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Abstract. We start from the contractive functional equation proposed in [4], where it was shown that the
polynomial solution of functional equation can be used to initialize a Neural Network structure, with a
controlled accuracy. We propose a novel algorithm, where the functional equation is solved with a converging
iterative algorithm which can be realized as a Machine Learning training method iteratively with respect to
the number of layers. The proof of convergence is performed with respect to the L∞ norm. Numerical tests
illustrate the theory and show that stochastic gradient descent methods can be used with good accuracy for
this problem.
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1. Introduction

Neural Networks representations of real monovariate polynomials defined on the closed segment
x ∈ I = [0,1] play a central role in the numerical analysis of Neural Networks (one can refer to [2,
4,9,11–13]). A central result is the Yarostky Theorem [16] which provides an approximation result
of general functions, by means of a specific Neural Network approximation of the polynomial
x 7→ x2 where the activation function is ReLU R(x) = max(0, x). This specific Neural Network can
have an arbitrary large number of hidden layers, so it provides a simple example of a Deep Neural
Network with perfectly known coefficients.

However, as pointed out by Ronald DeVore in 2019 [5], the stability of the approximation of
polynomial functions by Deep Neural Networks (i.e. with many hidden layers) is not addressed
in the current theory [7]. In particular it is already not the case for the Deep Neural Network
which approximates the polynomial x 7→ x2. To the best of the understanding of the author of
this Note, it is because all recent developments are devoted to abstract approximation theory
and are scarcely related to constructive algorithms.

The present Note provides a positive answer to the Ronald DeVore’s remark, by showing that
there exists an algorithm with the following properties:

• the algorithm constructs a series of functions which intend to approximate given real
polynomials in the reference segment I .
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• under conditions, the algorithm is proved to be convergent in the L∞ norm.
• it can be implemented in a Neural Networks/Machine Learning platform. The iterations

of the algorithm directly corresponds to the number of hidden layers. The number of
neurons which are trained per iteration of the algorithm is constant.

• numerical tests implemented in Tensorflow/Keras/Python [1] for very simple polynomi-
als confirm the theoretical properties in terms convergence and stability.

Even if restricted to academic extremely simple functions, the Deep Learning algorithm
presented in this Note seems the first one with a proof of convergence in L∞ norm, where the
iteration parameter is identical to the layer index. The reason is that the proposed formulation
is not doomed with the curse of non convex optimization problems. Instead it solves a series of
convex minimization problems. The convergence is insured due to the underlying contractive
structure explained in [4]. In the language of Neural Networks/Machine Learning, this Deep
Network is trained by means of a series of Shallow Networks (for which a comprehensive theory
with Barron’s functions emerges in [15]).

The Note is organized as follows. The setting of the problem is presented in Section 2. Dis-
cussion of a sharper contraction constant is the matter of Section 3. Section 4 is the core of the
Note where we define a specific Machine Learning algorithm as a series of convex minimization
problems. In Section 5, we show with an example that both contraction constants of Section 2
and 3 are non optimal. Final Section 6 is devoted to numerical tests which illustrate the theoreti-
cal properties. A discussion of the complexity of the algorithm and the presentation of some open
problems are proposed at the end.

2. A functional equation

The notations and results are borrowed from a previous work [4]. They form the foundations on
which the algorithm will be developed and justified.

The set of real polynomials is P n = {
p of degree ≤ n

}
. The set of continuous functions C 0(I )

over I is equipped with the maximal norm ∥ f ∥L∞(I ) = maxi∈I | f (x)|. We consider a subdivision
in m ≥ 1 subintervals [x j , x j+1] where 0 = x0 < x1 < ·· · < x j < ·· · < xm = 1 where x j = j∆x with
∆x = 1/m. The set of continuous piecewise linear functions is

Vh =
{

u ∈C 0(I ), u|(x j ,x j+1) ∈ P 1 for all 0 ≤ j ≤ m −1
}

.

As in [4], we define the subset Eh ⊂Vh

Eh = {
u ∈Vh : u(I ) ⊂ I , u is non constant on exactly one subinterval

}
.

Functions in this set are called basis functions because of their central role, even if they are not
classical Finite element basis functions. Finite Elements in Vh or in Eh are easy to implement
with ReLU (R(x) = max(0, x)) and with TReLU (ReLU with threshold) activation functions. The
function TReLU is described in the Keras online documentation https://keras.io/api/layers/
activations/.

Once a real polynomial function H ∈ P n is given, the following problem is considered [4].

Problem 1. Find
(
e0,e1, . . . ,er ,β1, . . . ,βr

) ∈Vh × (Eh)r ×Rr such that the identity below holds

H(x) = e0(x)+
r∑

i=1
βi H ◦ei (x), x ∈ I , (1)

with the contraction condition

K < 1, K =
r∑

i=1
|βi |. (2)

https://keras.io/api/layers/activations/
https://keras.io/api/layers/activations/
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If n = 1 the problem becomes trivial. That is why we only consider n ≥ 2. The classical
example [2, 8, 16] is H(x) = x(1 − x) which satisfies H(x) = 1

4 g (x) + 1
4 H(g (x)) where g is the

normalized finite element function: g (x) = 2x for 0 ≤ x ≤ 1
2 and g (x) = 2(1− x) for 1

2 ≤ x ≤ 1.
Set e1(x) = min(2x,1) and e2(x) = min(2(1 − x),1) with e1,e2 ∈ Eh for h = 1/2. One obtains
H(x) = e0(x)+ 1

4 H(e1(x))+ 1
4 H(e2(x)) where e0(x) = 1

4 g (x). The contraction property (2) is satisfied
with a constant

∑ |βi | = 1
4 + 1

4 = 1
2 .

Contrary to [4], we now completely specify the basis functions in order to optimize some
approximations property and to explicit further implementation. We use a double index notation
where es = e j ,k for 1 ≤ s ≤ r , 1 ≤ j ≤ m and 1 ≤ k ≤ n −1. The basis functions are translated one
from the other (this property was already stated in [4])

e j+1,k (x) = e j ,k (x −∆x),

so the basis functions are completely determined by basis functions e1,k . For 1 ≤ k ≤ n−1 we take
in this work 

e1,k (x) = k−1
2(n−1) , x ≤ 0,

e1,k (x) = nm
2(n−1) x + k−1

2(n−1) , 0 ≤ x ≤ 1/m

e1,k (x) = n+k−1
2(n−1) , 1/m ≤ x.

(3)

It makes a total of r basis functions with

r = m(n −1). (4)

Lemma 2. For all possible indices 1 ≤ j ≤ m and 1 ≤ k ≤ n −1, one has e j ,k ∈ Eh .

Proof. Once the claim is proved for e1,k , it will be generalized by translation to the other basis
functions. By construction e1,k is continuous and piecewise affine. The left value is non negative
e1,k (0) = k−1

2(n−1) ≥ 0. The right value is e1,k (1/m) = nm
2(n−1) × 1

m + k−1
2(n−1) = n+k−1

2(n−1) ≤ n+n−2
2(n−1) ≤ 1.

Therefore x 7→ e1,k (x) takes its values between 0 and 1, which shows the claim. □

We remind the fundamental result proved recently in [4].

Theorem 3. Let H ∈ P n with more precisely deg(H) = n. There exists a threshold value m∗ such
that the functional equation (1) has a solution with the contraction property (2) for all m ≥ m∗.

Proof. For sake of completeness, we provide a short proof adapted to the new notations.
Consider the difference q = H−∑m

j=1

∑n−1
k=1 β j ,k H◦e j ,k where the coefficients are still unknowns

at this stage. The second derivative of H is noted p = H ′′. In all intervals, one can calculate the
second derivative q ′′ ∈ P n−2. In the interval I j = [ j /m, ( j +1)/m] one has

q ′′ = p −
n−1∑
k=1

β j ,k

(
nm

2(n −1)

)2

p ◦e j ,k

The objective is to find coefficients β j ,k such that q ′′ = 0 in I j .
The equality q ′′ = 0 in I j is equivalent to d r

d xr q ′′(x j ) = 0 for r = 0, . . . ,n − 2, because q ′′ is a
polynomial of degree n −2 in I j . It yields a square linear system

n−1∑
k=1

[(
nm

2(n −1)

)2+r

p(r )
(

k −1

2(n −1)

)]
β j ,k = p(r )(x j ), 0 ≤ r ≤ n −2.

The system is reorganized as
n−1∑
k=1

p(r )
(

k −1

2(n −1)

)
×β j ,k =

(
2(n −1)

nm

)2+r

p(r )(x j ), 0 ≤ r ≤ n −2. (5)

The linear system (5) can be recast under the form Mβ = b where the unknown β is the
collection of the β j ,k for 1 ≤ k ≤ n −1, the matrix M ∈ Mn−1(R) is of Vandermonde type and the
source b is provided by the right hand side of (5). Since the polynomial p ∈ P n−2 is non zero,
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the derivatives run for r = 0 to r = n − 1, and the n − 1 different evaluation points k−1
2(n−1) are

different (between 0 and 1
2 ), then it is a classical matter to show that det(M) ̸= 0. The coefficients

of the linear system on the left hand side the matrix does not depend on the interval index
j , so the matrix M does not depend neither on j nor on m, but only on n. Therefore M−1 is
bounded uniformly with respect to m. It is visible at inspection of (5) that the right hand satisfies
∥b∥ =O(1/m2). Therefore one obtains the bound

max
k

|β j ,k | ≤C /m2 uniformly with respect to j . (6)

Therefore

K =
m∑

j=1

n−1∑
k=1

|β j ,k | ≤C (n −1)/m, (7)

which yields the contraction property for m ≥ m∗ high enough.
With these coefficients, the difference q is a continuous function with vanishing second

derivatives in all I j . Therefore one can write q =−e0 ∈Vh and the claim is proved. □

What distinguishes the family (3) with the more general family considered in [4, Theorem 1] is
that the slope of the basis functions is always > 1. Indeed the slope nm

2(n−1) is by construction the
same for all basis functions (3), so since m ≥ 2 the property is evident. Considering (5), the greater
the slope the smaller the right hand side of the linear system. This is a reason why it is possible to
think that the family (3) provides better control of the coefficients β j ,k , so ultimately is optimal to
obtain a smaller contraction constant K , see (7).

3. A sharper contraction constant

The right hand side operator (1) written for the new basis functions is
H : L∞(I ) −→ L∞(I )

G 7−→
m∑

j=1

n−1∑
k=1

β j ,kG ◦e j ,k .
(8)

It is endowed with the contraction property (2)

∥H G∥L∞(I ) ≤ K ∥G∥L∞(I ), K =
m∑

j=1

n−1∑
k=1

|β j ,k | < 1. (9)

Such property is central for the justification of the Deep Learning algorithm of this Note.
The purpose in this Section is to present a sharper bound. Let us define

K̃ = 2

(
maxm

j=1

n−1∑
k=1

|β j ,k |
)

.

Lemma 4. One has the general bound: infe∈Vh ∥H (G)−e∥L∞(I ) ≤ K̃ ∥G∥L∞(I ).

Remark 5. The new contraction constant is sharper asymptotically for large m, because the sum
with respect to m in (9) is removed. Using (6), one gets the bound K̃ ≤C (n−1)/m2 which is better
than (7).

Proof. We write 1 j the indicatrix function of the interval I j , that is 1 j (x) = 1 for ( j −1)/m < x <
j /m and 1 j (x) = 0 for x < ( j −1)/m or j /m < x.

Let x j+ 1
2
= ( j + 1

2 )/m be the central point in the interval I j . One can write

H (G) =∑
j

∑
k
β j ,kG ◦e j ,k ×1 j +

∑
j

C j 1 j
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where
C j =

∑
i< j

∑
k
βi ,kG ◦ei ,k

(
x j+ 1

2

)+ ∑
j<i

∑
k
βi ,kG ◦ei ,k

(
x j+ 1

2

)
. (10)

Let e ∈Vh . A triangular inequality yields that

∥H (G)−e∥L∞(I ) ≤
∥∥∥∥∥∑

j

∑
k
β j ,kG ◦e j ,k ×1 j

∥∥∥∥∥
L∞(I )

+
∥∥∥∥∥∑

j
C j 1 j −e

∥∥∥∥∥
L∞(I )

. (11)

The first term is bounded as∥∥∥∥∥∑
j

∑
k
β j ,kG ◦e j ,k ×1 j

∥∥∥∥∥
L∞(I )

≤
(

maxm
j=1

n−1∑
k=1

|β j ,k |
)
∥G∥L∞(I ). (12)

To bound the second term, we design a piecewise affine function e ∈Vh as follows

e(x0) =C1, e(x j ) = C j +C j+1

2
for 1 ≤ j ≤ m1, e(xm) =Cm .

A proof by drawing shows that∥∥∑
C j 1 j −e

∥∥
L∞(I ) ≤ maxm−1

j=1

|C j+1 −C j |
2

. (13)

The definition of the constants C j and C j+1 yields that

C j+1 −C j =
∑
i< j

∑
k
βi ,kG ◦ei ,k

(
x j+ 3

2

)+∑
k
β j ,kG ◦e j ,k

(
x j+ 3

2

)+ ∑
j+1<i

∑
k
βi ,kG ◦ei ,k

(
x j+ 3

2

)
− ∑

i< j

∑
k
βi ,kG ◦ei ,k

(
x j+ 1

2

)−∑
k
β j+1,kG ◦e j+1,k

(
x j+ 1

2

)− ∑
j<i

∑
k
βi ,kG ◦ei ,k

(
x j+ 1

2

)
.

By definition (3), the basis functions are constant on the left and on the right of the interval where
they vary linearly. Therefore∑

i< j

∑
k
βi ,kG ◦ei ,k

(
x j+ 3

2

)− ∑
i< j

∑
k
βi ,kG ◦ei ,k

(
x j+ 1

2

)= 0

and ∑
j+1<i

∑
k
βi ,kG ◦ei ,k

(
x j+ 3

2

)− ∑
j<i

∑
k
βi ,kG ◦ei ,k

(
x j+ 1

2

)= 0.

So one deduces that

|C j+1 −C j | =
∣∣∣∣∣∑

k
β j ,kG ◦e j ,k

(
x j+ 3

2

)−∑
k
β j+1,kG ◦e j+1,k

(
x j+ 1

2

)∣∣∣∣∣
≤∑

k
|β j ,k |∥G∥L∞(I ) +

∑
k
|β j+1,k |∥G∥L∞(I )

(14)

which turns into

|C j+1 −C j | ≤ 2

(
maxm

j=1

n−1∑
k=1

|β j ,k |
)
∥G∥L∞(I ). (15)

The claim is a consequence of (11)–(15). □

4. A Deep Machine Learning algorithm

This Section comes to the core of this Note by presenting an abstract Deep Machine Learning
algorithm endowed with a proof of convergence with respect to the number of layers (so the
name Deep Learning). This Deep Learning algorithm can be implemented in one of the Neural
Networks/Machine Learning softwares freely available such as Tensorflow/Keras [1], Scikit-Learn
(Inria1), Pytorch (Facebook2), Julia (MIT licence3). This list is not exhaustive.

1https://scikit-learn.org/stable/
2https://pytorch.org
3https://julialang.org

https://scikit-learn.org/stable/
https://pytorch.org
https://julialang.org
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It is sufficient for this presentation to consider that Neural Networks/Machine Learning
softwares have two features: a) they manipulate functions assembled with ReLU like activation
functions and composition of functions, b) they perform numerical optimisation to fit the
coefficients, in particular with stochastic gradient descent methods [3, 7].

We assume that a certain number of basis functions e1, . . . ,er are decided. The basis functions
are assembled with the ReLU activation functions and alike. In the context of this work, a natural
choice is to take the basis functions defined by (3). We will write β = (β1, . . . ,βr ) ∈ Rr . For
(e0,β, f ) ∈Vh ×Rr ×L∞(I ), we will write g (e0,β, f ) ∈ L∞(I ) the function defined by

g (e0,β, f ) = e0 +
r∑

i=1
βi f ◦ei .

Let us decide of a given polynomial H ∈ P n . One constructs a cost function where the main
variables to optimize are e0 and β and the parameters are the functions f and H

J (e0,β : f , H) = ∥∥g (e0,β, f )−H
∥∥

L∞(I )

The algorithm below defines a sequence of functions ( fk )k∈N as the solution of minimization
problems.

• Initialization: The seed is the null function

f0(x) = 0 for all x ∈ I . (16)

• Iterations on k: The next function is fk+1 = g (e0,β, fk ) where (ek
0 ,βk ) is any solution of the

minimization problem

(ek
0 ,βk ) = argmin

(d0,α)∈Vh×Rr
∥g (d0,α, fk )−H∥L∞(I ). (17)

After comments on the Neural Network implementation of (16)–(17), we will show the conver-
gence fk → H in the L∞ norm.

Lemma 6. The number of hidden layers in a Neural Network implementation of fk is k −1.

Proof. Since f0 = 0 then f1 = g (e1
0,β1,0) ∈ Vh . Then f2 = g (e2

0,β2, f1) can be implemented in a
Neural Network with one hidden layer. Then f3 = g (e3

0,β3, f2) can be implemented in a Neural
Network with two hidden layers, and so one and so forth. □

The algorithm is correctly defined as shown by the next result.

Lemma 7. The minimization problem is convex (but not strictly convex), and has always at least
one solution. For any ( f , H) ∈ L∞(I )×L∞(I ), there exists a minimizer (e0,β) ∈Vh ×Rr such that

J (e0,β : f , H) ≤ J (d0,α : f , H) for all (d0,α) ∈Vh ×Rr .

The minimizer (e0,β) is a priori non unique.

Proof. Such a proof is standard in convex analysis in finite dimension [10].
The dimension of the linear space Vh is equal to m + 1, so any function h0 ∈ Vh admits the

linear expansion h0 = ∑m+1
p=1 δpϕp where the coefficients of the linear expansion are δp ∈ R and

Vh = Span(ϕp )1≤p≤m+1. Then one can write

g (h0,γ, f ) =
m+1∑
p=1

δpϕp +
r∑

i=1
βi f ◦ei (18)

which shows that g (h0,γ, f ) belongs to the linear subspace of L∞(I ) generated by the (ϕp )p

and the ( f ◦ ei )i . Let us take a linear basis in the vectorial space, the basis has a dimension
m + 1 ≤ q ≤ m + 1 + r , so the sum can be recovered in function on q coefficients only. It is a
classical exercice (not reproduced here) to show that the cost function J ( f0,γ : f , H) is coercive
with respect to these q coefficients: that is the cost function tends to +∞ as a norm of these q



Bruno Després 1035

coefficients tends to +∞. Since the cost function is bounded from below, then it has a minimum.
Finally it is a standard matter that the L∞ norm does not bring strict coercivity so uniqueness is
not guaranteed. □

As a consequence the sequence defined by the sequence of minimization problems (17) is a
priori non unique. Nevertheless it is convergent.

Theorem 8. Assume (1)–(2). Then a series (16)–(17) converges with the bound

∥ fk −H∥L∞(I ) ≤ K̂ k∥H∥L∞(I ), K̂ = min(K , K̃ ).

Proof. By (17) one has the bound ∥ fk+1 −H∥L∞(I ) ≤
∥∥d0 +∑r

i=1αi fk ◦ei −H
∥∥

L∞(I ) for all d0 ∈ Vh

and all α= (α1, . . . ,αr ) ∈Rr .
Let us take (d0,α) = (e0,β) in accordance with the representation (1)–(2). One deduces the

inequality

∥ fk+1 −H∥L∞(I ) ≤
∥∥∥∥∥e0 +

r∑
i=1

βi fk ◦ei −e0 −
r∑

i=1
βi H ◦ei

∥∥∥∥∥
L∞(I )

≤
∥∥∥∥∥ r∑

i=1
βi ( fk −H)◦ei

∥∥∥∥∥
L∞(I )

≤
r∑

i=1
|βi |∥ fk −H∥L∞(I )

≤ K ∥ fk −H∥L∞(I ).

One can also take (d0,α) = (e0 −e,β) where e ∈Vh is arbitrary. One obtains

∥ fk+1 −H∥L∞(I ) ≤
∥∥∥∥∥e0 −e +

r∑
i=1

βi fk ◦ei −e0 −
r∑

i=1
βi H ◦ei

∥∥∥∥∥
L∞(I )

≤ ∥∥H ( fk −H)−e
∥∥

L∞(I )

≤ K̃ ∥ fk −H∥L∞(I )

by virtue of (9) and Lemma 4.
So ∥ fk+1 −H∥L∞(I ) ≤ K̂ ∥ fk −H∥L∞(I ). Since f0 = 0, the claim is obtained by iteration on k. □

5. Non optimality of K̂

An elementary exemple that will be used for the numerical tests is the following. For this example
one can check that K̂ > 1. However we will see that a sharper value constant exists at the end of
the Section.

Lemma 9. Take the third order Tchebycheff polynomial rescaled in [0,1], that is H(x) =
T3(2x −1) = 32x3 −48x2 +18x −1. Take m = 3 and n = 3.

Then there exists e0 ∈Vh such that H = e0 +∑3
j=1

∑2
k=1β j ,k H ◦e j ,k with

β1,1 =β3,2 = 25

34 − 26

36 , β1,2 =β3,1 = 27

36 − 25

34 , β2,1 =β2,2 = 25

36 .

Proof. The difference q = H −∑2
j=1

∑2
k=1β j ,k H ◦ e j ,k is a continuous function. It is a polynomial

of degree at most 3 in the three intervals I1 = [0,1/3], I2 = [1/3,2/3] and I3 = [2/3,1].
In I1 one has

e1,1(x) = 9

4
x, e1,2(x) = 9

4
x + 1

4
, e2,1, e2,2, e3,1 and e3,2 are constant.



1036 Bruno Després

Then H(e1,1(x)) = 32
( 9

4 x
)3 − 48

( 9
4 x

)2 +h1x +h2 and H(e1,2(x)) = 32
( 9

4 x
)3 − 24

( 9
4 x

)2 +h3x +h4.
Making vanish in I1 the coefficients of the third order and second order monomials in q yields
the system 

β1,1 +β1,2 =
(

4

9

)3

= 26

36 ,

2β1,1 +β1,2 = 2

(
4

9

)2

= 25

34 .

The solution is β1,1 = 25

34 − 26

36 and β1,2 = 27

36 − 25

34 .
Concerning I3 one notices that the third order Tchebycheff is antisymmetric with respect to

the center x = 1/2. It explains why β1,1 = β3,2 and β1,2 = β3,1. These values can also be obtained
after lengthy but elementary calculations.

In I2 one has

e2,1(x) = 9

4
x − 3

4
, e2,2(x) = 9

4
x − 1

2
, e1,1, e1,2, e3,1 and e3,2 are constant.

One checks that H(e2,1(x)) = 32
( 9

4 x
)3−120

( 9
4 x

)2+h5x+h6 and H(e2,2(x)) = 32
( 9

4 x
)3−96

( 9
4 x

)2+
h7x +h8. The linear system which corresponds to the annulation in q of the monomials x3 and
x2 can be written 

β2,1 +β2,2 =
(

4

9

)3

= 26

36 ,

120β2,1 +β2,2 = 48

(
4

9

)2

.

The solution is β2,1 =β2,2 = 25

36 .
Therefore q is continuous and piecewise affine. One can write q =−e0 ∈Vh . □

Remark 10. A numerical application shows that β1,1 = β3,2 = 0.3072. . . , β1,2 = β3,1 =−0.2194. . .
and β2,1 = β2,2 = 0.0438. . . With these values K > K̃ > 1. However the passage in the proof
from estimate (14) to estimate (15) is non optimal because it looses the fact that (14) concerns
two consecutive indices. For m = 3, two consecutive indices can be either ( j , j + 1) = (1,2) or
( j , j +1) = (2,3). Then, for the third order rescaled Tchebycheff polynomial, one gets the sharper
bound

K = |β1,1|+ |β1,2|1

2

(|β1,1|+ |β1,2|+ |β2,1|+ |β2,2|
)= 3

2

(|β1,1|+ |β1,2|
)+|β2,1| = 0.8340. . . (19)

Now K < 1. This bound will be invoked to justify the numerical convergence in test #2.

6. Numerical tests and discussion

Algorithm (16)–(17) has been implemented in Tensorflow/Keras [1] for the purpose of numerical
illustrations. The softwares Branch_data.py (training) and Branch_gene.py (data generation)
written for the tests are available at the Git repository https://github.com/despresbr/NNNA.
The minimisation problems (17) are performed with the ADAM algorithm which is a stochastic
descent gradient method with batches. A dataset is created with oversampling and the cost
function in the L∞(I ) norm is defined by creating a custom loss function. The function g (e0,β, fk )
is assembled by using the concatenation-of-layers technique [1, p. 243]. The CPU cost of the
learning stage is the same for all iterations k since the number of free parameters (i.e. the number
of neurons in this case) is the same at each stage of the algorithm because we ask for the same
number of epochs and the same size of the batches. We use a trick which is classical for algorithms
which have inner loops (new training) inside a global exterior loop (iteration on k). That is
the starting point for a new training is the end point of the previous training. It helps to save

https://github.com/despresbr/NNNA
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computational efforts. We also follow the prescription [3, 14] where a decrease of the gradient
length (i.e. the learning rate in Machine Learning language) is advocated.

The minimization in the L∞ norm is performed approximatively because it is not the objective
of stochastic gradient descent algorithms to calculate global minima with sharp accuracy. In par-
ticular we do not know precisely the influence of the batches on the accuracy of the minimiza-
tion procedure. Despite this fact, we observe strong convergence in the tests below where the er-
ror ϵk = ∥ fk −H∥L∞(I ) is reported in function of the iteration index k. The tests below have been
calculated on a GPU node at SCAI-Sorbonne university4. They show convergence of algorithm
(16)–(17) in accordance with the main Theorem of convergence 8.

6.1. Test #1

The polynomial is H(x) = x − x2. We take m = 2 and n = 2, that is r = 2 basis functions (4). The
training dataset is made with 4000 pairs (xs , ys = H(xs ))1≤s≤4000 where xs is sampled uniformly
between 0 and 1. Around 20% of the pairs are taken outside for validation. The batches are made
with 128 pairs. The error at iteration k is ϵ0 = 0.0377, ϵ1 = 0.00806, ϵ2 = 0.00238, ϵ3 = 0.000521,
ϵ4 = 0.000165, ϵ5 = 3.66×10−5 then ϵ6 = 9.97×10−6. The numerical rate of convergence, that is
the numerical contraction constant, is Knum ≈ 1

4 which is better than the theoretical one.
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Figure 1. Display of the function calculated by the algorithm (broken line) versus the
objective H (smooth line). The four plots corresponds to 0 ≤ k ≤ 3. One observes numerical
convergence.

4https://scai.sorbonne-universite.fr
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6.2. Test #2

The polynomial is the rescaled Tchebycheff polynomial of Lemma 9: H(x) = 32(2x − 1)3 −
48(2x − 1)2 + 18x − 1. Theoretical convergence is guaranteed by means of the estimate of Re-
mark 10. We take the same parameters as in the previous test except that m = 3 and n = 3, that
is a total of r = 6 basis functions (4). The error at iteration k is ϵ0 = 0.459, ϵ1 = 0.179, ϵ2 = 0.0834,
ϵ3 = 0.0409, ϵ4 = 0.0109, then ϵ5 = 0.00471. The numerical convergence is observed. It is com-
patible with the fact that K < 1 (see (19)). However K is quite close to 1, so it cannot explain the
observed fast convergence with a factor ≈ 1/2.

6.3. Test #3

We perform the same test as in the previous one, except that now m = 5 and n = 3. We report only
the accuracy of the first four iterations of the algorithm, because the computational cost related
to the manipulation of functions increases for k = 5. The accuracy is ϵ0 = 0.201, ϵ1 = 0.027, ϵ2 =
0.0057 and ϵ3 = 0.00103. One observes a more pronounced rate of convergence, in accordance
with bound (7) and Lemma 4.

6.4. Test #4

Finally we consider the fifth order rescaled Tchebycheff polynomial: H(x) = 16(2x − 1)5 −
20(2x − 1)3 + 5(2x − 1), and we take m = 9 and n = 5 (that is r = 36 basis functions). The errors
are ϵ0 = 0.379, ϵ1 = 0.0625, ϵ2 = 0.0318 and ϵ3 = 0.00947. A comparison of the exact solution and
the numerical solution at step k = 3 is proposed in Figure 2.

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.2  0.4  0.6  0.8  1

k=3
H(x)

Figure 2. Fifth order rescaled Tchebycheff polynomial: numerical solution (cross) versus
exact function (solid line).

6.5. Discussion

We discuss the complexity of the method and present three open problems.



Bruno Després 1039

6.5.1. Complexity

The complexity of the algorithm can be defined as the relation between the accuracy and the
cost in the asymptotic range k >> 1. We present hereafter simple bounds.

As a consequence of Theorem 8, the accuracy in L∞ norm naturally scales like

ε=O(K k )

where we remind that k is the number of layers and K < 1 is the contraction constant.
The cost can be estimated in two ways. Either the cost is estimated as the number of neurons

to train, equal to the number of free parameters in (18) times the number of layers. Since
r = m(n −1), one obtains C =O(mnk). It yields the complexity scaling

C =O
(|logε|) (20)

which is similar to the one of the Yarotsky Theorem [16].
Or the cost is estimated is the number of calculations to perform to calculate one function fk .

Due to the hierarchical structure of the whole method, it scales like C = O((mn)k ). It yields the
complexity scaling

C =O

(
1

ε
logmn
|logK |

)
(21)

which is of course much worse than (20). For a practical calculation, the relation cost/accuracy
is a compromise between these two bounds, depending on the parts which are the most costly.
However the numerical experiments clearly show that the scaling (21) is the issue.

A related problem is that the scaling (mn)k may induce an important CPU cost, independently
of the level of accuracy. This is related to the technology for hierarchical declaration of functions
used in Machine Learning softwares. It is possible that this computational cost is lessen by using
a different implementation, but it is not clear and so far this is a huge concern. We have observed
that a way to get a control on it and to obtain reasonable accuracy at reasonable cost is to take m
large and k ≤ 3 (as in test #4).

6.5.2. Three open problems

An open mathematical problem is to understand how to recover an optimal contrac-
tion/approximation constant in maximal norm, using perhaps technics from Constructive Ap-
proximation theory [6].

An open numerical problem left for further research is the optimization basis functions.
A more general problem is to determine if there could be a way to extrapolate the approach

used in this Note for the approximation of more general non polynomial functions in higher
dimensions. Any progress in this direction would be of critical importance for the numerical
analysis of Machine Learning techniques applied to real life problems. So far, it is a completely
open axis of research.
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