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Abstract. The Lp convergence of eigenfunction expansions for the Laplacian on planar domains is largely
unknown for p ̸= 2. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose
eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise
a result of Balodis and Córdoba regarding the Lp convergence of the Bessel–Fourier series in the mixed norm
space L

p
rad(L2

ang) on the disk for the range 4
3 < p < 4. We then describe how to modify their result to obtain

Lp (D,r dr dt ) norm convergence in the subspace L
p
rad(L

q
ang) ( 1

p + 1
q = 1) for the restricted range 2 ≤ p < 4.

Résumé. La convergence Lp des développements en fonctions propres du Laplacien dans des domaines du
plan est largement inconnue lorsque p ̸= 2. Après avoir discuté des séries de Fourier classiques sur le tore,
nous passons au disque, dont les fonctions propres sont explicitement calculables comme étant le produit
des fonctions trigonométriques et de Bessel. Nous résumons un résultat de Balodis et Córdoba concernant
la convergence Lp de la série de Bessel–Fourier dans l’espace de norme mixte L

p
rad(L2

ang) dans le disque

pour l’intervalle 4
3 < p < 4. Nous décrivons ensuite comment on peut modifier leur résultat pour obtenir

la convergence dans la norme Lp (D,r dr dt ) dans le sous-espace L
p
rad(L

q
ang) ( 1

p + 1
q = 1) pour l’intervalle

2 ≤ p < 4.
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1. Introduction

For a function f ∈ L2(Tn), we can truncate its Fourier series by “spherical modes”

SN f := ∑
|k|≤N

f̂ (k)e2πik·x , (1)
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or by “cubic modes”
S[N ] f := ∑

|k j |≤N
f̂ (k)e2πik·x , (2)

where

k = (k1, . . . ,kn) ∈Zn and |k|2 =
n∑

j=1
|k j |2.

It is well known that SN f from (1) fails in general to converge to f in Lp when p ̸= 2. This follows,
by standard transference arguments (see [7]), from Fefferman’s result [6] that the indicator
function of the ball is not an Lp -bounded Fourier multiplier for any p ̸= 2. (See [8] for a detailed
discussion and related results.) On the other hand, the square truncations from (2) are perfectly
well-behaved for all 1 < p <∞ (see again [7]).

This behaviour is not restricted to the torus and related domains. For consider the diskD⊂R2.
The eigenfunctions for the Laplacian on D are of the form

e2πiθm Jm( j n
mr ) for (r,θ) ∈ [0,1]2, (m,n) ∈Z×N,

corresponding to the respective eigenvalues 4π2m2 + ( j m
n )2. Here Jm := J|m| denotes a Bessel

function of the first kind and j m
n := j |m|

n its non-negative zeros (see [10]).
Consider now the function f (r ) = r−3/2, which lies in the space Lp ([0,1],r dr ) for 1 ≤ p < 4/3.

Wing [11] proved that, for any choice of Jm , the 1-dimensional Bessel series of f fails to converge
in Lp ([0,1],r dr ). By letting g (r, t ) := f (r ) in Lp (D), it follows that the 2-dimensional Bessel–
Fourier series of g is ∑

m∈Z

∑
n∈N

am,n Jm( j m
n r )e2πimt = ∑

n∈N
an Jm( j m

n r )

and so does not converge to g for any m ≥ 0, whether we truncate the 2-dimensional series by
cubic or spherical modes.

Recently, Fefferman et al. [5] have asked whether, given a differential operator with an or-
thonormal family wk of eigenfunctions, there is a choice {w ∈ EN : N ∈N} of eigenfunctions such
that the “truncations”

SEN f = ∑
w∈EN

〈 f , w〉w

are “well-behaved” in Lp for all 1 < p < ∞. To our knowledge, this conjecture is still open. For
instance, Wing’s counterexample could be summable if we were to find a more cunning grouping
of terms to exploit further cancellations to which the coarser truncations are not sensitive. We
have, however, obtained some new results for a certain class of triangular domains in [1].

Returning to the disk, Wing’s result tells us that we should expect restrictions on the range of
p. A natural range is 4/3 < p < 4, since this is precisely the range that works for the 1-dimensional
Bessel series [11]. (It is instructive to compare this to the ranges of Lp convergence for the
Bochner–Riesz means on R2; see [7] for details. We will return to this question later.)

The best result known at this time is due to Balodis and Córdoba [2], who reduced the
problem of convergence on the disc to extant results on the convergence of Fourier and 1-
dimensional Bessel series, albeit with a modified norm. We will exploit their argument to obtain
Lp convergence in a certain subspace of Lp .

2. Mixed-norm convergence

Define the space Lp
rad(L2

ang) by the inequality

∥∥ f
∥∥

p,2 :=
[∫ 1

0

(∑
m

| fm(r )|2
)p/2

r dr

]1/p

≡ ∥∥∥∥( fm(r ))
∥∥
ℓ2

∥∥
Lp (r dr ) <∞, (3)
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where fm(r ) are the Fourier coefficients of the angular function t 7→ f (r, t ):

fm(r ) :=
∫ 1

0
f (r,θ)e−2πimθ dθ.

Denote by SN ,M f the partial sums of the Bessel–Fourier series of f :D→C:

SN ,M f (r, t ) :=
M∑

m=−M

N∑
n=1

am,n Jm( j m
n r )e2πimt . (4)

We drop the superscript “(d)” present in [2], since d = 2 will remain fixed in our discussion.
This simplification is imposed by our use of the Hausdorff–Young inequality below. In higher
dimensions, the expansion of the spherical part involves spherical harmonics, so the device of
the Hausdorff–Young inequality is no longer available to us.

Theorem 1 ([2]). The operators SN ,M are uniformly bounded on Lp
rad(L2

ang) if, and only if, 4
3 < p < 4

when N ≥ AM +1 for an absolute constant A > 0.

The norm convergence of the series to f follows by the usual uniform boundedness argument.
(See [2]; cf. the analogous Fourier series argument in [7].)

To attack the proof of Theorem 1, they exploited the presence of the Fourier coefficients in the
norm (3). Indeed, SN ,M f is a trigonometric polynomial whose mthFourier mode (|m| ≤ M) is

SN ,m fm(r ) ≡
N∑

n=1
am,n Jm( j m

n r ), (5)

which is precisely the 1-dimensional Bessel series summation operator for the radial function
r 7→ fm(r ) in terms of the mthorder Bessel function Jm . Thus,

∥∥SN ,M f
∥∥

p,2 =
[∫ 1

0

(
M∑

m=−M
|SN ,m fm(r )|2

)p/2

r dr

]1/p

= ∥∥(SN ,m fm)m
∥∥

Lp (r dr ;ℓ2) ,

so the boundedness of SN ,M in Lp
rad(L2

ang) is reduced to a uniform bound for vector-valued
inequalities. Such bounds must be independent of the length, 2M +1, of the vector(

SN ,m f−m , . . . ,SN ,m fm
)

.

Note that SN ,−m = SN ,m by our convention that Jm = J|m| for m ∈ Z. The functions fm and f−m ,
however, are distinct in general, as they correspond to distinct Fourier coefficients.

Let us now turn to Lp convergence on the disc, where the relevant norm is∥∥ f
∥∥

Lp (D) =
∥∥∥∥∥ f (r, t )

∥∥
Lp (dt )

∥∥∥
Lp (r dr )

.

For p ̸= 2 we cannot replace the inner “angular” Lp norm by a sum of Fourier coefficients (see [9,
Chapter IV]). However, for p ≥ 2 we may use the following “Reverse” Hausdorff–Young Inequality:
if p ≥ 2 and 1

p + 1
q = 1, then ∥∥g

∥∥
Lp (T) ≤

∥∥(ĝ (k))k
∥∥
ℓq (Z) .

for all g ∈ Lp (T). To see this, simply interpolate between Plancherel’s identity and the trivial
bound ∥∥g

∥∥
L∞(T) ≤

∥∥(ĝ (k))k
∥∥
ℓ1(Z) .
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We therefore have ∥∥ f
∥∥

Lp (D) =
[∫ 1

0

∥∥ f (r, t )
∥∥p

Lp (T,dt ) r dr

]1/p

≤
[∫ 1

0

(∑
k
| fk (r )|q

)p/q

r dr

]1/p

=:
∥∥ f

∥∥
p,q .

Using this norm, we define the space

Lp
rad(ℓq

ang) :=
{

f ∈ Lp (D) :
∥∥ f

∥∥
p,q <∞

}
.

Careful inspection of the proofs in [2] shows that the space ℓ2 can be replaced by ℓq through-
out when

1

p
+ 1

q
= 1 and 2 ≤ p < 4.

The kernels of the 1-dimensional summation operators SN ,m in (5) are controlled by weighted,
vector-valued norms on the operators∫ 1

0

f (t )

2−x − t
dt and

∫ 1

0

f (t )

x + t
dt , (6)

the Hilbert Transform and the Hardy–Littlewood Maximal Functional. The weight r 1−p/2 satisfies
the 1-dimensional Muckenhoupt Ap condition if, and only if,

−1 < 1− p

2
< p −1 that is

4

3
< p < 4

(see [7, Example 7.1.7]) and, when this is the case, we have the inequalities∥∥(M fk )k
∥∥

Lp (r 1−p/2;ℓq ) +
∥∥(H fk )k

∥∥
Lp (r 1−p/2;ℓq ) ≲p,q

∥∥( fk )k
∥∥

Lp (r 1−p/2;ℓq ) .

(See [4, (B), p. 25].) Furthermore, the kernels of the operators in (6) are nice enough that both are
bounded on the space Lp ([0,1],r 1−p/2 dr ) and, since they are positive, they admit vector-valued
extensions to ℓq too [7, Theorem 5.5.10].

There is one more operator to consider in [2, p. 280]:

TN ,m f (x) :=p
x fν(AνN x)

∫ 1

0

p
t fν(AνN t ) f (t )dt

with fν as in [2, Lemma 1]. For the stated range of p, p/q ≥ 1, so we can apply Jensen’s Inequality
as in [2, p. 280], and we obtain the Lp

rad(ℓq
ang)-boundeness of TN ,ν too.

Theorem 2. The operators SN ,M are uniformly bounded on Lp
rad(ℓq

ang) if 2 ≤ p < 4 and 1
p + 1

q = 1,
when N ≥ AM +1 for an absolute constant A > 0.

Corollary 3. Let 2 ≤ p < 4 and 1
p + 1

q = 1. Then, if Nk , Mk are sequences of natural numbers such
that Nk ≥ AMk +1 and Mk →∞, we have

lim
k→∞

∥∥SNk ,Mk f − f
∥∥

p,q = 0

for all f ∈ Lp
rad(ℓq

ang). In particular,

lim
k→∞

∥∥SNk ,Mk f − f
∥∥

Lp (D) = 0

for all f ∈ Lp
rad(ℓq

ang).
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Note, however, that this method does not allow us to conclude Lp norm convergence for all
f ∈ Lp , but only for the smaller space Lp

rad(ℓq
ang) ⊊ Lp (D). The following function lies in Lp (since

it is continuous [12]), but its Fourier coefficients are not ℓq summable for any q > 2:

g (t ) :=
∞∑

k=2

ei k logk

p
k(logk)2

e2πit .

In other words, g ∈ Lp (D) \ Lp
rad(ℓq

ang).
The above example, which is a counterexample to Plancherel’s theorem in Lp , hints at the

underlying issue: we did not obtain Lp bounds for the partial sum operators, so we cannot apply
the proof of Corollary 3 to Lp (D) directly.

3. Concluding remarks

To summarise, we have the following pieces of the convergence puzzle:

Table 1. Lp convergence of Bessel–Fourier series for various ranges of p.

p range [1,4/3) [4/3,2) 2 (2,4) 4 (4,∞)
∥·∥Lp (D)-convergence No ? Yes f ∈ Lp

rad(ℓq
ang) ? No

In light of the existing results [2, 3, 11], we might offer the following conjecture.

Conjecture 4. For all 4/3 < p < 4 and f ∈ Lp (D),

lim
k→∞

∥∥SNk ,Mk f − f
∥∥

Lp (D) = 0,

for some appropriate choice of Nk , Mk ∈N, k ≥ 1. For p outside of this range, convergence fails in
general.

However, it is not completely clear that we can expect this. Córdoba [4] proved that the ball
multiplier is bounded on the mixed norm space Lp

rad(L2
ang) in the range 2n/(n+1) < p < 2n/(n−1)

that was originally conjectured for Lp (Rn), but disproved by Fefferman [6]. As we saw above, the
Lp

rad(L2
ang) argument works by essentially “eliminating” the angular eigenfunctions and reducing

the problem to bounds on the one-dimensional Bessel–Fourier series. This “trick” is not available
in Lp (D), owing to the failure of Plancherel’s Theorem for p ̸= 2, so obtaining uniform bounds on
the operators SN ,M is considerably more difficult.
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