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1. Introduction

The homogeneous Gagliardo–Nirenberg interpolation inequality for Sobolev space states that if
d ∈N\ {0} and if 0 ≤ s0 < s < s1, 1 ≤ p, p0, p1 ≤∞ and 0 < θ < 1 fulfil the condition(

s, 1
p

)= (1−θ)
(
s0, 1

p0

)+θ(
s1, 1

p1

)
, (1)

then, for every function f ∈ Ẇ s0,p0 (Rd )∩Ẇ s1,p1 (Rd ), one has f ∈ Ẇ s,p (Rd ), and

∥ f ∥Ẇ s,p (Rd ) ≤C∥ f ∥1−θ
Ẇ s0,p0 (Rd )

∥ f ∥θ
Ẇ s1,p1 (Rd )

, (2)

unless s1 is an integer, p1 = 1 and s1 − s0 ≤ 1− 1
p0

.

When s = 0, we use the convention that Ẇ 0,p (Rd ) = Lp (Rd ), and when s ∈ N \ {0} is a positive
integer, Ẇ s,p (Rd ) is the classical integer-order homogeneous Sobolev space of s times weakly
differentiable functions f :Rd →R such that D s f ∈ Lp (Rd ) and

∥ f ∥Ẇ s,p (Rd ) :=
(ˆ
Rd

|D s f |p
) 1

p

. (3)

For s0, s1, s ∈N the inequality (2) was proved by Gagliardo [15] and Nirenberg [26] (see also [14]).
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When s ̸∈ N, the homogeneous fractional Sobolev–Slobodeckiı̆ space Ẇ s,p (Rd ) can be defined
as the set of measurable functions f :Rd →Rwhich are k times weakly differentiable with a finite
Gagliardo semi-norm:

∥ f ∥Ẇ s,p (Rd ) :=
(ˆ

Rd

ˆ
Rd

|Dk f (y)−Dk f (x)|p
|y −x|d+σp

dy dx

) 1
p

<∞, (4)

with k ∈ N, σ ∈ (0,1) and s = k +σ; the characterisation of the range in which the Gagliardo–
Nirenberg interpolation inequality (2) holds was performed in a series of works [4,9–11] up to the
final complete settlement by Brezis and Mironescu [5].

We focus on the endpoint case where s0 = 0 and p0 = ∞. In this case, the inequality (2)
becomes

∥ f ∥p

Ẇ s,p (Rd )
≤C∥ f ∥p−p1

L∞(Rd )
∥ f ∥p1

Ẇ s1,p1 (Rd )
, (5)

and holds under the assumption that sp = s1p1 and either s1 ̸= 1 or p1 > 1. It is natural to
ask whether the inequality (5) can be strengthened by replacing the uniform norm ∥·∥L∞(Rd ) by
John and Nirenberg’s bounded mean oscillation (BMO) semi-norm ∥·∥BMO(Rd ), which plays an
important role in harmonic analysis, calculus of variations and partial differential equations [18],
that is, whether we have the inequality

∥ f ∥p

Ẇ s,p (Rd )
≤C∥ f ∥p−p1

BMO(Rd )
∥ f ∥p1

Ẇ s1,p1 (Rd )
, (6)

where the bounded mean oscillation semi-norm ∥·∥BMO(Rd ) is defined for any measurable func-
tion f :Rd →R as

∥ f ∥BMO(Rd ) := sup
x∈Rd

r>0

 
Br (x)

 
Br (x)

| f (y)− f (z)|dy dz. (7)

The estimate (6) was proved indeed when s = 1, p = 4, s1 = 2 and p1 = 2 via a Littlewood–Paley
decomposition by Meyer and Rivière [24, Theorem 1.4], and for s, s1 ∈N via the duality between
BMO(Rd ) and the real Hardy space H 1(Rd ) by Strezelecki [28]; a direct proof was been given
recently by Miyazaki [25] (in the limiting case s0 = s1 = 0, see [20, Theorem 2.2], [8]); when
s1 < 1, the estimate (6) has been proved by Brezis and Mironescu through a Littlewood–Paley
decomposition [6, Lemma 15.7] (see also [2, 20] for similar estimates in Riesz potential spaces).

The main result (Theorem 1) of the present work is the estimate (6) when s1 = 1 and 0 < s < 1,
with a proof which is quite elementary: the main analytical tool is the classical maximal function
theorem. We also show how the same ideas can be used to give a direct proof of (6) when
s1 < 1, depending only on the definitions of the Gagliardo and bounded mean oscillation semi-
norms (Theorem 7). Finally, we show how a last interpolation result (Theorem 10) allows one
to obtain the full range of interpolation between BMO(Rd ) and higher-order fractional Sobolev–
Slobodeckĭı spaces Ẇ s,p (Rd ) with s ∈ (1,∞).

Our proofs can be considered as fractional counterparts of Miyazaki’s direct proof in the
integer-order case [25]. We also refer to Dao’s recent work [12] for an alternative approach via
negative-order Besov spaces to the results in the present paper.

2. Interpolation between first-order Sobolev semi-norm and mean oscillation

We prove the following interpolation inequality between the fist-order Sobolev semi-norm and
the mean oscillation seminorm into fractional Sobolev spaces.
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Theorem 1. For every d ∈ N \ {0} and every p ∈ (1,∞), there exists a constant C (p) > 0 such
that for every s ∈ (1/p,1), every open convex set Ω ⊆ Rd satisfying Å(Ω) < ∞ and every function
f ∈ Ẇ 1,sp (Ω)∩BMO(Ω), one has f ∈ Ẇ s,p (Ω) andÏ

Ω×Ω
| f (y)− f (x)|p
|y −x|d+sp

dy dx ≤ C (p)Å(Ω)sp

(sp −1)(1− s)
∥ f ∥(1−s)p

BMO(Ω)

ˆ
Ω

|D f |sp . (8)

We define here for a domainΩ⊆Rd , the bounded mean oscillation semi-norm of a measurable
function f :Ω→R as

∥ f ∥BMO(Ω) := sup
x∈Ω
r>0

 
Ω∩Br (x)

 
Ω∩Br (x)

| f (y)− f (z)|dy dz, (9)

and the geometric quantity

Å(Ω) := sup

{
L d (Br (x))

L d (Ω∩Br (x))

∣∣∣∣∣ x ∈Ω and r ∈ (0,diam(Ω))

}
. (10)

For the latter quantity, one has for example

Å(Rd ) = 1 (11)

and

Å(Rd
+) = 2. (12)

If the set Ω is convex and bounded, we have Ω ⊆ Bdiam(Ω)(x) and tΩ+ (1− t )x ⊆Ω∩Br (x), with
t := r /diam(Ω), so that

L d (Ω∩Br (x)) ≥ t d L d (Ω) = L d (Ω)

diam(Ω)d
r d ,

and thus

Å(Ω) ≤ L d (B1)

L d (Ω)
diam(Ω)d . (13)

The quantity Å(Ω) can be infinite for some unbounded convex sets such as Ω= (0,1)×Rd−1 and
Ω= {(x ′, xd ) ∈Rd | xd ≥ |x ′|2}.

Our first tool to prove Theorem 1 is an estimate by the maximal function of the derivative of the
average distance of values on a ball to a fixed value; this formula is related to the Lusin–Lipschitz
inequality [21, Lemma 2], [1, Lemma II.1], [3], [16, p. 404], [17, (3.3)].

Lemma 2. If the set Ω⊆Rd is open and convex and if f ∈ Ẇ 1,1
loc (Ω), then for every r ∈ (0,diam(Ω))

and almost every x ∈Ω,  
Ω∩Br (x)

| f (z)− f (x)|dz ≤ Å(Ω)r M |D f |(x). (14)

Here M g : Rd → [0,+∞] denotes the classical Hardy–Littlewood maximal function of the
function g :Ω→R, defined for each x ∈Rd by

M g (x) := sup
r>0

1

L d (Br (x))

ˆ
Ω∩Br (x)

|g |. (15)

Proof of Lemma 2. Since Ω is convex and f ∈ Ẇ 1,1(Ω), for almost every x ∈ Ω and every r ∈
(0,∞), we haveˆ

Ω∩Br (x)
| f (z)− f (x)|dz ≤

ˆ
Ω∩Br (x)

ˆ 1

0
|D f ((1− t )x + t z)[z −x]|dt dz. (16)
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By convexity of the set Ω, for every z ∈Ω∩Br (x) and t ∈ [0,1] we have (1− t )x + t z ∈Ω∩Btr (x).
We deduce from (15) and (16) through the change of variable y = (1− t )x + t z thatˆ

Ω∩Br (x)
| f (z)− f (x)|dz ≤

ˆ 1

0

ˆ
Ω∩Btr (x)

|D f (y)[y −x]|
t d+1

dy dt

≤ r M |D f |(x)

ˆ 1

0

L d (Btr (x))

t d
dt ≤ r L d (Br (0))M |D f |(x),

(17)

in view of the definition (9) of the maximal function, and the conclusion (14) then follows from
the definition of the geometric quantity Å(Ω) in (10). □

Our second tool to prove Theorem 1 is the following property of averages of functions of
bounded mean oscillation (see [7, §3]).

Lemma 3. If the setΩ⊆Rd is open and convex, if f ∈ BMO(Ω) and if r0 < r1, then 
Ω∩Br0 (x)

 
Ω∩Br1 (x)

| f (y)− f (z)|dy dz ≤ e
(
1+d ln(r1/r0)

)∥ f ∥BMO(Ω). (18)

In (18), e denotes Euler’s number.
The proof of Lemma 3 will use the following triangle inequality for averages

Lemma 4. Let Ω ⊆ Rd . If the function f : Ω → R is measurable, and the sets A,B ,C ⊆ Rd are
measurable and have positive measure, then 

A

 
B
| f (y)− f (x)|dy dx ≤

 
A

 
C
| f (z)− f (x)|dz dx +

 
C

 
B
| f (y)− f (z)|dy dz.

Proof. We have successively, in view of the triangle inequality, 
A

 
B
| f (y)− f (x)|dy dx =

 
A

 
B

 
C
| f (y)− f (x)|dz dy dx

≤
 

A

 
B
| f (z)− f (x)|+ | f (y)− f (z)|dz dy dx

=
 

A

 
C
| f (z)− f (x)|dz dx +

 
C

 
B
| f (y)− f (z)|dy dz. □

Proof of Lemma 3. We first note that since r1 > r0, we have in view of (9) 
Ω∩Br0 (x)

 
Ω∩Br1 (x)

| f (y)− f (z)|dy dz

≤ L d (Ω∩Br1 (x))

L d (Ω∩Br0 (x))

 
Ω∩Br1 (x)

 
Ω∩Br1 (x)

| f (y)− f (z)|dy dz ≤
(

r1

r0

)d

∥ f ∥BMO(Ω),

(19)

since by convexity r0/r1(Ω∩Br1 (x)) ⊆Ω∩Br0 (x) and thus L d (Ω∩Br1 (x))/r d
1 ≤L d (Ω∩Br0 (x))/r d

0 .
Applying k ∈ N \ {0} times the inequality (19), we get thanks to the triangle inequality for mean
oscillation of Lemma 4, 

Ω∩Br0 (x)

 
Ω∩Br1 (x)

| f (y)− f (z)|dy dz

≤
k−1∑
j=0

 
Ω∩B

r0(r1/r0) j /k (x)

 
Ω∩B

r0(r1/r0)( j+1)/k (x)
| f (y)− f (z)|dy dz ≤ k

(
r1

r0

)d/k

∥ f ∥BMO(Ω).
(20)

Taking k ∈N\ {0} such that k −1 < d ln(r1/r0) ≤ k, we obtain the conclusion (18). □

Our last tool to prove Theorem 1 is the following integral identity.
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Lemma 5. For every p ∈ (1,∞) and α ∈ (0,∞), one hasˆ ∞

1

(lnr )p

r 1+α dr = Γ(p +1)

αp+1 .

Proof. One performs the change of variable r = exp(t/α) in the left-hand side integral and uses
the classical integral definition of the Gamma function. □

We now proceed to the proof of Theorem 1.

Proof of Theorem 1. For every x, y ∈ Ω, we have by the triangle inequality and the domain
monotonicity of the integral

| f (y)− f (x)| ≤
 
Ω∩B|y−x|/2( x+y

2 )
| f (y)− f |+

 
Ω∩B|y−x|/2( x+y

2 )
| f − f (x)|

≤ 2d
 
Ω∩B|y−x|(y)

| f (y)− f |+2d
 
Ω∩B|y−x|(x)

| f − f (x)|,
(21)

since by convexityΩ∩B|y−x|/2
( x+y

2

)⊆ 1
2 (B|y−x|(x)∩Ω)+ y

2 . It follows thus from (21) by integration
and by symmetry thatÏ

Ω×Ω
| f (y)− f (x)|p
|y −x|d+sp

dy dx ≤C1

Ï
Ω×Ω

( 
Ω∩B|y−x|(x)

| f − f (x)|
)p

dy dx

|y −x|d+sp

≤C2

ˆ
Ω

ˆ diamΩ

0

( 
Ω∩Br (x)

| f − f (x)|
)p dr

r 1+sp dx.

(22)

If ϱ ∈ (0,diam(Ω)), we first have by Lemma 2, for almost every x ∈Ω,ˆ ϱ

0

( 
Ω∩Br (x)

| f − f (x)|
)p dr

r 1+sp ≤ (
Å(Ω)M |D f |(x)

)p
ˆ ϱ

0
r (1−s)p−1 dr

= ϱ(1−s)p
(
Å(Ω)M |D f |(x)

)p

(1− s)p
.

(23)

Next we have by the triangle inequality, by Lemma 2 again and by Lemma 3, for every r ∈
(ϱ,diam(Ω)), 

Ω∩Br (x)
| f − f (x)| ≤

 
Ω∩Bϱ(x)

| f − f (x)|+
 
Ω∩Br (x)

 
Ω∩Bϱ(x)

| f (y)− f (z)|dy dz

≤ (
ϱÅ(Ω)M |D f |(x)+e(1+d ln(r /ϱ))∥ f ∥BMO(Ω)

)
,

(24)

and hence, integrating (24), we getˆ diam(Ω)

ϱ

( 
Ω∩Br (x)

| f − f (x)|
)p dr

r 1+sp

≤C3

(ˆ ∞

ϱ

ϱpM |D f |(x)p

r 1+sp dr +
ˆ ∞

ϱ

Å(Ω)p∥ f ∥p
BMO(Ω)

(1+d ln(r /ϱ))p

r 1+sp dr

)

≤C4

(
ϱ(1−s)pÅ(Ω)pM |D f |(x)p

s
+
Γ(p +1)∥ f ∥p

BMO(Ω)

(sp)p+1ϱsp

)
,

(25)

in view of Lemma 5. Putting (23) and (25) together, we get, since sp > 1,ˆ diam(Ω)

0

( 
Ω∩Br (x)

∣∣ f − f (x)
∣∣)p dr

r 1+sp ≤C5

(
ϱ(1−s)pÅ(Ω)pM |D f |(x)p

1− s
+
∥ f ∥p

BMO(Ω)

ϱsp

)
. (26)

If ∥ f ∥BMO(Ω) ≤ diam(Ω)Å(Ω)M |D f |(x), taking ϱ := ∥ f ∥BMO(Ω)/(Å(Ω)M |D f |(x)) in (26), we obtainˆ diam(Ω)

0

( 
Ω∩Br (x)

∣∣ f − f (x)
∣∣)p dr

r 1+sp ≤ C6

1− s

(
Å(Ω)M |D f |(x)

)sp ∥ f ∥(1−s)p
BMO(Ω); (27)
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otherwise we take ϱ := diam(Ω) ≤ ∥ f ∥BMO(Ω)/(Å(Ω)M |D f |(x)) in (23) and also obtain (27).
Integrating the inequality (27), we reach the conclusion (8) by the quantitative version
of the classical maximal function theorem in Lsp (Rd ) since sp > 1 (see for example [27,
Theorem I.1]). □

We conclude this section by pointing out that Theorem 1 admits a localised version in terms
of Fefferman and Stein’s sharp maximal function f ♯ :Ω→ [0,∞] which is defined for every x ∈Ω
(see [13, (4.1)]) as

f ♯(x) := sup
r>0

 
Ω∩Br (x)

 
Ω∩Br (x)

| f (y)− f (z)|dy dz; (28)

noting that the proof of Lemma 3 yields in fact the estimate 
Ω∩Br0 (x)

 
Ω∩Br1 (x)

| f (y)− f (z)|dy dz ≤ e
(
1+d ln(r1/r0)

)
f ♯(x) (29)

and following then the proof of Theorem 1, we reach the following local counterpart of (27).

Proposition 6. For every d ∈ N \ {0} and for every p ∈ (1,∞), there exists a constant C > 0 such
that for every s ∈ (1/p,1), for every open convex set Ω⊆ Rd satisfying Å(Ω) <∞, for every function
f ∈ Ẇ 1,1

loc (Ω) and for almost every x ∈Ω, we haveˆ diam(Ω)

0

( 
Ω∩Br (x)

| f − f (x)|
)p dr

r 1+sp ≤ C

1− s

(
f ♯(x)

)(1−s)p(
Å(Ω)M |D f |(x)

)sp . (30)

Proposition 6 is stronger than Theorem 1 in the sense that the integration of the estimate (30)
yields (8).

Proposition 6 is a counterpart of the interpolation involving maximal and sharp maximal
function of derivatives [22, (4)], which generalised a priori estimates in terms of maximal func-
tions [23, Theorem 1], [19]; Proposition 6 generalises the corresponding result for integer-order
Sobolev spaces [25, Remark 2.2].

3. Interpolation between first-order Sobolev semi-norm and mean oscillation

We explain how the tools of the previous section can be used to prove the fractional BMO
Gagliardo–Nirenberg interpolation inequality as persented by Brezis and Mironescu’s [6, Lem-
ma 15.7].

Theorem 7. For every d ∈ N \ {0}, every s, s1 ∈ (0,1) and every p, p1 ∈ (1,+∞) satisfying s < s1

and s1p1 = sp, there exists a constant C > 0 such that for every open convex set Ω ⊆ Rd satisfying
Å(Ω) <∞ and for every function f ∈ Ẇ s1,p1 (Ω)∩BMO(Ω), one has f ∈ Ẇ s,p (Ω) andÏ

Ω×Ω
| f (y)− f (x)|p
|y −x|d+sp

dy dx ≤C∥ f ∥p−p1
BMO(Ω)Å(Ω)p1

Ï
Ω×Ω

| f (y)− f (x)|p1

|y −x|d+s1p1
dy dx. (31)

The proof of Theorem 7 will follow essentially the proof of Theorem 1, the main difference
being the replacement of Lemma 2 by its easier fractional counterpart.

Lemma 8. For every p ∈ (1,∞), there exists a constant C > 0 such that if the setΩ⊆Rd is open and
convex, if s ∈ (0,1) and if f :Ω→R is measurable, then for every r ∈ (0,diam(Ω)) and every x ∈Ω, 

Ω∩Br (x)
| f − f (x)| ≤CÅ(Ω)r s

(ˆ
Ω

| f (y)− f (x)|p
|y −x|d+sp

dy

) 1
p

. (32)

Proof. By Hölder’s inequality we have for every r ∈ (0,diam(Ω)) and for every x ∈Ω,ˆ
Ω∩Br (x)

| f − f (x)| ≤
(ˆ
Ω

| f (y)− f (x)|p
|y −x|d+sp

dy

) 1
p
(ˆ

Br (x)
|y −x|

d+sp
p−1 dy

)1− 1
p

. (33)
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Noting that ˆ
Br (x)

|y −x|
d+sp
p−1 dy =C7

p −1

d + sp

(
r sL d (Br (x))

) p
p−1 ≤C8

(
r sL d (Br (x))

) p
p−1 , (34)

we reach the conclusion (32) thanks to the definition of the geometric quantity Å(Ω) in (10). □

Proof of Theorem 7. We begin as in the proof of Theorem 1. Instead of (23), we have by Lemma 8,ˆ ϱ

0

( 
Ω∩Br (x)

| f − f (x)|
)p dr

r 1+sp ≤C9Å(Ω)p
(ˆ
Ω

| f (y)− f (x)|p1

|y −x|d+s1p1
dy

) p
p1
ˆ ϱ

0
r (s1−s)p−1 dr

≤ C10Å(Ω)pϱ(s1−s)p

(s1 − s)p

(ˆ
Ω

| f (y)− f (x)|p1

|y −x|d+s1p1
dy

) p
p1

.

(35)

Next instead of (25), we haveˆ diam(Ω)

ϱ

( 
Ω∩Br (x)

| f − f (x)|
)p dr

r 1+sp

≤C11

(
Å(Ω)pϱ(s1−s)p

sp

(ˆ
Ω

| f (y)− f (x)|p1

|y −x|d+s1p1
dy

) p
p1 +

∥ f ∥p
BMO(Ω)

(sp)p+1ϱsp

)
.

(36)

Taking ϱ ∈ (0,diam(Ω)) such that

∥ f ∥p
BMO(Ω) = ϱs1pÅ(Ω)p

(ˆ
Ω

| f (y)− f (x)|p1

|y −x|d+s1p1
dy

) p
p1

(37)

if possible, and otherwise taking ϱ := diam(Ω), we obtain, since s1p1 = sp, by (35), (36) and (37)ˆ diamΩ

0

( 
Ω∩Br (x)

| f − f (x)|
)p dr

r 1+sp ≤C12∥ f ∥p−p1
BMO(Ω)Å(Ω)p1

ˆ
Ω

| f (y)− f (x)|p1

|y −x|d+s1p1
dy. (38)

We conclude by integration of (38). □

As previously, we point out that the estimate (38) admits a localised version, which is the
fractional counterpart of Proposition 6.

Proposition 9. For every d ∈ N \ {0}, every s, s1 ∈ (0,1) and every p, p1 ∈ (1,+∞) satisfying s < s1

and s1p1 = sp, there exists a constant C > 0 such that for every open convex set Ω ⊆ Rd satisfying
Å(Ω) <∞, for every measurable function f :Ω→R and for every x ∈Ω,ˆ diam(Ω)

0

( 
Ω∩Br (x)

| f − f (x)|
)p dr

r 1+sp ≤C
(

f ♯(x)
)p−p1Å(Ω)p1

ˆ
Ω

| f (y)− f (x)|p1

|y −x|d+s1p1
dy. (39)

The estimate (31) can be seen as a consequence of the integration of (39).

4. Higher-order fractional spaces estimates

The last ingredient to obtain the full scale of Gagliardo–Nirenberg interpolation inequalities
between fractional Sobolev–Slobodeckĭı spaces and the bounded mean oscillation space is the
following estimate.

Theorem 10. For every d ∈ N \ {0}, every k1 ∈ N \ {0}, every σ1 ∈ (0,1) and every p, p1 ∈ (1,∞)
satisfying

k1p = (k1 +σ1)p1, (40)

there exists a constant C > 0 such that for every function f ∈ Ẇ k1+σ1,p1 (Rd )∩BMO(Rd ), one has
f ∈ Ẇ k1,p (Rd ) andˆ

Rd
|Dk1 f |p ≤C∥ f ∥p−p1

BMO(Rd )

Ï
Rd×Rd

|Dk1 f (x)−Dk1 f (y)|p1

|x − y |d+σ1p1
dx dy. (41)
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As a consequence of Theorem 10, we have that f ∈ Ẇ k+σ,p (Rd ) whenever k ∈N, σ ∈ [0,1) and
p ∈ (1,∞) satisfy k +σ < k1 +σ1 and (k +σ)p = (k1 +σ1)p1. Indeed for σ = 0 and k = k1, this
follows from Theorem 10 and then for k ∈ {1, . . . ,k1 −1} by the Gagliardo–Nirenberg interpolation
inequality for integer-order Sobolev space [25, 28]; for 0 < σ < 1 and k = 0 one then uses
Theorem 1 whereas for 0 < σ < 1 and k ∈ N \ {0} one uses the classical fractional Gagliardo–
Nirenberg interpolation inequality [5].

Proof of Theorem 10. Fixing a function η ∈C∞
c (Rd ) such that

´
Rd η= 1 and suppη⊆ B1, we have

for every x ∈Rd and every ϱ ∈ (0,∞),

Dk1 f (x) = 1

ϱd

ˆ
Rd
η
(

x−y
ϱ

)(
Dk1 f (x)−Dk1 f (y)

)
dy + 1

ϱd

ˆ
Rd
η
(

x−y
ϱ

)
Dk1 f (y)dy. (42)

We estimate the first term in the right-hand side of (42) by Hölder’s inequality∣∣∣ 1

ϱd

ˆ
Rd
η
(

x−y
ϱ

)(
Dk1 f (x)−Dk1 f (y)

)
dy

∣∣∣
≤ C13

ϱd

(ˆ
Rd

|Dk1 f (x)−Dk1 f (y)|p1

|x − y |d+σ1p1
dx

) 1
p1

(ˆ
Bϱ(x)

|x − y |
d+σ1 p1

p1−1 dx

)1− 1
p1

≤C14ϱ
σ1

(ˆ
Rd

|Dk1 f (x)−Dk1 f (y)|p1

|x − y |d+σ1p1
dx

) 1
p1

.

(43)

For the second-term in the right-hand side of (42), for every x ∈Rd , we have by weak differentia-
bility,

1

ϱd

ˆ
Rd
η
(

x−y
ϱ

)
Dk1 f (y)dy = 1

ϱd+k1

ˆ
Rd

Dk1η
(

x−y
ϱ

)
f (y)dy

= 1

ϱ2d+k1

ˆ
Rd

ˆ
Rd

Dk1η
(

x−y
ϱ

)
η
(

x−z
ϱ

)(
f (y)− f (z)

)
dy dz,

(44)

and thus by (44) and by definition of bounded mean oscillation (7), we have∣∣∣∣ 1

ϱd

ˆ
Rd
η
(

x−y
ϱ

)
Dk1 f (y)dy

∣∣∣∣≤ C15

ϱk1
∥ f ∥BMO(Rd ). (45)

Choosing ϱ ∈ (0,∞) such that

ϱk1+σ1

(ˆ
Rd

|Dk1 f (x)−Dk1 f (y)|p1

|x − y |d+σ1p1
dy

) 1
p1

= ∥ f ∥BMO(Rd ), (46)

we get from (42), (43) and (45), for every x ∈Rd ,

|Dk1 f (x)| ≤C16∥ f ∥1− k1
k1+σ1

BMO(Rd )

(ˆ
Rd

|Dk1 f (x)−Dk1 f (y)|p1

|x − y |d+σ1p1
dy

) k1
(k1+σ1)p1

, (47)

and thus in view of the condition (40), the estimate (41) follows by integration. □

Theorem 10 also admits a localised version involving the sharp maximal function which
follows from the replacement of ∥ f ∥BMO(Rd ) by f ♯(x) in (45).

Proposition 11. For every d ∈N\{0}, every k1 ∈N\{0}, every σ1 ∈ (0,1) and every p1 ∈ (1,∞), there
exists a constant C > 0 such that for every function f ∈ Ẇ k1,1

loc (Rd ) and every x ∈Rd ,

|Dk1 f (x)| ≤C
(

f ♯(x)
)1− k1

k1+σ1

(ˆ
Rd

|Dk1 f (x)−Dk1 f (y)|p1

|x − y |d+σ1p1
dy

) k1
(k1+σ1)p1

. (48)

As previously, the integration of (48) yields (41).
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