
Comptes Rendus

Mathématique

Vivek Mohan Mallick and Samarpita Ray

Noncommutative tensor triangulated categories and coherent frames

Volume 361 (2023), p. 1415-1427

https://doi.org/10.5802/crmath.461

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.461
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2023, Vol. 361, p. 1415-1427
https://doi.org/10.5802/crmath.461

Algebra, Algebraic geometry / Algèbre, Gométrie algébrique

Noncommutative tensor triangulated

categories and coherent frames

VivekMohanMallick ∗,a and Samarpita Ray b

a Department of Mathematics, Indian Institute of Science Education and Research
(IISER) Pune, Pune 411008, India

b Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang 37673,
South Korea

E-mails: vmallick@iiserpune.ac.in (V.M. Mallick), ray.samarpita31@gmail.com (S. Ray)

Abstract. We develop a point-free approach for constructing the Nakano–Vashaw–Yakimov–Balmer spectrum
of a noncommutative tensor triangulated category under certain assumptions. In particular, we provide a
conceptual way of classifying radical thick tensor ideals of a noncommutative tensor triangulated category
using frame theoretic methods, recovering the universal support data in the process. We further show that
there is a homeomorphism between the spectral space of radical thick tensor ideals of a noncommutative
tensor triangulated category and the collection of open subsets of its spectrum in the Hochster dual topology.
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1. Introduction

The subject of tensor triangular geometry has been an active area of research for the past two
decades and has touched a wide range of areas in mathematics including algebraic geometry,
modular representation theory, stable homotopy theory, noncommutative topology, to name
a few. The subject involves the study of triangulated categories with a given biexact symmet-
ric monoidal functor called the tensor. Balmer [1, 2], reinterpreting a previous work of Thoma-
son [20], showed that the triangulated category of perfect complexes over a scheme X along with
the derived tensor functor contains enough data to reconstruct X , establishing that the subject is
rich enough to be studied. Associated to a tensor triangulated category C , Balmer [2] constructed
a locally ringed space Spec C called the spectrum of C which carries the geometric essence of
the tensor triangulated category. For example, Spec

(
Dperf(X )

) ∼= X for a quasi-compact, quasi-
separated scheme X (see [2, 8]). The construction of the spectrum involves constructing a space
out of prime thick tensor ideals of the tensor triangulated category. Balmer showed that this sat-
isfies the correct universal property among all spaces which act as targets for support data. In
the case of modular representation theory, where the relevant tensor triangulated category is the
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stable module category of modules over a finite group scheme G , the spectrum recovers the pro-
jective support variety.

In addition to capturing the underlying scheme, the subject of tensor triangular geometry fur-
ther lifts to this abstraction, the notions of finite étale maps [5], the Chow group and intersection
theory [4, 14, 15], Grothendieck–Neeman duality, Wirthmüller isomorphism [6] among others.
The theory also detects (the failure of) Gersten conjecture for singular schemes [3]. This demon-
strates the richness of the theory.

However, all tensor structures on triangulated categories need not be symmetric. The basic
examples being stable module categories over Hopf algebras. To study these Nakano, Vashaw
and Yakimov [17] introduced a noncommutative version of tensor triangulated categories and,
extending Balmer’s theory, constructed a topological space in terms of prime thick tensor ideals.
This construction is also universal in a manner parallel to Balmer’s construction. Nakano et al
prove that in various cases, where the spectrum can be computed, the space corresponds to
either the projective space of the cohomology ring of the Hopf algebra, or a quotient of that.

Following the success of the theories a natural direction of exploration will be to understand
the construction of spectrum itself to gain a better insight into the structure of the tensor
triangulated category. A conceptual and formal way of constructing the spectrum was described
by Kock and Pitsch [16] using the language of frames and locales (point free topology). Frames
are complete lattices where finite meet distributes over arbitrary joins (see [12] or Section 2.2).
A typical example of a frame is the lattice of open subsets of a topological space. The essence
of point free approach to topology is to reduce the study of topology to the study of these
frames. In this approach, one constructs the topological space in terms of the frame of open sets
instead of starting with a set of points. Spectral spaces are topological spaces homeomorphic
to the spectrum of a commutative ring. The spectral spaces correspond to coherent frames (see
Definition 6) in the point free approach. Kock and Pitsch gave a point free description of the
Balmer spectrum of a (commutative) tensor triangulated category C as the Hochster dual of
the spectral space associated to the coherent frame of radical thick tensor ideals of the tensor
triangulated category. They also define a notion of support taking values in a frame and prove
that the coherent frame of radical thick tensor ideals is universal as a target for such supports.
Kock and Pitsch’s paper shows that one can arrive at various results about the Balmer spectrum
(including the sheaf of rings) from this viewpoint.

In this paper, we explore the noncommutative Balmer spectrum studied by Nakano et al from a
frame theoretic viewpoint. However, in this case the arguments have to be modified substantially
due to the lack of commutativity of tensor and consequently the failure of the construction of the
radical of an ideal by adjoining nth roots (where n is a natural number). For the modified argu-
ments to work, one needs to restrict to a class of noncommutative tensor triangulated categories,
where the prime ideals (defined in terms of thick tensor ideals as I J ⊆ P =⇒ (I ⊆ P ) or (J ⊆ P )) are
complete primes (defined in terms of objects, i.e., A⊗B ∈ P =⇒ (A ∈ P ) or (B ∈ P )). As Nakano et
al [19] shows there is a rich class of examples where this holds, for instance the stable module cat-
egory of any finite dimensional unipotent Hopf algebra (see [18, example 5.1.2]). Following Kock
and Pitsch, we extend the notion of a frame theoretic support data to the noncommutative setup
and prove the relevant universal properties to recover the spectrum. Let K be a (noncommuta-
tive) tensor triangulated category. The radical thick tensor ideals form a coherent frame (Theo-
rem 16) and the association of a ∈ Ob(K) to the smallest radical thick tensor ideal containing a
gives a universal frame-theoretic support datum (Theorem 20) giving us a classification of radi-
cal thick tensor ideals (Theorem 21). The relation of this construction with the Nakano–Vashaw–
Yakimov–Balmer spectrum is clarified in Corollary 22. Nakano et al’s construction of the univer-
sal support data taking values in the Balmer spectrum is recovered in a frame theoretic way in
Proposition 30. Finally, extending a result by Banerjee [7], we also show that there is a homeo-
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morphism between the set of radical thick tensor ideals and the set of closed subsets of the spec-
trum with quasi-compact complements under the proper notions of topologies on these sets (see
Theorem 32).

2. Preliminaries

2.1. Noncommutative tensor triangulated category and support

A general noncommutative theory of tensor triangular geometry was introduced by Nakano,
Vashaw and Yakimov in [17]. They further studied support maps and its connection with tensor
product in the setup of noncommutative tensor triangular geometry in their next paper [19]. In
this section, we recall some definitions and results from [17] and [19].

A noncommutative tensor triangulated category, as introduced in [17], is a triangulated cat-
egory K with a biexact monoidal structure. Throughout this paper K will denote an essentially
small noncommutative tensor triangulated category.

Definition 1 ([17, § 1.2]).

(1) A thick tensor ideal of K is a full triangulated subcategory I of K such that it contains all
direct summands of its objects and for any A ∈ Ob(I), we have A ⊗B ,B ⊗ A ∈ Ob(I) for all
B ∈Ob(K).

(2) A prime ideal of K is a proper thick tensor ideal P such that for all thick tensor ideals I and
J of K, we have I⊗ J ⊆ P =⇒ I ⊆ P or J ⊆ P. We denote by Spc(K) the collection of all prime
ideals of K.

(3) A completely prime ideal of K is a proper thick tensor ideal P such that A⊗B ∈ P =⇒ A ∈ P
or B ∈ P for all A,B ∈Ob(K).

Definition 2 ([17, § 1.2]). The noncommutative Balmer spectrum Spc(K) of K is the topological
space of prime ideals of K endowed with the Zariski topology which is given by closed sets of the
form

V (S) = {
P ∈ Spc(K)

∣∣P∩S =;}
for all subsets S of K.

Let X be a topological space and let Xcl (X ) denote the collection of all closed subsets of X .

Definition 3 ([17, Definition 4.1.1]). A map σ : K −→ Xcl (X ) is called a (noncommutative)
support datum if the following conditions are satisfied:

(1) σ(0) =; and σ(1) = X
(2) σ(A⊕B) =σ(A)∪σ(B), ∀ A,B ∈Ob(K)
(3) σ(

∑
A) =σ(A), ∀ A ∈Ob(K)

(4) If A −→ B −→C −→∑
A is a distinguished triangle, then σ(A) ⊆σ(B)∪σ(C )

(5)
⋃

C ∈Ob(K)σ(A⊗B ⊗C ) =σ(A)∩σ(B), ∀ A,B ∈Ob(K)

We recall (see, [17, Lemma 4.1.2]) that the restriction of the map V (as in Definition 2) to the
objects of K gives a support datum K −→Xcl (Spc(K)).

Theorem 4 ([17, Theorem 4.2.2]]). The support V is final among all the support dataσ of K such
that σ(A) is closed for each A ∈Ob(K). Equivalently, for any support datum σ satisfying the above
condition, there is a unique continuous map fσ : X −→ Spc(K) such that σ(A) = f −1

σ (V (A)). This
map is precisely given by

fσ(x) = {A ∈Ob(K) |x ∉σ(A)} .
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2.2. Coherent frames and support

In this section, we recall some definition and results from [12, 13] and [16].

Definition 5. A frame is a complete lattice which satisfies the infinite distributive law:

a ∧ ∨
s∈S

s = ∨
s∈S

(a ∧ s).

A frame map is a lattice map that preserves arbitrary joins. The category of frames and frame maps
is denoted by Frm.

There is a pair of adjoint functors between the category of topological spaces Top and the
opposite category of frames Frmop which we now recall ([12, § II.1.4]). The open sets of any
topological space form a frame with join operation given by union of open sets and finite meet
given by intersection. This gives a functor Top −→ Frmop which has a right adjoint, the functor
of points. A point of a frame is a frame map x : F −→ {0,1} where {0,1} is the Boolean algebra of
two elements (with 0 < 1). The set of points of any frame form a topological space whose open
sets are given by sets of the form {x : F −→ {0,1} | x(u) = 1} for any u ∈ F and this gives the functor
Frmop −→ Top.

We recall from [12, § II.3.1] that an element a of a frame F is called finite if for every subset
S ⊆ F with a ≤ ∨

s∈S
s, there exists a finite subset S′ ⊆ S with a ≤ ∨

s∈S′s.

Definition 6 ([12, § II.3.2]). A frame is called coherent if every element of the frame can be
expressed as a join of finite elements and the finite elements form a sublattice (equivalently, 1 is
finite and the meet of two finite elements is finite).

Spectral spaces, introduced by Hochster in [11], are topological spaces homeomorphic to the
spectrum of a commutative ring. A spectral map between spectral spaces is a continuous map
such that the inverse image of a quasi-compact open is quasi-compact. Every coherent frame
corresponds uniquely to a spectral space. In fact, we have the following theorem:

Theorem 7 ([13]). The category of spectral spaces and spectral maps is contravariantly equivalent
to the category of coherent frames and coherent maps.

For a spectral space X , Hochster [11] considered a new topology on X by taking as basic open
subsets the closed sets with quasi-compact complements. The space so obtained is called the
Hochster dual of X and it is denoted by X ∨. He showed that the Hochster dual X ∨ of any spectral
space X is also a spectral space and that X ∨∨ = X . Motivated by this, the Hochster dual of a
coherent frame is defined as follows:

Definition 8 ([16, Definition 1.2.4]). The Hochster dual of a coherent frame F is its join comple-
tion.

We recall that an ideal of a frame (in general for any lattice) is a down-set, closed under finite
joins. An ideal I of a frame F is called prime if 1 ∉ I and if a ∧b ∈ I implies either a ∈ I or
b ∈ I . The points of a frame F correspond bijectively to prime ideals of F . Indeed, any point
x : F −→ {0,1} corresponds to the prime ideal x−1(0). Moreover, in any frame, every prime ideal P

is principal and the generating element is uP := ∨
b∈P

b. We have

P = (uP ) = {b ∈ F |b ≤ uP } .

The generating element uP of a prime ideal P is called a prime element. Therefore, we have the
following natural bijections

points ↔ prime ideals ↔ prime elements.

Let (T ,⊗,1) be a (commutative) tensor triangulated category. We recall the definition of support
on (T ,⊗,1) from [16, § 3.2]:
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Definition 9. A support on (T ,⊗,1) is a pair (F,d) where F is a frame and d : Ob(T ) −→ F is a
map satisfying

(1) d(0) = 0 and d(1) = 1,
(2) d(

∑
a) = d(a), ∀ a ∈Ob(T )

(3) d(a ⊕b) = d(a)∨d(b), ∀ a,b ∈T

(4) d(a ⊗b) = d(a)∧d(b), ∀ a,b ∈T

(5) if a −→ b −→ c −→∑
a is a triangle in T , then d(b) ≤ d(a)∨d(c).

A morphism of supports from (F,d) to (F ′,d ′) is a frame map F −→ F ′ compatible with the maps d
and d ′.

3. Frames, Hochster duality and noncommutative tensor triangulated category

Assumption 10. All primes of K are complete primes.

One has a vast repertoire of examples where this assumption holds, and a detailed description
of the current knowledge about this can be found in the introduction of [19].

Definition 11. Let S be a set of objects in a noncommutative tensor triangulated category K. We
define G(S) to be the set of objects of K which are of the following forms:

(1) an iterated suspension or desuspension of an object in S,
(2) or a finite sum of objects in S,
(3) or objects of the form s ⊗ t and t ⊗ s with s ∈ S and t ∈ K,
(4) or an extension of two objects in S,
(5) or a direct summand of an object in S.

If I is a thick tensor ideal containing S, then clearly G(S) ⊆ I. Hence, by induction, Gω(S) :=⋃
n∈NGn(S) ⊆ I. It may be easily verified that Gω(S) is itself a thick tensor ideal and therefore it

is the smallest thick tensor ideal containing S. We will denote it by 〈S〉.
Recall that the radical of an ideal of a noncommutative ring is defined as the intersection of all

the prime ideals containing it. In the same spirit, we give the following definition.

Definition 12. We define the radical closure of a thick tensor ideal I of a noncommutative tensor
triangulated category K by p

I := ⋂
I⊆P

P

where P denotes the prime ideals of K. If I is a thick tensor ideal such that I =p
I, we call I radical.

Clearly, any prime ideal is radical. It is also clear that if I is a thick tensor ideal, then
p

I is a
radical thick tensor ideal. For any set of objects S, let

p
S denote the radical of the thick tensor

ideal 〈S〉.
Lemma 13. Let I and J be two thick tensor ideals and let S be a set of objects of K. Then,
{t ⊗ s | t ∈ I, s ∈ S} ⊆ J implies I⊗〈S〉 ⊆ J.

Proof. By definition, 〈S〉 = ⋃
n∈NGn(S) and G0(S) = S. So, by Assumption 10, I ⊗ G0(S) ⊆ J.

Suppose I⊗Gm(S) ⊆ J for some 0 ̸= m ∈N. We will now show that I⊗Gm+1(S) ⊆ J i.e.,

{t ⊗x | t ∈ I} ⊆ J (1)

for any x ∈ Gm+1(S). Obviously, (1) is satisfied if x is a finite sum of objects in Gm(S). If x is an
iterated suspension or desuspension of an object in Gm(S) or if x is an extension of two objects in
Gm(S), then (1) holds since ⊗ is biexact. If x is a direct summand of an object in Gm(S), then (1)
holds since J is thick. If x is of the form s ⊗k or k ⊗ s for any s ∈Gm(S) and k ∈ K, then clearly (1)
holds since I and J are ideals. Thus, by induction, we obtain I⊗Gn(S) ⊆ J for all n ∈ N. It follows
that I⊗〈S〉 ⊆ J. □
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Theorem 14. Let I be a thick tensor ideal of K. Then,
p

I = 〈{k ∈ K | k⊗n ∈ I for some n ∈N}〉.
Proof. Let S := {k ∈ K | k⊗n ∈ I for some n ∈ N}. Clearly, S ⊆ P for all prime ideals of K such
that P ⊇ I. Hence, 〈S〉 ⊆ p

I. Given t ∉ 〈S〉, consider the collection Ω of all ideals J ⊇ I such that
J∩ {t⊗n | n ∈ N} = ;. Clearly, I ∈ Ω and the set Ω can be partially ordered by inclusion and any
chain inΩ has an upper bound inΩ. Therefore, by Zorn’s Lemma there exists a maximal element,
say M, in Ω. Thus, M ⊇ I and M∩ {t⊗n | n ∈ N} = ;. It is now enough to show that M is prime to
prove that t ∉p

I.
Let k,k ′ ∈ K be such that k ⊗ k ′ ∈ M. It may be easily verified using Lemma 13 that 〈M,k〉 ⊗

k ′ ⊆ M and obviously we have 〈M,k〉M ⊆ M. Therefore, again applying Lemma 13 we obtain
〈M,k〉〈M,k ′〉 ⊆ M. Suppose, if possible, k,k ′ ∉ M. Since M is maximal, we must have t⊗n ∈ 〈M,k〉
and t⊗m ∈ 〈M,k ′〉 for some n,m ∈ N. This implies t⊗(n+m) ∈ 〈M,k〉〈M,k ′〉 ⊆ M which gives the
required contradiction. □

Lemma 15. Let RadK denote the poset of radical ideals of a noncommutative tensor triangulated
category K satisfying Assumption 10. Then, RadK is a frame with the following meet and join
operations:

I1
∧

I2:=I1
⋂

I2∨
j ∈ J

I j :=
√ ⋃

j ∈ J
I j

for any two radical thick tensor ideals I1 and I2 and for any set of radical thick tensor ideals {I j } j ∈ J .

Proof. By definition,
∨

j ∈ J I j is a radical thick tensor ideal. Also, given a set of radical thick tensor
ideals {Ii }i ∈ I , we have

Ii =
√

Ii =
⋂

Ii ⊆P
P ⊇ ⋂⋂

i ∈ I Ii ⊆P
P =

√⋂
i ∈ I

Ii

for every i ∈ I . Thus, we have
⋂

i ∈ I Ii =
√⋂

i ∈ I Ii . Hence, RadK is a complete lattice. Let us now
verify that ∨

i ∈ I

(
J
⋂

Ii
)= J

⋂(∨
i ∈ I

Ii

)
.

We clearly have
∨

i ∈ I (J
⋂

Ii ) ⊆ J
⋂

(
∨

i ∈ I Ii ). Now, let x ∈ J
⋂

(
∨

i ∈ I Ii ). We define

Cx :=
{

k ∈ ∨
i ∈ I

Ii

∣∣∣∣∣x ⊗ s ⊗k, k ⊗ s ⊗x ∈ ∨
i ∈ I

(
J
⋂

Ii
)

for all s ∈ K

}
.

We claim that Cx = ∨
i ∈ I Ii . If our claim holds, then x ∈ Cx which implies x ⊗ x ∈ ∨

i ∈ I (J
⋂

Ii ) =⋂
∪i ∈ I J∩Ii ⊆PP. Since, by assumption, all primes are complete, we have x ∈ ∨

i ∈ I (J
⋂

Ii ) and this
completes the proof. We will now give a proof of our claim.

First, we show that Cx is a thick subcategory of K. Note that it is clear that Cx is triangulated.
Let k1,k2 ∈ K be such that k1 ⊕k2 ∈Cx . Then since

∨
i ∈ I (J

⋂
Ii ) is a thick subcategory, we have

(k1 ⊕k2)⊗ s ⊗x, x ⊗ s ⊗ (k1 ⊕k2) ∈ ∨
i ∈ I

(
J
⋂

Ii
)

=⇒ (k1 ⊗ s ⊗x)⊕ (k2 ⊗ s ⊗x), (x ⊗ s ⊗k1)⊕ (x ⊗ s ⊗k2) ∈ ∨
i ∈ I

(
J
⋂

Ii
)

=⇒ k1 ⊗ s ⊗x, k2 ⊗ s ⊗x, x ⊗ s ⊗k1, x ⊗ s ⊗k2 ∈
∨
i ∈ I

(
J
⋂

Ii
) =⇒ k1, k2 ∈Cx .

Next, we show that Cx is a two-sided ideal. Let k ∈ Cx and let t ∈ K. Since x ⊗ s ⊗ k, k ⊗ s ⊗ x ∈∨
i∈I (J

⋂
Ii ) for all s ∈ K, we have x ⊗ s ⊗ (k ⊗ t ) = (x ⊗ s ⊗k)⊗ t ∈ ∨

i∈I (J
⋂

Ii ) and (k ⊗ t )⊗ s ⊗ x =
k ⊗ (t ⊗ s)⊗x ∈∨

i∈I (J
⋂

Ii ). This implies k ⊗ t ∈Cx . Similarly, t ⊗k ∈Cx .
We will now show that Cx is radical. Clearly, Cx ⊆p

Cx . Now, if possible, let t ∈p
Cx =⋂

Cx ⊆P P
be such that t ∉Cx . This implies either x⊗s⊗ t or t ⊗s⊗x does not belong to

∨
i ∈ I (J

⋂
Ii ) for some
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s ∈ K. Without loss of generality, suppose x⊗s⊗t ∉∨
i ∈ I (J

⋂
Ii ) =⋂

∪i ∈ I (J∩Ii )⊆PP. Then, there exists
some prime ideal P0 ⊇⋃

i ∈ I (J
⋂

Ii ) such that x⊗s⊗t ∉ P0. This implies x ∉ P0 and t ∉ P0. For k ∈Cx ,
we have

x ⊗k, k ⊗x ∈ ∨
i ∈ I

(
J
⋂

Ii
)⊆ P0.

Hence k ∈ P0 showing that Cx ⊆ P0. Therefore, t ∈p
Cx ⊆ P0. This gives the required contradiction.

Therefore, Cx is radical. It is clear that Ii ⊆ Cx for all i ∈ I . Hence,
⋃

i ∈ I Ii ⊆ Cx and since Cx is
radical, we must have Cx =∨

i ∈ I Ii . □

Theorem 16. The poset of radical thick tensor ideals RadK of a noncommutative tensor triangu-
lated category K satisfying Assumption 10 forms a coherent frame.

Proof. By Lemma 15, we know that RadK forms a frame. It is now enough to check that an
element of the frame RadK is finite if and only if it is a principal radical thick tensor ideal i.e.,
of the form

p
k for some k ∈ K. Let I be a finite element of the frame RadK. Then, clearly we have

I ⊆
√⋃

k ∈I

p
k = ∨

k ∈I

p
k.

Since I is radical, k ∈ I implies
p

k ⊆ I. Thus, I =∨
k ∈I

p
k. Since I is finite, there exists k1, . . . ,kn ∈ I

such that I ⊆
√

k1 ∨ . . .∨
√

kn . We observe that I ⊆
√√

k1 ∪·· ·∪
√

kn ⊆
√

k1 ⊕·· ·⊕kn ⊆ I. Thus,

I =
√√

k1 ∪·· ·∪
√

kn =
√

k1 ⊕·· ·⊕kn .

Therefore, I is of the form
p

k.
Conversely, let I =

√
k0 for some k0 ∈ K. We need to check that I is a finite radical thick tensor

ideal. Assume that √
k0 ⊆

∨
λ∈Λ

Jλ,

where the Jλ are radical thick tensor ideals. Then in particular k0 ∈ √⋃
λ∈Λ Jλ. Let us denote⋃

λ∈Λ Jλ by S. Thus, by Proposition 14,

k0 ∈
√
〈S〉 =

√√√√〈 ⋃
λ∈Λ

Jλ

〉
=

〈{
k ∈ K

∣∣∣∣∣k⊗n ∈
〈 ⋃
λ∈Λ

Jλ

〉
for some n ∈N

}〉
.

Let the finitely many elements of {k ∈ K | k⊗n ∈ 〈⋃λ∈Λ Jλ〉 for some n ∈N} involved in the iterative
construction of k0 be k1, . . . ,kr i.e.,

k0 ∈ 〈k1, . . . , kr 〉 ⊆
√
〈S〉. (2)

Then, we have k⊗ni
i ∈ 〈⋃λ∈Λ Jλ〉 for some ni ∈ N for each i = 1, . . . , r . Let the finitely many

elements of
⋃
λ∈Λ Jλ involved in the iterative construction of k⊗ni

i , i = 1, . . . , r be x1, . . . , xm .
Suppose {x1, . . . , xm} ⊆ Jλ1 ∪ . . .∪ Jλν for some ν ∈N. Thus, for each i = 1, . . . , r , we have

k⊗ni
i ∈ 〈{x1, . . . , xm}〉 ⊆ 〈

Jλ1 ∪·· ·∪ Jλν
〉 =⇒ ki ∈

√〈
Jλ1 ∪·· ·∪ Jλν

〉= Jλ1 ∨·· ·∨ Jλν
and hence by (2)

k0 ∈ 〈k1, . . . , kr 〉 ⊆ Jλ1 ∨·· ·∨ Jλν .

Thus,
√

k0 ⊆ Jλ1 ∨·· ·∨ Jλν which proves that
√

k0 is finite. □

Definition 17. We call the frame of radical thick tensor ideals of a noncommutative tensor
triangulated category K satisfying Assumption 10 the Zariski frame of K and we denote it by Zar(K).
By the Zariski spectrum of K we mean the spectral space associated to Zar(K) and we denote it by
SpecZ ar (K).

Next, we introduce a notion of support for a noncommutative tensor triangulated category.
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Definition 18. A support on K is a pair (F,d) where F is a frame and d : Ob(K) −→ F is a map
satisfying:

(1) d(0) = 0 and d(1) = 1
(2) d(

∑
k) = d(k) ∀ k ∈ K

(3) d(k ⊕ t ) = d(k)∨d(t ) ∀ k, t ∈ K
(4) d(k ⊗ t ) = d(k)∧d(t ) = d(t ⊗k) ∀ k, t ∈ K
(5) If k −→ t −→ r −→∑

k is a triangle in K, then d(t ) ≤ d(k)∨d(r )

A morphismϕ : (F,d) −→ (F ′,d ′) is a morphism of framesϕ : F −→ F ′ such that d ′(a) =ϕ(d(a)) for
all a ∈Ob(K).

Remark 19. This definition of support is motivated by the one in [16], recalled here in Defini-
tion 9. We shall see that under Assumption 10 this continues to correspond to a notion of support
on noncommutative tensor triangulated categories as described by Nakano, Vashaw and Yaki-
mov.

Theorem 20. Let K be a noncommutative tensor triangulated category satisfying Assumption 10.
Then the assignment s : Ob(K) −→ Zar(K), k 7→ p

k is a support. Moreover, it is initial among all
supports.

Proof. We have p
1 = ⋂

1∈P
P =⋂

;
= 〈1〉 and I∨p

0 = ⋂
I=I∪p0 ⊆ P

P = I

for any I ∈ Zar(K). Thus, clearly condition (1) in Definition 17 is satisfied. Also, conditions (2)
and (5) are clearly satisfied using the fact that prime ideals are triangulated subcategories of K.
Also, since prime ideals are thick, we have

p
k ⊆ p

k ⊕ t and
p

t ⊆ p
k ⊕ t for any k, t ∈ K and

so
p

k ∨p
t ⊆ p

k ⊕ t . Conversely, we clearly have k ⊕ t ∈ p
k ∨p

t . Hence, condition (3) is also
satisfied. Let us now check condition (4). It is clear that

p
k ⊗ t ⊆ p

k and
p

k ⊗ t ⊆ p
t and

therefore
p

k ⊗ t ⊆ p
k ∩p

t . Finally, we have
p

k ∩p
t ⊆ p

k ⊗ t since all primes are complete,
by Assumption 10. This shows that s is a support.

We will now show that s is initial among all supports. Let d : Ob(K) −→ F be an arbitrary
support. Since Zar(K) is coherent, every element is a join of finite elements and so any frame
map Zar(K) −→ F is completely determined by its value on finite elements. So consider the frame
map u : Zar(K) −→ F given by

p
k 7→ d(k). Clearly, we have u ◦ s = d . In fact, it is also clear that

there cannot be any other choice of map Zar(K) −→ F which is compatible with s and d . So there
is at most one support map u. Let us now check that u is well defined. Let k, t ∈ K be such thatp

k =p
t . We define I (t ) = {r ∈ K | d(r ) ≤ d(t )}. It follows from the properties of the support d that

I (t ) is a thick tensor ideal. Moreover, if s ∈ K be such that s⊗n ∈ I (t ) for some n ∈N, then s ∈ I (t )
since d(s⊗n) = d(s). Therefore, it follows from Proposition 14 that I (t ) is a radical thick tensor
ideal containing t and hence

p
t . Since

p
k ⊂p

t ⊆ I (t ) we have d(k) ≤ d(t ) and by symmetry we
obtain our desired result. □

We now proceed to show that if K is a noncommutative tensor triangulated category satisfying
Assumption 10, then the noncommutative Balmer spectrum Spc(K) is the Hochster dual of the
Zariski spectrum SpecZ ar (K) of K.

Theorem 21. Let K be a noncommutative tensor triangulated category satisfying Assumption 10.
Then,

(1) the frame-theoretic points of Zar(K) correspond bijectively to prime thick tensor ideals in K.
(2) Under the above correspondence, a finite element

p
k of Zar(K) corresponds to the set of

prime thick tensor ideals {P ∈ Spc(K) | k ∉ P}.

Proof.
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(1) Recall that for any frame F , the frame-theoretic points of F correspond bijectively to the
prime ideals of F and the prime ideals in turn are in natural bijection with the prime
elements of F . Now, we put F = Zar(K). For any point x : Zar(K) −→ {0,1} of Zar(K), the
corresponding prime ideal of Zar(K) is given by px := x−1(0) and the corresponding prime
element of Zar(K) is given by Ix := ∨

I∈px I. We also know px = (I)x = {I ∈ Zar(K) | I ⊆ Ix }.
We will now show that Ix is prime. Let J1 and J2 be thick tensor ideals such that J1⊗J2 ⊆ Ix .
Clearly, (J1 ∩ J2)⊗2 ⊆ J1 ⊗ J2 ⊆ Ix . Since Ix is radical, we have J1 ∩ J2 ⊆ Ix by Proposition 14.
Therefore, we have J1∧J2 = J1∩J2 ∈ (Ix ) = px in the frame Zar(K). Since px is a prime ideal
of Zar(K) we must have J1 ∈ px or J2 ∈ px . In other words, we have J1 ⊆ Ix or J2 ⊆ Ix which
proves that Ix is prime. Thus, we obtain the following well defined map of sets{

frame-theoretic points of Zar(K)
}−→ {

prime thick tensor ideals in K
}

x 7→ Ix . (3)

If Ix = Iy , then we have x−1(0) = px = (Ix ) = (Iy ) = py = y−1(0). Clearly, this implies x = y
showing that (3) is an injection. To show surjection, let P be any prime thick tensor ideal
of K. It may be easily verified that (P) := {I ∈ Zar(K) | I ⊆ P} defines a prime ideal of the
frame Zar(K). Now, we define y : Zar(K) −→ {0,1} by

y(I) :=
{

0 if I ∈ (P)

1 otherwise

It may be easily verified that y : Zar(K) −→ {0,1} is a morphism of frames which shows
that y is a frame-theoretic point of Zar(K). Since py := y−1(0) = (P), it follows that y maps
to P under (3).

(2) The open set corresponding to the finite element
p

k of the coherent frame Zar(K ) is
{x : Zar(K) −→ {0,1} | x(

p
k) = 1}. Clearly, we have

x(
p

k) = 1 ⇐⇒
p

k ∉ px = x−1(0) = (Ix ) ⇐⇒ k ∉ Ix .

Since (3) is a bijection, it follows that the set {x : Zar(K) −→ {0,1} | x(
p

k) = 1} corresponds
bijectively to the set of prime thick tensor ideals {P ∈ Spc(K) | k ∉ P}.

□

Corollary 22. Let K be a noncommutative tensor triangulated category satisfying Assumption 10.
The noncommutative Balmer’s spectrum Spc(K) of K is the Hochster dual of the Zariski spectrum
SpecZ ar (K).

Proof. The topology of Spc(K) is given by open sets which are complements of the sets of the
form {P ∈ Spc(K) | k ∉ P}. The result therefore follows from Theorem 21. □

From the frame theoretic support datum, one can reconstruct the support datum V : K −→
Xcl (Spc(K)) described by Nakano, Vashaw and Yakimov [19, Definition 2.3.1]. This is described
below in terms of a functorial equivalence between the frame theoretic support datum and the
support datum taking values in closed subsets of Spc(K).

Construction 23. We briefly recall the construction of a topological support datum corresponding
to a frame theoretic support datum. Suppose that d : K → F is a frame-theoretic support datum
and that F is coherent. Let XF be the spectral space corresponding to F (see Theorem 7). We know
that the points in XF correspond to frame maps p : F → {0,1} and the topology consists of open sets
U f = {p ∈ XF |p( f ) = 1}. Let YF be the Hochster dual of XF , where the open sets are closed subsets of
XF with quasi-compact complement. Consider the assignment σ : K −→Xcl (YF ) given by

σ(a) = {
p ∈ XF

∣∣p(d(a)) = 1
}

.

This is well defined (see Remark 24).
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One also has a reverse construction. By the Lemma in [12, p. 41], the closed subsets of YF are
in one-to-one correspondence with elements of F . Thus, given a support σ : K −→ Xcl (YF ), one
can define for a ∈ K, d(a) to be the element of F corresponding to the closed subset σ(a). When
σ satisfies the tensor product property, d turns out to be a frame theoretic support in the sense of
Definition 18.

Remark 24. In the argument below we shall need the fact that the support σ(a) constructed
above are closed subsets of YF . This is standard and can be seen as follows. The space YF is
denoted by (Spec F )inv in [9]. The subsets of the form {p : F −→ {0,1} |p(a) = 1} are quasi-compact
by [9, 2.2.3(c)] as Spec F inherits the subspace topology from 2F .

Notation 25. Let F be the category of support data for K taking values in coherent frames as in
Definition 18.

Let S be the category of support data for K taking values in spectral topological spaces,
along with the restriction that the support data should have the tensor product property. In
other words, an object (X ,σ) in S is a support datum σ : K −→ Xcl (X ), where X is a spectral
topological space and σ in addition to being a support datum as defined in Definition 3, satisfies
σ(a ⊗b) = σ(a)∩σ(b). A morphism ψ : (X ,σ) −→ (X ′,σ′) in S is a continuous map f : X −→ X ′

such that for all a ∈Ob(K), σ(a) = f −1(σ′(a)).

Lemma 26. Suppose (F,d) belongs to F . Then the support datum (YF ,σ) constructed in Construc-
tion 23 belongs to S . Conversely, if (X ,τ) belongs to S , then the reverse construction gives an ele-
ment (FX ,d) of F .

Proof. Suppose (F,d) ∈F . That d(0) = 0 and d(1) = 1 (property (1) in Definition 18) implies that
σ(0) =; and σ(1) = X and that d(Σk) = d(k) for all k ∈Ob(K) implies that σ(Σ(k)) =σ(k) for all k
is straightforward.

We know that d(k ⊕ t ) = d(k)∨d(t ) for all k, t ∈Ob(K). Thus,

σ(k ⊕ t ) = {
p

∣∣p(d(k ⊕ t )) = 1
}= {

p
∣∣p(d(k)∨d(t )) = 1

}= {
p

∣∣p(d(k))∨p(d(t )) = 1
}

= {
p

∣∣p(d(k)) = 1 or p(d(t )) = 1
}= {

p
∣∣p(d(k)) = 1

}∪{
p

∣∣p(d(t )) = 1
}

=σ(k)∪σ(t ).

proving (2) of Definition 3.
Property (5) in Definition 18 implies that if a → b → c → Σa is a distinguished triangle then

d(a) ≤ d(b)∨d(c). Thus, for any point p : F → {0,1}, p(d(a)) ≤ p(d(b))∨p(d(c)). We have

σ(a) = {
p

∣∣p(d(a)) = 1
}

⊆ {
p

∣∣p(d(b))∨p(d(c)) = 1
}= {

p
∣∣p(d(b)) = 1 or p(d(c)) = 1

}
=σ(b)∪σ(c).

This establishes Definition 3(4). It remains to check (5). Note that for any a,b ∈Ob(K),

σ(a ⊗b) = {
p

∣∣p(d(a ⊗b)) = 1
}= {

p
∣∣p(d(a))∧p(d(b)) = 1

}
(by Definition 18(4))

= {
p

∣∣p(d(a)) = 1
}∩{

p
∣∣p(d(b)) = 1

}=σ(a)∩σ(b).

Thus such a support satisfies the tensor product property and hence also satisfies the prop-
erty (5). This completes the proof that (Y ,σ) constructed in c Construction 23 belongs to S .
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Conversely suppose (X ,σ) ∈ S . Let us denote the coherent frame corresponding to
X by FX , and d(a) to be the element of FX corresponding to the closed subset σ(a) ={
p ∈ YXF

∣∣p(d(a)) = 1
}
. Now observe the equalities:

σ(a)∪σ(b) = {
p

∣∣p(d(a)) = 1
}∪{

p
∣∣p(d(b)) = 1

}
= {

p
∣∣p(d(a)) = 1 or p(d(b)) = 1

}= {
p

∣∣p(d(a)∨d(b)) = 1
}

.

σ(a)∩σ(b) = {
p

∣∣p(d(a)) = 1
}∩{

p
∣∣p(d(b)) = 1

}
= {

p
∣∣p(d(a)) = 1 and p(d(b)) = 1

}= {
p

∣∣p(d(a)∧d(b)) = 1
}

.

These equalities, along with the fact that the subset
{

p
∣∣p( f ) = 1

}
uniquely determines f , and the

computations above give us the fact that d satisfies all the properties listed in Definition 18. Thus
(FX ,d) ∈F . □

Definition 27. Let Ξ : F −→S and Γ : S −→F be the two maps constructed in Construction 23.
These are well defined by Lemma 26.

Lemma 28. Ξ and Γ are contravariant functors inducing equivalences between F and S .

Proof. That Σ ◦Ξ and Ξ ◦Σ are naturally isomorphic to the identity functors follow from the
correspondence between spectral spaces and coherent frames and the computations done in
the proof of Lemma 26. □

Lemma 29. (F0,d0) is an initial support datum in F if and only if the corresponding support
datum (YF0 ,σ0) =Ξ((F0,d0)) is a final support datum.

Proof. This follows from the contravariance of the functors involved. □

Theorem 30. Let K be a noncommutative tensor triangulated category satisfying Assumption 10,
and Spc(K) be the corresponding noncommutative Balmer spectrum. The support datum given
by k 7→ p

k taking values in Zar(K) induces a support (in the sense of Definition 3) on Spc(K).
Moreover, this support datum matches with the one given by V : K −→Xcl (Spc(K)):

V (A) = {
P ∈ Spc(K)

∣∣ A ∉ P
}

.

Proof. We know that the support datum (Zar(K),p ) is initial in F . Thus Ξ
(
(Zar(K),p )

)
is a final

support datum in S , i.e. it is final among all support data of the form (X ,σ : K −→ Spc(K)).
But by [19, Theorem 2.3.2(a)], V described above is also the final support datum in S . Thus
by universality of final objects, there is a natural isomorphism between Ξ

(
(Zar(K),p )

)
and

(Spc(K,V ). □

Remark 31. Proposition 30 shows that the frame-theoretic methods reconstructs the support
function V from a categorical viewpoint.

Next, we show that the bijective correspondence between the radical thick tensor ideals and
the open subsets of Spc(K)∨ can be promoted to a homeomorphism of spectral spaces.

Theorem 32. Let K be a noncommutative tensor triangulated category satisfying Assumption 10
and let Spc(K)∨ be the Hochster dual of the noncommutative Balmer’s spectrum Spc(K). Then, the
following spaces are spectral and there is a homeomorphism between them:

(1) The frame Zar(K) of radical thick tensor ideals of K endowed with the topology generated
by the open sets

{I ∈ Zar(K) |k ∉ I} ∀ k ∈ K. (4)

(2) The poset Ω(Spc(K)∨) of open subsets of Spc(K)∨ (or equivalently, open subsets of
SpecZ ar (K)) endowed with the topology generated by the open sets{

V ∈Ω(
Spc(K)∨

)∣∣V ⊉U
} ∀ U ∈Ω(

Spc(K)∨
)

. (5)
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Proof. By Theorem 16, we know that the collection of radical thick tensor ideals Zar(K) of a
noncommutative tensor triangulated category K forms a coherent frame. Thus, by [7, Proposi-
tion 4.1], the set Zar(K) endowed with the lower interval topology is a spectral space. The lower
interval topology on Zar(K) is generated by the open sets (∀ I ∈ Zar(K))

L(I) = {
J ∈ Zar(K)

∣∣J⊉ I
}= ⋃

k ∈I
{J ∈ Zar(K) |k ∉ J} .

In other words, the lower interval topology on Zar(K) is generated by the collection in (4). By
Theorem 7 and Corollary 22, we know that there is an order-preserving bijective correspondence
between the radical thick tensor ideals and the open subsets of Spc(K)∨. Clearly, the lower
interval topology on the frame of open subsets of Spc(K)∨ is generated by the collection in (5).
Thus, we have the required homeomorphism. □

Remark 33. Hilbert’s Nullstellensatz is the most fundamental theorem in algebraic geometry
which establishes a bridge between geometry and algebra by relating algebraic sets to ideals
in polynomial rings over algebraically closed fields. Another classical fact is that the closed
subspaces of the spectrum Spec(R) of a commutative ring R are in bijective correspondence with
radical ideals of R which can be viewed as a nullstellensatz-like result. A topological enhancement
of this nullstellensatz-like result was provided by Finocchiaro, Fontana and Spirito in [10] where
they showed that this bijective correspondence can be promoted to a homeomorphism. In [7],
Banerjee provided a similar “topological nullstellensatz”-like result for a (commutative) tensor
triangulated category. Our Theorem 30 could be seen as a “topological nullstellensatz” for a
noncommutative tensor triangulated category.
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