrations between a patch in subset I
and a patch in subset J , i.e. the irreducibility of matrix Γ implies that every patch in the model (12)
is connected by migration term, i.e. the species can reach any i-th patch from any j-patch. For
Two-patch model, the matrix Γ is irreducible if and only if γ12 and γ21 are positives. For Three-
patch model, under the irreducibility hypothesis on the matrix Γ, there are five possible cases,
modulo permutation of the three patches, see Figures 2 and 3.

1

2 3

1

2 3

G1 G2

Figure 2. The two graphs G1 and G2 for which the migration matrix may be symmetric, if
γi j = γ j i .

For the remaining cases, the graphs G3,G4 and G5, cannot be symmetrical:

1

2 3

1

2 3

1

2 3

G3 G4 G5

Figure 3. The three graphs G3,G4 and G5 for which the migration matrix cannot be sym-
metric.

The model (12) studied in [1, 2, 7, 10, 16, 18, 25] for two patches and logistic growth rate, i.e.

ϕi (xi ) = ri − ri

Ki
xi , i = 1,2.

The same model is studied in [9, 11, 42] for n patches and a logistic growth rate, where the matrix
Γ take the following form:

γ1n = γn1 = γi ,i−1 = γi−1,i = 1 for 2 ≤ i ≤ n and γi j = 0 otherwise. (15)

We have the following result:

Proposition 1. The domain Ω = {
(x1, . . . , xn) ∈Rn/xi ≥ 0, i = 1, . . . ,n.

}
is positively invariant for

the system (12).

Proof. Assume that xi = 0 and x j ≥ 0 for all j ̸= i . We have

dxi

dt
= ϵ ∑

j=1, j ̸=i
γi j x j ≥ 0, i = 1, . . . ,n.

Hence, on the boundary of Ω, the vector field associated to (12) either is tangent to Ω, or points
inwardΩ. According to [34, Proposition B.7, p. 267], no trajectory comes out ofΩ.

Therefore,Ω is positively invariant for the system (12). □
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3. Global stability

Note that, the model (12) without diffusion (i.e. when ϵ= 0) has a positive globally stable interior
equilibrium point (K1, . . . ,Kn) by hypothesis (H2). A boundary equilibrium occur where one or
more of the Ki are replaced by zero.

In the next theorem, we prove that the model (12) continues to be globally asymptotically
stable for any diffusion rate ϵ. First, we start by giving some definitions.

Definition 2. A matrix M = (mi j ) is called cooperative if mi j ≥ 0 for all i ̸= j . Recall that the
differential system

dx

dt
= F (x),

is said to be cooperative, if its jacobian matrix is cooperative, i.e., for all i ̸= j ; (∂Fi /∂x j ) ≥ 0, for all
x positive.

Definition 3. The stability modulus of a matrix M is given by

s(M) = max
{
Re(λ) : λ is an eigenvalue of M

}
. (16)

We have the following result [32, Lemma 8]:

Lemma 4. Let A be a non negative matrix. Let u ∈Rn and λ ∈R. If Au ≥λu then ρ(A) ≥λ.

Proof. If Au ≥λu then, since A is non negative, Ak u ≥λk u for all k. Therefore ∥Ak∥ ≥λk for any
matricial norm. Using the Gelfand formula ρ(A) = limk→∞ ∥Ak∥ 1

k , we obtain that ρ(A) ≥λ. □

We have the following result [8, Lemma 8]:

Lemma 5. Let A be a cooperative matrix. Let u ∈Rn and λ ∈R. If Au ≥λu then s(A) ≥λ.

Proof. Let A be a cooperative matrix, there exists h > 0 such that A +hI , where I is the identity
matrix, is non negative. Let u and λ be such that Au ≥ λu. Since (A + hI )u ≥ (λ+ h)u, using
Lemma 4, we deduce that ρ(A +hI ) ≥ λ+h. According to the Perron–Frobenius Theorem [19,
Theorem 3, p. 66], we have

s(A+hI ) = ρ(A+hI ).

Therefore we have s(A+hI ) ≥λ+h. Using s(A+hI ) = s(A)+h, we obtain s(A) ≥λ. □

We have the following result:

Theorem 6. The model (12) has a unique positive equilibrium point which is globally asymptoti-
cally stable in the positive cone Rn+ \ {0}.

Proof. First, System (12) admits a trivial equilibrium x = 0, representing the state of species
extinction, and its stability can be determined by the Jacobian matrix:

A = ϵΓ+diag(ϕ1(0), . . . ,ϕn(0)), (17)

Since Γ is a cooperative and irreducible then A is also. According to a result of Elbetch et al. [14,
Theorem 6.1], the stability modulus of the matrix A is positive (just replace ϕi (0) by ri for all i ).
Indeed, let u = (1, . . . ,1)T . We have

AT u = (ϕ1(0), . . . ,ϕn(0))T ≥λu, where λ= min{ϕ1(0), . . . ,ϕn(0)} > 0.

Therefore, since A is a cooperative matrix, according to Lemma 5, we have

s(A) = s(AT ) ≥λ> 0.

It’s follows from Lu and Takeuchi [30, Corollary 1], that the cooperative system (12) possesses a
globally asymptotically stable positive equilibrium. □
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In all of this work, the globally asymptotically stable positive equilibrium of the system (12) is
denoted by E∗

n (ϵ) = (x∗
1 (ϵ), . . . , x∗

n (ϵ)), and by T ∗
n (ϵ) the total equilibrium population

T ∗
n (ϵ) =

n∑
i=1

x∗
i (ϵ). (18)

4. Fast diffusion rate

The goal in the next is to give the behavior of the model (12) when the growth of diffusion tend to
infinity (i.e. ϵ→∞).

4.1. Kernel of Γ

First for all, we recall that, if Γ is irreducible, then 0 is a simple eigenvalue of Γ and all non-zero
eigenvalues of Γ have negative real part. Moreover, the kernel of the matrix Γ is generated by a
positive vector (see [4, Lemma 2]). In all of this paper, we denote by δ := (δ1, . . . ,δn)T this positive
vector. For the existence, uniqueness, and positivity of δ see Cosner et al. [7, Lemma 1], and
Elbetch et al. [14, Lemma 4.1], [15, Lemma 1]. Note that, if the matrix Γ is symmetric, then kerΓ is
generated by δ= (1, . . . ,1)T . On the other hand, it is shown in Guo et al. [23, Lemma 2.1] and Gao
and Dong [21, Lemma 3.1] that the vector (Γ∗11, . . . ,Γ∗nn)T is a right eigenvector of Γ associated
with the zero eigenvalue. Here, Γ∗i i is the cofactor of the i -th diagonal entry of Γ, and sgn(Γ∗i i ) =
(−1)n−1. As in our work, the matrix Γ is assumed to be irreducible, then (−1)n−1(Γ∗11, . . . ,Γ∗nn)T

is strictly positive, i.e. δi = (−1)n−1Γ∗i i > 0 for all i . Therefore, we have explicit formula for the
components of the vector δ, as functions of the coefficients of Γ, at our disposal. For two patches
we have δ= (γ12,γ21)T , and for three patches we have δ= (δ1,δ2,δ3)T , where

δ1 = γ12γ13 +γ12γ23 +γ32γ13,

δ2 = γ21γ13 +γ21γ23 +γ31γ23,

δ3 = γ21γ32 +γ31γ12 +γ31γ32.

(19)

Lemma 2.1 of Guo et al. [23] gives explicit formulas of the components of the vector δ, with
respect of the coefficients of γ as follow:

δk = ∑
T∈Tk

∏
(i , j )∈E(T )

γi j , k = 1, . . . ,n, (20)

where Tk is the set of all directed trees of n vertices rooted at the k-th vertex, and E(T ) denotes
the set of arcs in a directed tree T .

4.2. The fast dispersal limit

The equilibrium point E∗
n (ϵ) is the solution of the following system:

xiϕi (xi )+ϵ
n∑

j=1, j ̸=i
γi j x j −γ j i xi = 0, i = 1, . . . ,n. (21)

The sum of these equations shows that E∗
n (ϵ) satisfies the following equation
n∑

i=1
xiϕi (xi ) = 0. (22)

Therefore E∗
n (ϵ) belongs to the locus of points described by the equation (22) consists of the origin

together with a connected (n-1)-dimension surface denoted by:

S :=
{

x ∈Rn
+ :Θ(x) :=

n∑
i=1

xiϕi (xi ) = 0

}
, (23)
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which passes through all boundary equilibria together with the interior equilibrium (K1, . . . ,Kn).
Note that this surface is independent of the migration terms ϵ and γi j . In all of the rest, we assume
thatS is compact and convex. The following result asserts that when ϵ→∞, the equilibrium E∗

n (ϵ)
converges to an element of kerΓ.

Theorem 7. We have
lim
ϵ→+∞E∗

n (ϵ) =λ0δ, (24)

where λ0 > 0 is the unique solution in the positive axis of the following equation:
n∑

i=1
δiϕi (δi x) = 0. (25)

Proof. The equilibrium point E∗
n (ϵ) is the solution in the positive coneRn+, of the equationΥϵ = 0,

where

Υϵ(x1, . . . , xn) =
(
Υ1(x1, . . . , xn), . . . ,Υn−1(x1, . . . , xn),

n∑
i=1

xiϕi (xi )

)
(26)

with

Υi (x1, . . . , xn) = 1

ϵ
xiϕi (xi )+

n∑
j=1, j ̸=i

γi j x j −γ j i xi , i = 1, . . . ,n −1,

obtained from (21) by dividing by ϵ the first n − 1 equations, and replacing the last one by
Equation (22), which is the sum of the equations. On the other hand,the limit equations (obtained
when ϵ→∞) are given by:

Υ∞(x1, . . . , xn) =
(

n∑
j=1, j ̸=1

γ1 j x j −γ j 1x1, . . . ,
n∑

j=1, j ̸=n−1
γn−1, j x j −γ j ,n−1xn−1,

n∑
i=1

xiϕi (xi )

)
(27)

Now, we consider the linear system given by the first n −1 equations of (27)
n∑

j=1, j ̸=i
γi j x j −γ j i xi = 0, i = 1, . . . ,n −1. (28)

According to [15, Lemma 3.4], the system (28) admits a unique solution given by
xn/δn(δ1, . . . ,δn−1). Hence, the solution of the equation Υ∞ = 0 is given by the solution of
the following system: 

xi = δi

δn
xn , i = 1, . . . ,n −1.

n∑
i=1

xiϕi (xi ) = 0.
(29)

Replacing the xi in the second equation by δi
δn

xn gives:

1

δn
xn

(
n∑

i=1
δiϕi

(
δi

δn
xn

))
= 0. (30)

Which admits xn = 0 and xn =λ0δn as solutions. So, the equationΥ∞ = 0 admits two solutions, 0
and E∗(∞) :=λ0(δ1, . . . ,δn).

The surface S is compact, so the equilibrium E∗(ϵ) has at least one limit point in S, when ϵ

goes to infinity. To prove the convergence of E∗(ϵ) to E∗(∞), it suffices to prove that the origin
cannot be a limit point of E∗(ϵ). We claim that for any ϵ, there exists i such that x∗

i (ϵ) ≥ Ki , which
entails that E∗(ϵ) is bounded away from the origin. The coordinates of the vector ΓE∗(ϵ) sum
to zero, hence at least one of them, say, the i -th, is non negative. Then x∗

i (ϵ)ϕi (x∗
i (ϵ)) ≤ 0, and

since x∗
i (ϵ) cannot be negative or 0, and by hypothesis (H2), ϕi (0) > 0 and dϕi /dxi < 0, we have

x∗
i (ϵ) ≥ Ki . By connexity of the arc ϵ→ E∗(ϵ), the point E∗(ϵ) remains in the surface S and the

limit cannot be the origin. □
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As a corollary of the previous theorem we obtain the following result which describes the total
equilibrium population for perfect mixing:

Corollary 8. We have

T ∗
n (+∞) = lim

ϵ→+∞
n∑

i=1
x∗

i (ϵ) =
(

n∑
i=1

δi

)
λ0. (31)

Proof. The sum of the n components of the point E∗
n (∞) immediately gives (31). □

4.3. Two time scale dynamics

We can use the theory of singular perturbations to obtain a better understanding of the behavior
of the system in the case of perfect mixing. We have the following result:

Theorem 9. Let (x1(t ,ϵ), . . . , xn(t ,ϵ)) be the solution of the system (12) with initial condition
(x0

1 , . . . , x0
n) satisfying x0

i ≥ 0 for i = 1, . . . ,n. Let Y (t ) be the solution of the equation
n∑

i=1
δi

dX

dt
= X

n∑
i=1

δiϕi

(
δi∑n

i=1δi
X

)
, (32)

with initial condition X0 =∑n
i=1 x0

i . Then, when ϵ→∞, we have
n∑

i=1
xi (t ,ϵ) = Y (t )+o(1), uniformly for t ∈ [0,+∞) (33)

and, for any t0 > 0, we have

xi (t ,ϵ) = δi∑n
i=1δi

Y (t )+o(1), i = 1, . . . ,n, uniformly for t ∈ [t0,+∞). (34)

Proof. Let X (t ,ϵ) = ∑n
i=1 xi (t ,ϵ). We rewrite the system (12) using the variables (X , x1, . . . , xn−1).

One obtains: 
dX

dt
=

n∑
i=1

xiϕi (xi ) ,

dxi

dt
= xiϕi (xi )+ϵ

n∑
j=1, j ̸=i

γi j x j −γ j i xi , i = 1, . . . ,n −1.
(35)

This system is actually a system in the variables (X , x1, . . . , xn−1), since, whenever xn appears in
the right hand side of (35), it should be replaced by

xn = X −
n−1∑
i=1

xi . (36)

When ϵ→∞, (35) is a slow-fast system, with one slow variable, X , and n −1 fast variables, xi for
i = 1, . . . ,n −1. According to Tikhonov’s theorem [28, 36, 40] we consider the dynamics of the fast
variables in the time scale τ= ϵt . One obtains

dxi

dτ
= 1

ϵ
xiϕi (xi )+

n∑
j=1, j ̸=i

γi j x j −γ j i xi , i = 1, . . . ,n −1. (37)

where xn is given by (36). In the limit ϵ→∞, we find the fast dynamics

dxi

dτ
=

n∑
j=1, j ̸=i

γi j x j −γ j i xi , i = 1, . . . ,n −1. (38)

This is an n − 1 dimensional linear system differential. According to Lemma 3.9 of Elbetch
et al. [15], the slow manifold of system (35), which is the equilibrium point of the fast dynam-
ics (38), is unique and is given by:

xi = δi∑n
i=1δi

X , i = 1, . . . ,n −1. (39)



Bilel Elbetch 921

As this manifold is GAS, the theorem of Tikhonov ensures that after a fast transition toward the
slow manifold, the solutions of (35) are approximated by the solutions of the reduced model which
is obtained by replacing (39) into the dynamics of the slow variable, which gives the equation (32).
Since (32) admits

X ∗ =
(

n∑
i=1

δi

)
λ0

as a positive equilibrium point, which is GAS in the positive axis, the approximation given by
Tikhonov’s theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t0 > 0 for the fast vari-
ables, where t0 is as small as we want. Therefore, let Y (t ) be the solution of the reduced model (32)
of initial condition Y (0) = X (0,ϵ) =∑n

i=1 x0
i , then, when ϵ→∞, we have the approximations (33)

and (34). □

When the movement pattern of individuals among n patches is symmetric, the previous
theorem becomes:

Theorem 10. Assume that the matrix Γ is symmetric. Let (x1(t ,ϵ), . . . , xn(t ,ϵ)) be the solution of
the system (12) with initial condition (x0

1 , . . . , x0
n) satisfying x0

i ≥ 0 for i = 1, . . . ,n. Let Y (t ) be the
solution of the equation

dX

dt
= 1

n
X

n∑
i=1

ϕi

(
1

n
X

)
, (40)

with initial condition X0 =∑n
i=1 x0

i . Then, when ϵ→∞, we have

n∑
i=1

xi (t ,ϵ) = Y (t )+o(1), uniformly for t ∈ [0,+∞) (41)

and, for any t0 > 0, we have

xi (t ,ϵ) = 1

n
Y (t )+o(1), i = 1, . . . ,n, uniformly for t ∈ [t0,+∞). (42)

Proof. If the matrix Γ is symmetric, then δ= (1, . . . ,1)T . □

As a corollary of the previous theorem we obtain the following result which describes the total
equilibrium population for perfect mixing when the dispersal is symmetric. We can state this
result as follows:

Corollary 11. The total equilibrium population for perfect mixing T ∗
n (+∞) satisfied:

n∑
i=1

ϕi

(
T ∗

n (+∞)

n

)
= 0. (43)

Proof. If the matrix Γ is symmetric, then δ = (1, . . . ,1)T . The equation (40) prove that T ∗
n (+∞) is

satisfied by Equation (43). □

We point out the similarity between our expression (43) for the total equilibrium population
in the limit ϵ→∞, and the expression obtained in spatial homogenization in [9, Proposition A.2].
The formula (43) is an extension for any growth rate satisfied by the assumption (H2) of the
formula obtained by Arditi et al. [1, 2] for two-patch model, and also generalized the result of
Elbetch et al. [14, 15] for n-patch model.
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5. Total equilibrium population

In this section, our aim is to compare the total equilibrium population T ∗
n with the sum of

carrying capacities T ∗
n (0) = K1 +·· ·+Kn , when the rate of migration ϵ varies from zero to infinity.

First, we compute the derivative of T ∗
n at no dispersal.

Proposition 12. The derivative of the total equilibrium population T ∗
n at ϵ= 0 is given by:

dT ∗
n

dϵ
(0) =−∑

i

 1

Ki
dϕi
dxi

(Ki )

∑
j ̸=i

γi j K j −γ j i Ki


=−

 1

K1
dϕ1
dx1

(K1)
, . . . ,

1

Kn
dϕn
dxn

(Kn)

Γ(K1, . . . ,Kn)T .

(44)

Proof. The equilibrium point E∗
n (ϵ) is the solution of the algebraic system:

x∗
i (ϵ)ϕi (x∗

i (ϵ))+ϵ
n∑

j=1, j ̸=i
γi j x∗

j (ϵ)−γ j i x∗
i (ϵ) = 0, i = 1, . . . ,n. (45)

The derivative of (45) with respect to ϵ give:

ϕi (x∗
i (ϵ))

dx∗
i

dϵ
(ϵ)+x∗

i (ϵ)
dϕi

dx∗
i

(x∗
i (ϵ))

dx∗
i

dϵ
(ϵ)+

n∑
j=1, j ̸=i

γi j x∗
j (ϵ)−γ j i x∗

i (ϵ)

+ϵ
n∑

j=1, j ̸=i
γi j

dx∗
j

dϵ
(ϵ)−γ j i

dx∗
i

dϵ
(ϵ) = 0, i = 1, . . . ,n.

For ϵ= 0, we obtain

ϕi (x∗
i (0))

dx∗
i

dϵ
(0)+x∗

i (0)
dϕi

dx∗
i

(x∗
i (0))

dx∗
i

dϵ
(0)+

n∑
j=1, j ̸=i

γi j x∗
j (0)−γ j i x∗

i (0) = 0.

Since x∗
i (0) = Ki and ϕi (Ki ) = 0, then

Ki
dϕi

dx∗
i

(Ki )
dx∗

i

dϵ
(0)+

n∑
j=1, j ̸=i

γi j K j −γ j i Ki = 0, i = 1, . . . ,n.

By summing the previous equations for i = 1, . . . ,n we then obtain the formula of the deriva-
tive (44). □

The formula (44) is an extension of the one obtained by Arditi et al. [1, 2] for two-patch model,
and also the result of Elbetch et al. [15, Equation 28] for logistic model.

In the rest of this section, we show that the total equilibrium population, T ∗
n (ϵ), is generally

different from the sum of the carrying capacities T ∗
n (0). Depending on the intrinsic growth

functions and the kernel of the matrix Γ, T ∗
n (ϵ) can either be greater than, smaller than, or equal

to the sum of the carrying capacities. Let we start by the following situation:

Proposition 13. If K1
dϕ1
dx1

(K1) = ·· · = Kn
dϕn
dxn

(Kn), then the total equilibrium population, defined

by (18) satisfies T ∗
n (ϵ) ≤∑n

i=1 Ki , for all ϵ≥ 0 and
dT ∗

n
dϵ (0) = 0. Furthermore, if (K1, . . . ,Kn)T does not

belong in kerΓ, then T ∗
n (ϵ) <∑n

i=1 Ki , for all ϵ> 0.

Proof. The equation of the tangent space to the surface S, defined by (23), at point A =
(K1, . . . ,Kn) is given by

n∑
i=1

(xi −Ki )
∂Θ

∂xi
(A ) = 0, (46)



Bilel Elbetch 923

whereΘ is given by (23). Since ∂Θ
∂xi

(A ) = Ki
dϕi
dxi

(Ki ), (46) can be written as follows:

n∑
i=1

Ki
dϕi

dxi
(Ki ) (xi −Ki ) = 0. (47)

If we take K1
dϕ1
dx1

(K1) = ·· · = Kn
dϕn
dxn

(Kn) in (47), we get that the equation of the tangent plane to S
at the point A is

n∑
i=1

xi =
n∑

i=1
Ki .

By hypothesis,the surface S is convex, then any point of S lies in the half-space defined by the
inequation

∑n
i=1 xi ≤∑n

i=1 Ki . Therefore E∗
n (ϵ) satisfies

n∑
i=1

x∗
i (ϵ) ≤

n∑
i=1

Ki for all ϵ≥ 0.

By the convexity of the surface S, the equality in the previous equation can hold if and only if,
x∗

i (ϵ) = Ki . We replace in to (21), we get Γ(K1, . . . ,Kn)T = 0. Which gives a contradiction. This
completes the proof of the proposition.

According to the hypothesis of the previous proposition and the propriety (13), we conclude
that the derivative (44) is equal to 0. □

Note that, the result of the previous proposition is also obtained by Arditi et al. [1, 2] for two-
patch model, and by Elbetch et al. [14, 15] for n-patch model with logistic dynamic ϕi (xi ) =
ri − ri /Ki xi . They proved that, if the growth rates ri are equal in all patches, then the total
equilibrium population is always smaller than the sum of the carrying capacities.

In this proposition, we give a situation where the dispersal is favorable to the total equilibrium
population. Mathematically speaking:

Proposition 14. Assume that for all j < i , dϕi
dxi

(Ki )γi j = dϕ j

dx j
(K j )γ j i . Then

T ∗
n (ϵ) ≥

n∑
i=1

Ki for all ϵ≥ 0.

Moreover, if there exist i0 and j0 ̸= i0 such that Ki0

dϕi0
dxi0

(Ki0 ) ̸= K j0

dϕ j0
dx j0

(K j0 ), then T ∗
n (ϵ) > ∑n

i=1 Ki ,

for all ϵ> 0.

Proof. The equilibrium point E∗
n (ϵ) satisfies the equation (45). We consider a Taylor series

expansion of ϕi in the neighborhood of Ki , i.e.

ϕi (xi ) =ϕi (Ki )+ (xi −Ki )
dϕi

dxi
(Ki )+o (xi −Ki ) , i = 1, . . . ,n.

We replace ϕi in (45), we obtain for all i

0 = x∗
i (ϵ)

(
x∗

i (ϵ)−Ki
) dϕi

dx∗
i

(Ki )+ϵ
n∑

j=1, j ̸=i
(γi j x∗

j (ϵ)−γ j i x∗
i (ϵ))+o

(
x∗

i (ϵ)(x∗
i (ϵ)−Ki )

)
, (48)

since ϕi (Ki ) = 0 for all i . Dividing (48) by dϕi
dx∗

i (ϵ) (Ki )x∗
i (ϵ), one obtains

x∗
i (ϵ) = Ki +ϵ

n∑
j=1, j ̸=i

γi j x∗
j (ϵ)−γ j i x∗

i (ϵ)

− dϕi
dx∗

i
(Ki )x∗

i (ϵ)
+o

(
x∗

i (ϵ)−Ki
)

.
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Taking the sum of these expressions shows that the total equilibrium population T ∗
n satisfies the

following relation:

T ∗
n (ϵ) =

n∑
i=1

Ki +ϵ
n∑

i=1

n∑
j=1, j ̸=i

γi j x∗
j (ϵ)−γ j i x∗

i (ϵ)

− dϕi
dx∗

i
(Ki )x∗

i (ϵ)
+o

(∑
i

x∗
i (ϵ)−∑

i
Ki

)

=
n∑

i=1
Ki +ϵ

∑
j<i

γi j x∗
j (ϵ)−γ j i x∗

i (ϵ)

− dϕi
dx∗

i
(Ki )x∗

i (ϵ)
+
γ j i x∗

i (ϵ)−γi j x∗
j (ϵ)

−dϕ j

dx∗
j

(Ki )x∗
j (ϵ)

+o

(∑
i

x∗
i (ϵ)−∑

i
Ki

)

=
n∑

i=1
Ki +ϵ

∑
j<i

(
γi j x∗

j (ϵ)−γ j i x∗
i (ϵ)

)(
dϕi
dx∗

i
(Ki )x∗

i (ϵ)− dϕ j

dx∗
j

(K j )x∗
j (ϵ)

)
dϕ j

dx∗
j

(Ki ) dϕi
dx∗

i
(Ki )x∗

j (ϵ)x∗
i (ϵ)

+o

(∑
i

x∗
i (ϵ)−∑

i
Ki

)
. (49)

The conditions dϕi
dx∗

i
(Ki )γi j = dϕ j

dx∗
j

(K j )γ j i can be written ωi j := − dϕi
dx∗

i
(Ki )/γ j i = −dϕ j

dx∗
j

(K j )/γi j for

all j < i , such that γi j ̸= 0 and γ j i ̸= 0. Therefore, there exists ωi j > 0 such that

dϕ j

dx∗
j

(K j ) =−ωi jγi j and
dϕi

dx∗
i

(Ki ) =−ωi jγ j i for all i , j with γi j ̸= 0 and γ j i ̸= 0.

Replacing dϕi
dx∗

i
(Ki ) and

dϕ j

dx∗
j

(K j ) in (49), one obtains

T ∗
n (ϵ) =

n∑
i=1

Ki +ϵ
∑
j<i

ωi j

(
γi j x∗

j (ϵ)−γ j i x∗
i (ϵ)

)2

dϕi
dx∗

i
(Ki )

dϕ j

dx∗
j

(K j )x∗
j (ϵ)x∗

i (ϵ)
+o

(∑
i

x∗
i (ϵ)−∑

i
Ki

)
≥

n∑
i=1

Ki . (50)

Equality holds if and only if ϵ = 0 or γi j x∗
j (ϵ)−γ j i x∗

i (ϵ) = 0, for all i and j . Let us prove that if

Ki
dϕi
dx∗

i
(Ki ) ̸= K j

dϕ j

dx∗
j

(K j ), then equality cannot hold for ϵ> 0. Suppose that there exists ϵ∗ > 0 such

that the positive equilibrium satisfies

∀ i , j , γi j x∗
j (ϵ∗) = γ j i x∗

i (ϵ∗). (51)

Replacing the equation (51) in the system (48), we get that x∗
i (ϵ∗) = Ki , for all i . Therefore,

from (51), it is seen that, for all i and j , K jγi j = Kiγ j i . From these equations and the conditions
dϕi
dx∗

i
(Ki )γi j = dϕ j

dx∗
j

(K j )γ j i , we get Ki
dϕi
dx∗

i
(Ki ) = K j

dϕ j

dx∗
j

(K j ), for all i and j . This is a contradiction

with the hypothesis Ki
dϕi
dx∗

i
(Ki ) ̸= K j

dϕ j

dx∗
j

(K j ) of the proposition. Hence the equality in (50) holds if

and only if ϵ= 0. □

When the matrix Γ is symmetric, Proposition 14 says that if all dϕi
dxi

(Ki ) are equal, dispersal
enhances population growth. Note that, if ϕi is logistic, then we obtain Proposition 4.2 of [15].

For two-patch logistic model, Prop 14 asserts that if α2/α1 = γ12/γ21, then T ∗
n (ϵ) > K1 +K2,

which is a result of Arditi et al. [2, Proposition 2MK (b)].
Now, in the next proposition, we give another important case of the model (12).
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Proposition 15.

(1) If the equilibrium E∗
n (ϵ) does not depend on ϵ, then E∗

n (ϵ) = (K1, . . . ,Kn) for all ϵ ≥ 0, and
(K1, . . . ,Kn) ∈ kerΓ.

(2) If (K1, . . . ,Kn) ∈ kerΓ then E∗
n (ϵ) = (K1, . . . ,Kn) for all ϵ ≥ 0, i.e., the total equilibrium

population verifies

T ∗
n (ϵ) =

n∑
i=1

Ki .

Proof. E∗
n (ϵ) is the unique positive solution of the equation

diag(ϕ1(x∗
1 (ϵ)), . . . ,ϕn(x∗

n (ϵ)))E∗
n (ϵ)+ϵΓE∗

n (ϵ) = 0. (52)

(1). Suppose that, the equilibrium E∗
n (ϵ) does not depend on ϵ, we replace in Equation (52):

diag(ϕ1(x∗
1 (ϵ)), . . . ,ϕn(x∗

n (ϵ)))E∗
n +ϵΓE∗

n (ϵ) = 0. (53)

The derivative of (53) with respect to ϵ gives

ΓE∗
n (ϵ) = 0. (54)

Replacing the equation (54) in the equation (53), we get the matrix equation

diag(ϕ1(x∗
1 ), . . . ,ϕn(x∗

n )) = 0.

So, E∗
n (ϵ) = (K1, . . . ,Kn).

From the equation (54), we conclude that (K1, . . . ,Kn) ∈ kerΓ.

(2). Suppose that (K1, . . . ,Kn) ∈ kerΓ, then (K1, . . . ,Kn) satisfies the equation (52). So, E∗
n =

(K1, . . . ,Kn). Which proves that, the total equilibrium population is independent of the migration
rates ϵ. □

The result of the previous proposition is same obtained by Elbetch et al. [15] for logistic model.

6. Example of Two-patch model

In this section, we concentrate on the following two-patch model:
dx1

dt
= r1x1

(
1− x1

K1

)
+ϵ(γ12x2 −γ21x1

)
,

dx2

dt
= r2x2

(
1−

(
x2

K2

)2)
+ϵ(γ21x1 −γ12x2

)
,

(55)

where the first patch is assumed to follow a logistic law and the second a Richard law (see
Figure 4).

ϵγ21x1

ϵγ12x2
dx1
dt = r1x1

(
1− x1

K1

)
dx2
dt = r2x2

(
1−

(
x2
K2

)2
)

Figure 4. A Tow-patch coupled system

The total equilibrium population of the model (55) in the perfect mixing case (i.e. ϵ→ ∞) is
given by the following formula:

T ∗
2 (+∞) = (

γ12 +γ21
) −r1γ12

2K2 +
√

r1
2γ12

4K2
2 +4r2γ21

3K1
2r1γ12 +4r2

2γ21
4K1

2

2r2γ21
3K1

K2 (56)
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and the derivative of the total equilibrium population T ∗
2 (ϵ) at ϵ= 0 becomes

dT ∗
2

dϵ
(0) = (

γ12K2 −γ21K1
)( 1

r1
− 1

2r2

)
. (57)

The equilibrium of the system (55) is the solutions of the following algebraic system:
0 = r1x1

(
1− x1

K1

)
+ϵ(γ12x2 −γ21x1

)
,

0 = r2x2

(
1−

(
x2

K2

)2)
+ϵ(γ21x1 −γ12x2

)
.

(58)

The sum of two equations of (58) shows that the equilibrium points are in curve noted F, where
its equation is given by:

F : r1x1

(
1− x1

K1

)
+ r2x2

(
1−

(
x2

K2

)2)
= 0. (59)

The curve F passes through the points (0,0), (K1,0), (0,K2) and A := (K1,K2). Note that, it is
independent of migration rate ϵ and γi j (shown in red in Figure 5).

Solving the first equation of system (58) for x2 yields a parabola noted Pϵ defined by

Pϵ : pϵ(x1) := 1

γ12
x1

(
γ21 − r1

ϵ

(
1− x1

K1

))
.

As our study is limited in the positive cone, then we are interested only in the positive branch of
Pϵ. The parabola Pϵ (shown in blue in Figure 5) depend on the migration rate ϵ. It always passes

through the origin and the point B :=
(
K1, γ21

γ12
K1

)
. Notice that, the parabola Pϵ intersect the axis

(Ox1) at 0 and a second point x1 =− (γ21ϵ−r1)K1
r1

if γ21ϵ− r1 < 0, which always smaller than K1. So,
the equilibrium points are the non negative intersection between the curve F and Pϵ. There are
two equilibrium points. The first is the trivial point (0,0) and the second is a non trivial point
E∗

2 (ϵ) = (x∗
1 (ϵ), x∗

2 (ϵ)) whose position depend on migration rate ϵ (see Figure 5).

F

Pϵ

F

Pϵ

0 0x1 x1

x2 x2

K1

K2

K1

K2

Figure 5. Some examples of the curve F and the Parabola Pϵ. The equilibrium points are
the intersection in the positive cone between F and Pϵ, this intersections contains the
origin and a second positive point E∗(ϵ).

When ϵ→ 0, the left branch of parabola Pϵ tend to the vertical line x1 = 0 and the right branch
into the vertical line P0 : x1 = K1. Moreover, F∩P0 = {(K1,0), (K1,K2)}. In the case when ϵ→∞, the
parabola Pϵ tend to the oblique line P∞ : x2 = γ21

γ12
x1. Moreover, F∩P∞ = {

(0,0),
(
γ12λ0,γ21λ0

)}
,

where

λ0 =
−γ12r1K2 +

√
γ12

2r1
2K2

2 +4γ21r2K1
2γ12r1 +4γ21

2r2
2K1

2

2γ21r2K1
K2.
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6.1. Effect of dispersal and intrinsic growth rate on total equilibrium population

For two-patch logistic model, it was shown by Arditi et al. [1, Proposition 2, p. 54] that only three
situations can occur: the case where the total equilibrium population is always greater than the
sum of carrying capacities, the case where it is always smaller, and a third case, where the effect
of migration is beneficial for lower values of the migration coefficient ϵ and detrimental for the
higher values. More precisely, it was shown in [1] that, if n = 2 in (11), the following trichotomy
holds

• If T ∗
2 (+∞) > K1 +K2 then T ∗

2 (ϵ) > K1 +K2 for all ϵ> 0.

• If
dT ∗

2
dϵ (0) > 0 and T ∗

2 (+∞) < K1 +K2, then there exists ϵ0 > 0 such that T ∗
2 (ϵ) > K1 +K2 for

0 < ϵ< ϵ0, T ∗
2 (ϵ) < K1 +K2 for ϵ> ϵ0 and T ∗

2 (ϵ0) = K1 +K2.

• If
dT ∗

2
dϵ (0) < 0, then T ∗

2 (ϵ) < K1 +K2 for all ϵ> 0.

Therefore, the condition T ∗
2 (ϵ) = K1+K2 holds only for ϵ= 0 and at most for one positive value ϵ0.

The value ϵ0 exists if and only if
dT ∗

2
dϵ (0) > 0 and T ∗

2 (+∞) < K1 +K2.
In the remainder of this section, we analyze the effect of dispersion and the specific growth

rate on the total equilibrium population for the two-patch system (55). Using the method of
Arditi et al. [2], we describe the position affects the equilibrium E∗(ϵ) of (55) when the migration
rate varies from zero to infinity, we will give the condition whether T ∗

2 is greater or smaller than
sum of carrying capacity T ∗

2 (0) = K1 +K2. We prove there are only three cases as in the 2-patch
logistic model can occur. Denote σ= K2

2
(
r2

2K1
2 +6r2K1K2r1 + r1

2K2
2 +4r1r2K1

2
)
:

ξ1 =−−3r2K1K2 − r1K2
2 −2r2K1

2 +p
σ

2r2K1
ξ2 = −r2K1K2 − r1K2

2 +p
σ

2r2K1
. (60)

Note that, ξ1 > 0 and ξ2 > 2. We consider the regions in the set of the parameters γ21 and γ12,
denoted J0, J1 and J2, depicted in Figure 6 and defined by:


J1 =

{
(γ21,γ12) : γ12

γ21
> ξ2

ξ1

}
J0 =

{
(γ21,γ12) : ξ2

ξ1
≥ γ12

γ21
> K1

K2

}
J2 =

{
(γ21,γ12) : K1

K2
> γ12

γ21

} if 2r2 > r1


J1 =

{
(γ21,γ12) : γ12

γ21
< ξ2

ξ1

}
J0 =

{
(γ21,γ12) : ξ2

ξ1
≤ γ12

γ21
< K1

K2

}
J2 =

{
(γ21,γ12) : K1

K2
< γ12

γ21

} if 2r2 < r1

(61)

We have the following result which gives the conditions for which patchiness is beneficial or
detrimental in model (55).

Theorem 16. The total equilibrium population of (55) satisfies the following properties

(1) If r1 = 2r2 then T ∗
2 (ϵ) ≤ K1 +K2 for all ϵ≥ 0.

(2) If 2r2 ̸= r1, let J0, J1 and J2, be defined by (61). Then we have:
• if (γ21,γ12) ∈J0 then T ∗

2 (ϵ) > K1 +K2 for any ϵ> 0
• if (γ21,γ12) ∈ J1 then T ∗

2 (ϵ) > K1 +K2 for 0 < ϵ < ϵ0 and T ∗
2 (ϵ) < K1 +K2 for ϵ > ϵ0,

where

ϵ0 = r2K1

−γ12r2K1K2 −γ12r1K2
2 −3γ21r2K1K2 −γ21r1K2

2 −2γ21r2K1
2 + (γ12 +γ21)

p
σ

.

• if (γ21,γ12) ∈J2 then T ∗
2 (ϵ) < K1 +K2 for any ϵ> 0

• if γ12
γ21

= K1
K2

, then x∗
1 (ϵ) = K1 and x∗

2 (ϵ) = K2 for all ϵ≥ 0. Therefore T ∗
2 (ϵ) = K1 +K2 for

all ϵ≥ 0.
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Case 2r2 > r1

0

J1

J0

J2

γ21

γ12
γ12
γ21

= K1
K2

γ12
γ21

= ξ2
ξ1

Case 2r2 < r1

0

J2

J0

J1

γ21

γ12
γ12
γ21

= K1
K2

γ12
γ21

= ξ2
ξ1

Figure 6. The domains J0,J1 and J2. In the figure α1 = r1/K1 and α2 = r2/K2.

Proof. To facilitate comparison of the total equilibrium population T ∗
2 (ϵ) and T ∗

2 (0) = K1 +K2,
we define a straight line ∆ : x1 + x2 = K1 +K2. If the intersection of the curve F and the parabola
Pϵ, i.e., the equilibrium (x∗

1 (ϵ), x∗
2 (ϵ)), is on or below the line∆, then T ∗

2 (ϵ) ≤ T ∗
2 (0), whereas if the

intersection is above the line, then T ∗
2 (ϵ) ≥ T ∗

2 (0). The equilibrium point E∗
2 (ϵ) is always in the

curve F, then, for ϵ= 0, the equilibrium point states at A , and when ϵ increases, E∗
2 (ϵ) describes

an arc of the curve F and ends at point E∗
2 (∞).

If we take r1 = 2r2, we get that the equation of tangent space to the curve F at point A is the
equation of ∆. By Proposition 13, we deduce T ∗

2 (ϵ) ≤ T ∗
2 (0) for all ϵ≥ 0.

In the case when r1 ̸= 2r2, direct calculation finds that the curve F and the line ∆ have two
intersections:

A = (K1,K2), and C = (ξ1,ξ2) .

We denote byΣ the straight line joint the origin and C . The slope ofΣ is equal to ξ2
ξ1

. We distinguish
three cases relative position of the three points A ,E∗

2 (∞), and C , or equivalently, the three lines
[OA ), P∞ and Σwhose slopes are

K2

K1
,

γ21

γ12
and

ξ2

ξ1
.

By the method graphic of Arditi et al. [2], we conclude the complete proof. □

In general, it is very difficult to give a complete classification for all specific growth rate ϕi

under which fragmentation and migration can lead to a total equilibrium population which
might be greater or smaller than the sum of carrying capacities and also it is difficult to give
the explicit formula of T ∗

n (∞), except in special cases. In the next, we give some examples of
the specific growth ratesϕi which we can calculate explicitly the total equilibrium population for
perfect mixing and also the its derivative at ϵ= 0.

• Model of Richard: For the Richards’s growth rate (5), the total equilibrium population for
perfect mixing take the following form:

T ∗
n (+∞) =

(
n∑

i=1
δi

) ∑n
i=1δi ri∑n

i=1δ
µ+1
i

ri

K
µ

i


1
µ

and
dT ∗

n

dϵ
(0) =∑

i

(
1

µri

∑
j ̸=i

γi j K j −γ j i Ki

)
.
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• Model of Gompertz: Consider the ordinary Gompertz growth (6) for µ3 = 1. The total
equilibrium for perfect mixing case and the derivative with no dispersal are given by:

T ∗
n (∞) =

(
n∑

i=1
δi

)(
n∏

i=1

(
Ki

δi

)δi ri
) 1∑n

i=1
δi ri

and
dT ∗

n

dϵ
(0) =∞.

6.2. Two-patch model where one growth rate is much larger than the second one

Recently, in [13], Elbetch is interested in some biological situations that can be found in the
nature, that is, the case where several sub-populations grow with different speed. Mathematically
speaking, he studied the system (11) under the hypothesis that some growth rates tend to infinity
(i.e. ri → ∞ for some i ). In this section, we consider the two-patch model (55) and we assume
that the growth rate r2 (resp. r1) is much larger than r1 (resp. r2).

6.2.1. Case where r2 →∞
In this part, we assume that r2 is much larger than r1. For simplicity we denote γ2 := γ12 > 0 the

migration rate from patch 2 to patch 1 and γ1 := γ21 > 0 from patch 1 to patch 2. The model (55)
is written: 

dx1

dt
= r1x1

(
1− x1

K1

)
+ϵ(γ2x2 −γ1x1

)
,

dx2

dt
= r2

η
x2

(
1−

(
x2

K2

)2)
+ϵ(γ1x1 −γ2x2

)
,

(62)

where η is assumed to be a small positive number. Denote E∗
2 (ϵ,η) = (x∗

1 (ϵ,η), x∗
2 (ϵ,η)) the positive

equilibrium of (62), and T ∗
2 (ϵ,η), the total equilibrium population. We recall that the derivative of

T ∗
2 (ϵ,η) with respect to ϵ at ϵ= 0 is written as follow:

dT ∗
2

dϵ
(0,η) = (γ2K2 −γ1K1)

(
1

r1
− η

2r2

)
. (63)

The total equilibrium population of the model (62) for perfect mixing (i.e. ϵ→∞) is given by the
following formula:

T ∗
2 (+∞,η) = (

γ1 +γ2
) −ηr1γ2

2K2 +
√
η2r1

2
γ2

4K2
2 +4ηr2γ1

3K1
2r1γ2 +4r2

2γ1
4K1

2

2r2γ1
3K1

K2, (64)

First, we have the result:

Theorem 17. Let (x1(t ,η), x2(t ,η)) be the solution of the system (62) with initial condition (x0
1 , x0

2)
satisfying x0

i ≥ 0 for i = 1,2. Let u(t ) be the solution of the differential equation

dx1

dt
= r1x1

(
1− x1

K1

)
+ϵ(γ2K2 −γ1x1) =:ϕ(x1), (65)

with initial condition u(0) = x0
1 . Then, when η→ 0, we have

x1(t ,η) = u(t )+oη(1), uniformly for t ∈ [0,+∞) (66)

and, for any t0 > 0, we have

x2(t ,η) = K2 +oη(1), uniformly for t ∈ [t0,+∞). (67)

Proof. When η→ 0, the system (62) is a slow-fast system, with one slow variable, x1, and one
fast variable, x2. Tikhonov’s theorem [28, 36, 40] prompts us to consider the dynamics of the fast
variables in the time scale τ= 1

η t . One obtains

dx2

dτ
= r2x2

(
1− x2

K2

)
+ϵη(γ1x1 −γ2x2). (68)
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In the limit η→ 0, we find the fast dynamics

dx2

dτ
= r2x2

(
1− x2

K2

)
. (69)

The slow manifold is given by the positive equilibrium of the system (69), i.e. x2 = K2, which
is GAS in the positive axis. When η goes to zero, Tikhonov’s theorem ensures that after a fast
transition toward the slow manifold, the solutions of (62) converge to the solutions of the reduced
model (65), obtained by replacing x2 = K2 into the dynamics of the slow variable.

The differential equation (65) admits as a positive equilibrium

x∗
1 (ϵ,0+) := r1 −ϵγ1 +

√
(r1 −ϵγ1)2 +4ϵα1γ2K2

2α1
, (70)

where α1 = r1
K1

. As ϕ(x1) > 0 for all 0 ≤ x1 < x∗
1 (ϵ,0+) and ϕ(x1) < 0 for all x1 > x∗

1 (ϵ,0+) then,
the equilibrium x∗

1 (ϵ,0+) is GAS in the positive axis, so, the approximation given by Tikhonov’s
theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t0 > 0 for the fast variable, where
t0 is as small as we want. Therefore, let u(t ) be the solution of the reduced model (65) of initial
condition u(0) = x0

1 , then, when ϵ→ 0, we have the approximations (66) and (67). □

As a corollary of the previous theorem, we have the following result which give the limit of the
total equilibrium population T ∗

2 (ϵ,η) of the model (62) when η goes to zero:

Corollary 18. We have:

T ∗
2 (ϵ,0+) := lim

η→0
T ∗

2 (ϵ,η) = lim
η→0

(x∗
1 (ϵ,η)+x∗

2 (ϵ,η)) (71)

= r1 −ϵγ1 +
√

(r1 −ϵγ1)2 +4ϵα1γ2K2

2α1
+K2.

Proof. According to the equations (66), (67) and (70), when η goes to zero, the equilibrium
E∗

2 (ϵ,η) of the model (62) is converge to E∗
2 (ϵ,0+) := (x∗

1 (ϵ,0+),K2), where x∗
1 (ϵ,0+) is given

in (70).The sum of the coordinates of E∗
2 (ϵ,0+) gives the formula (71). □

In the following proposition, we calculate the derivative and the formula of perfect mixing (i.e.
when ϵ→∞) of the total equilibrium population defined by (71).

Proposition 19. Consider the total equilibrium population (71). Then,

dT ∗
2

dϵ
(0,0+) := −γ1K1 +γ2K2

r1
, (72)

and

T ∗
2 (+∞,0+) := γ1 +γ2

γ1
K2. (73)

Proof. The derivative of the total equilibrium population T ∗
2 (ϵ,0+) defined by (71) with respect

to ϵ is:

dT ∗
2

dϵ
(ϵ,0+) =− K1

2
√

K1
(
r1

2K1 −2r1K1ϵγ1 +ϵ2K1γ1
2 +4r1ϵγ2K2

)
r1

×
(
γ1

√
K1

(
r1

2K1 −2r1K1ϵγ1 +ϵ2K1γ1
2 +4r1ϵγ2K2

)+ r1K1γ1 −ϵK1γ1
2 −2r1γ2K2

)
(74)

In particular, the derivative of the total equilibrium population at ϵ = 0 is given by the
formula (72).

By taking the limit of (71) when ϵ→∞, we get that the total equilibrium population T ∗
2 (ϵ,0+)

tend to (73). □
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We consider the regions in the set of the parameters γ1 and γ2, denoted J0 and J1 defined by:

J0 =
{

(γ1,γ2) :
γ2

γ1
> K1

K2

}
, J1 =

{
(γ1,γ2) :

γ2

γ1
< K1

K2

}
. (75)

We have the following result which gives the conditions for which patchiness is beneficial or
detrimental in model (62) when ϵ goes to zero.

Theorem 20. Let J0 and J1 be the domains defined in (75). Consider the total equilibrium
population T ∗

2 (ϵ,0+) given by (71). Then, we have:

• If (γ1,γ2) ∈J0 then T ∗
2 (ϵ,0+) > K1 +K2, for all ϵ> 0.

• If (γ1,γ2) ∈J1 then T ∗
2 (ϵ,0+) < K1 +K2, for all ϵ> 0.

• If γ2
γ1

= K1
K2

, then x∗
1 (ϵ,0+) = K1 and x∗

2 (ϵ,0+) = K2 for all ϵ≥ 0. Therefore T ∗
2 (ϵ,0+) = K1+K2

for all ϵ≥ 0.

Proof. First, we try to solve the equation T ∗
2 (ϵ,0+) = K1+K2 with respect to ϵ, the solutions of this

last equation give the points of intersection between the curve of the total equilibrium population
ϵ 7→ T ∗

2 (ϵ,0+) and the straight line ϵ 7→ K1 +K2. For any ϵ> 0, we have

T ∗
2 (ϵ,0+) = K1 +K2 ⇐⇒ r1 −ϵγ1 +

√
(r1 −ϵγ1)2 +4ϵα1γ2K2

2α1
= K1

⇐⇒−K1
2 (

r1 +ϵγ1
)2 +K1

(
r1

2K1 −2r1K1ϵγ1 +ϵ2K1γ1
2 +4r1ϵγ2K2

)= 0

⇐⇒−4r1K1
2ϵγ1 +4r1ϵK1γ2K2 = 0

⇐⇒ γ2K2 = γ1K1

⇐⇒ dT ∗
2

dϵ
(0,0+) = 0.

So, if
dT ∗

2
dϵ (0,0+) ̸= 0 then ϵ = 0 and the curve of the total equilibrium population intersects the

straight line ϵ 7→ K1 +K2 in a unique point which is (0,K1 +K2). Therefore, we conclude that the
first and second items of the theorem are hold. □

6.2.2. Case where r1 →∞
In this part, we assume that r1 is much larger than r2. The model (55) is written:

dx1

dt
= r1

η
x1

(
1− x1

K1

)
+ϵ(γ2x2 −γ1x1

)
,

dx2

dt
= r2x2

(
1−

(
x2

K2

)2)
+ϵ(γ1x1 −γ2x2

)
,

(76)

where η is assumed to be a small positive number. We recall that the derivative of T ∗
2 (ϵ,η) with

respect to ϵ at ϵ= 0 is written as follow:

dT ∗
2

dϵ
(0,η) = (γ2K2 −γ1K1)

(
η

r1
− 1

2r2

)
. (77)

The total equilibrium population of the model (62) for perfect mixing (i.e. ϵ→∞) is given by the
following formula:

T ∗
2 (+∞,η) = (

γ1 +γ2
) −r1γ2

2K2 +
√

r1
2γ2

4K2
2 +4ηr2γ1

3K1
2r1γ2 +4η2 r2

2γ1
4K1

2

2ηr2γ1
3K1

K2, (78)

We have the result:
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Theorem 21. Let (x1(t ,η), x2(t ,η)) be the solution of the system (76) with initial condition (x0
1 , x0

2)
satisfying x0

i ≥ 0 for i = 1,2. Let u(t ) be the solution of the differential equation

dx2

dt
= r2x2

(
1−

(
x2

K2

)2)
+ϵ(γ1K1 −γ2x2) =:ϕ(x1), (79)

with initial condition u(0) = x0
2 . Then, when η→ 0, we have

x2(t ,η) = u(t )+oη(1), uniformly for t ∈ [0,+∞) (80)

and, for any t0 > 0, we have

x1(t ,η) = K1 +oη(1), uniformly for t ∈ [t0,+∞). (81)

Proof. The proof is the same as in Theorem 17. The differential equation (79) admits unique
positive equilibrium x∗

2 (ϵ,0+). As ϕ(x2) > 0 for all 0 ≤ x2 < x∗
2 (ϵ,0+) and ϕ(x2) < 0 for all x2 >

x∗
2 (ϵ,0+) then, the equilibrium x∗

2 (ϵ,0+) is GAS in the positive axis, so, the approximation given
by Tikhonov’s theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t0 > 0 for the
fast variable, where t0 is as small as we want. Therefore, let u(t ) be the solution of the reduced
model (79) of initial condition u(0) = x0

2 , then, when ϵ → 0, we have the approximations (80)
and (81). □

We have the result:

Theorem 22. Let J0 and J1 be the domains defined in (75). Consider the total equilibrium
population T ∗

2 (ϵ,0+) = K1 + x∗
2 (ϵ,0+) with x∗

2 (ϵ,0+) is the unique positive solution of (79). Then,
we have:

• If (γ1,γ2) ∈J0 then T ∗
2 (ϵ,0+) < K1 +K2, for all ϵ> 0.

• If (γ1,γ2) ∈J1 then T ∗
2 (ϵ,0+) > K1 +K2, for all ϵ> 0.

• If γ2
γ1

= K1
K2

, then x∗
1 (ϵ,0+) = K1 and x∗

2 (ϵ,0+) = K2 for all ϵ≥ 0. Therefore T ∗
2 (ϵ,0+) = K1+K2

for all ϵ≥ 0.

Proof. First, we try to solve the equation T ∗
2 (ϵ,0+) = K1 +K2 with respect to ϵ, i.e. the equation

x∗
2 (ϵ,0+) = K2. By (79), we obtain

x∗
2 (ϵ,0+) = K2 ⇐⇒

√
1−ϵγ2x2 −γ1K1

r2x2
= 1

which implies, for all ϵ> 0:

γ2K2 = γ1K1 ⇐⇒ dT ∗
2

dϵ
(0,0+) = 0.

So, if
dT ∗

2
dϵ (0,0+) ̸= 0 then ϵ = 0 and the curve of the total equilibrium population intersects the

straight line ϵ 7→ K1 +K2 in a unique point which is (0,K1 +K2). Therefore, we conclude that the
first and second items of the theorem are hold. □

7. Conclusion

The aim of this paper is to generalize, to a multi-patch model with generalized growth rate, the
results obtained in [14, 15] for a multi-patch logistic model.

In Section 3, using the result of Lu and Takeuchi [30, Corollary 1], we prove that the globally
asymptotically stable equilibrium still exists for generalized growth rate.

In Section 4, we consider the particular case of perfect mixing, when the migration rate goes to
infinity. As in [14] and [15], we implicitly compute the total equilibrium population in that case,
and, by perturbation arguments, we prove that the dynamics in this ideal case provides a good
approximation to the case when the migration rate is large. Our results generalize those of [1, 2]
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for tow-patch logistic model, [14] for n-patch logistic model with dispersal symmetric between
patches, and [15] for many patches with movement between patches not necessarily symmetric.

In Section 5, we have shown that if the n patches do not differ with respect to Ki
dϕi
dxi

(Ki ),
then the total equilibrium population on the n connected patches is always less than or equal
to the sum of carrying capacity of the isolated patches. This result can be seen as negative but
constitutes in our eyes an interesting result. We then addressed this issue in the general case when
Ki

dϕi
dxi

(Ki ) are different, we have determined some conditions for which the total population size
of the n connected patches at equilibrium may be greater than the sum of carrying capacities of
n isolated patches.

In Section 6, Two-patch model where the first patch is assumed to follow a logistic law and the
second a Richard law is studied. As for the logistic case, we have shown that three cases occur :
the total equilibrium population is always greater than the sum of carrying capacities (beneficial
case), the total equilibrium population is always smaller than the sum of carrying capacities
(detrimental case), and finally the effect of dispersal is beneficial to the total population for ϵ
less than a critical value ϵ0 and detrimental for ϵ > ϵ0 (Theorem 16). Next, the growth rate in
the second (resp. first) patch is supposed to be much larger than that in the first (resp. second)
one. We have given then the conditions for which patchiness is beneficial or detrimental for the
population in models (62) and (76) when η→ 0. In this configuration where the population of one
of the patches has a fast growing compared to the other patch, the critical value of migration rate
ϵ0 does not intervene.

Finally, comparisons the present results with previous works [1, 2, 14, 15] indicate that, in gen-
eral, the generalized growth rate mechanism has an effect on the dynamics of the total equilib-
rium population. Some questions remain open : is it possible to give a complete classification of
the conditions under which dispersal is either beneficial or detrimental to total equilibrium pop-
ulation in the case of two patches (i.e. System (12) for n = 2)? Is there a way to make connections
between the n patches that increases the total equilibrium population? How these results can be
generalized to Source-Sink patch-model?
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