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Abstract. We first interpret Pell’s equation satisfied by Chebyshev polynomials for each degree t , as a certain
Positivstellensatz, which then yields for each integer t , what we call a generalized Pell’s equation, satisfied by
reciprocals of Christoffel functions of “degree” 2t , associated with the equilibrium measure µ of the interval
[−1,1] and the measure (1 − x2)dµ. We next extend this point of view to arbitrary compact basic semi-
algebraic set S ⊂ Rn and obtain a generalized Pell’s equation (by analogy with the interval [−1,1]). Under
some conditions, for each t the equation is satisfied by reciprocals of Christoffel functions of “degree” 2t
associated with (i) the equilibrium measure µ of S and (ii), measures g dµ for an appropriate set of generators
g of S. These equations depend on the particular choice of generators that define the set S. In addition to
the interval [−1,1], we show that for t = 1,2,3, the equations are indeed also satisfied for the equilibrium
measures of the 2D-simplex, the 2D-Euclidean unit ball and unit box. Interestingly, this view point connects
orthogonal polynomials, Christoffel functions and equilibrium measures on one side, with sum-of-squares,
convex optimization and certificates of positivity in real algebraic geometry on another side.

Résumé. Nous fournissons d’abord une interprétation particulière de l’équation polynomiale de Pell satis-
faite par les polynômes de Chebyshev. Pour chaque degré t , il en découle une équation similaire satisfaite
par les fonctions de Christoffel de la mesure d’équilibre µ de l’intervalle [−1,1] et de la mesure (1− x2)dµ.
Nous généralisons ensuite ce point de vue à des ensembles semi-algébriques compacts, et vérifions le résul-
tat pour t = 1,2,3 sur la boule unité Euclidienne, la boite unité, et le simplex en dimension 2. Cette interpréta-
tion met en lumière une connection plutôt inattendue entre d’un coté, polynômes orthogonaux, fonctions de
Christoffel et mesure d’équilibre, et de l’autre, optimisation convexe et certificats de positivité en géométrie
algébrique réelle.
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1. Introduction

One goal of this paper is to introduce what we call a generalized Pell’s equation which, under cer-
tains conditions, is satisfied by reciprocals of Christoffel functions associated with (i) the equi-
librium measure λS of a compact basic semi-algebraic set S ⊂ Rn , and (ii) associated measures
g dλS , g ∈ G , for an appropriate set G of generators of S. Moreover, checking whether a chosen
set G of generators is appropriate, can be done by solving a sequence of convex optimization
problems.

Another goal is to reveal via the path to obtain the result, strong links between orthogonal
polynomials, Christoffel functions and equilibrium measures on one side, and certificates of
positivity in real algebraic geometry, optimization and sum-of-squares, as well as a duality result
on convex cones by Nesterov, on the other side.

1.1. Initial and motivating example

The starting point is Pell’s equation satisfied by Chebyshev polynomials. Pell’s equation1 is a
topic in algebraic number theory and for more details (not needed here) the interested reader
is referred to e.g. [7, 11]. When looking at this equation with special glasses, we can interpret this
equation as a Putinar’s certificate of positivity on the interval [−1,1], for the constant polynomial
equal to 1. Then with g (x) = 1 − x2, the reciprocal of the two Christoffel functions Λµt and
Λ

g ·µ
t respectively associated with the equilibrium measure dµ = dx/π

p
1−x2 and the measure

g · µ := g dµ, satisfy the same equation, for every t . Equivalently, for every integer t , the two
polynomials 1/(2t +1)Λµt and (1−x2)/(2t +1)Λg ·µ

t form a partition of unity of [−1,1].
More precisely: InR[x], let (Tn)n∈N ⊂R[x] (resp. (Un)n∈N ⊂R[x]) be the Chebyshev polynomials

of the first kind (resp. of the second kind). Then

Tn(x)2 + (1−x2)Un−1(x)2 = 1, n = 1, . . . . (1)

In other words, for every integer n ≥ 1, the triple (Tn , (x2−1),Un−1) is a solution to the polynomial
Pell’s equation [7].

Next, let dµ(x) = dx/π
p

1−x2, x 7→ g (x) = 1 − x2, and denote by g ·µ the measure g dµ =p
1−x2dx/π. The family (T̂ n)n∈N (resp. (Û n)n∈N) with

T̂ 0 = T0 ; T̂ n =p
2Tn , n ≥ 1; Û n =p

2Un , ∀ n ∈N ,

is orthonormal w.r.t. µ (resp. g ·µ). Then (1) yields

T̂ n(x)2 + (1−x2)Û n−1(x)2 = 2, n = 1, . . . (2)

and consequently, summing up yields

T̂ 2
0 +

t∑
n=1

T̂ n(x)2

︸ ︷︷ ︸
Λ
µ
t (x)−1

+(1−x2)
t−1∑
n=0

Û n(x)2

︸ ︷︷ ︸
Λ

g ·µ
t−1(x)−1

= 2t +1, t = 0,1, . . . . (3)

That is:
Λ
µ
t (x)−1 + (1−x2)Λg ·µ

t−1(x)−1 = 2t +1, t = 0,1, . . . , (4)

where Λµt (resp. Λg ·µ
t ) is the Christoffel function of “degree” 2t associated with µ (resp. g ·µ).

So for each integer t , the triple ((Λµt )−1, (x2 −1), (Λg ·µ
t−1)−1) satisfies what we call a generalized

polynomial Pell’s equation; indeed (i) (Λµt )−1 ∈Z[x] is a sum of t+1 squares (in short, an SOS) and

1A multivariate polynomial F ∈ Z[x] is called a multi-variable Fermat–Pell polynomial if there exist polynomials
C , H ∈ Z[x] such that C 2 −F H2 = 1 or C 2 −F H2 = −1 for all x. Then the triple (C , H ,F ) is a multi-variable solution to
Pell’s equation; see [7].
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not a single square, and (ii) after scaling, (Λµ)−1
t /(2t +1) ̸∈ Z[x] (and similarly for (Λg ·µ

t−1)−1). Also
observe that the scaled polynomials 1

2t+1 (Λµt )−1 and 1
2t+1 g · (Λg ·µ

t−1)−1 form a partition of unity for
the interval [−1,1].

The measure µ is called the equilibrium measure associated with the interval [−1,1]. Next, it
turns out that (4) is in fact a particular case of [8, Theorem 17.7] which, rephrased later in the
polynomial context by the author in [5, Lemma 4], states that every polynomial p ∈ R[x] (here
the constant polynomial p = 2t +1) in the interior of a certain convex cone, has a distinguished
representation in terms of certain SOS. Namely, such SOS are reciprocals of Christoffel functions
associated with some rather “intriguing” linear functional φp ∈ R[x]∗ associated with p (see [5,
Equation (10)]). However in [5, Lemma 4] we did not provide any clue on what is the link between
p and φp . So when S = [−1,1], (4) tells us that this intriguing linear functional φp associated
with constant polynomials p, is in fact proportional to the (Chebyshev) equilibrium measure
dx/π

p
1−x2 of the interval [−1,1].

So the message of this introductory example is that we can view the polynomial Pell’s equa-
tion (1) as well as its generalization (4), as algebraic Putinar certificates of increasing degree
t = 1,2, . . . , that the constant polynomials (p = 1 for (1) and p = 2t + 1 for (4)) are positive on
the interval [−1,1].

1.2. Contribution

The goal of this paper is (i) to define a framework that extends the above point of view to the
broader context of compact basic semi-algebraic sets, (ii) to provide conditions under which a
multivariate analogue of (4) holds, and (iii) to show that indeed (4) holds for t = 1,2,3 for the 2D-
Euclidean ball, the 2D-unit box, and the 2D-simplex. As we next see, Equation (4) is particularly
interesting as it links statistics, orthogonal polynomials and equilibrium measures on one side,
with convex optimization and duality, sum-of-squares and algebraic certificates of positivity, on
another side.

More precisely, with g j ∈R[x], j = 1, . . . ,m, let

S := {
x ∈Rn ∣∣g j (x) ≥ 0, j = 1, . . . ,m

}
, (5)

be compact with nonempty interior. Our contribution is to investigate an appropriate multi-
variate analogue for S in (5) and its equilibrium measure, of the SOS characterization (4) for
the Chebyshev measure dx/π

p
1−x2 on [−1,1]. Given g ∈ R[x], let tg := ⌈deg(g )/2⌉, and let

s(t ) := (n+t
n

)
. With g0 = 1, introduce G := {g0, g1, . . . , gm} and for every t ∈N, let Gt := {g ∈G : tg ≤ t }

(when g ∈ R[x]2 for all g ∈G then Gt =G for all t ≥ 1). For two polynomials g ,h ∈ R[x], we some-
times use the notation g ·h for their usual product, when needed to avoid ambiguity. Given a
Borel measure φ on S, denote by g ·φ, g ∈G , the measure g dφ on S. Then define the sets

Q(G) :=
{ ∑

g∈G
σg g

∣∣∣∣σg ∈Σ[x]

}
(6)

Qt (G) :=
{ ∑

g∈G
σg g ; σg ∈Σ[x]

∣∣∣∣deg(σg g ) ≤ 2t

}
, t ∈N , (7)

respectively called the quadratic module and 2t-truncated quadratic module associated with
{g1, . . . , gm} ⊂R[x]. (Σ[x] ⊂R[x] is convex cone of sum-of-squares polynomials (SOS in short).)

(i). We first show that if a Borel probability measure φ on S (with well-defined Christoffel
functions Λg ·φ

t , g ∈G , t ∈N) satisfies

1∑
g∈Gt s(t − tg )

∑
g∈Gt

g · (Λg ·φ
t−tg

)−1 = 1, ∀ t ≥ t0 , (8)
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for some t0 ∈ N, and (S, g ·φ) satisfies the Bernstein–Markov property for every g ∈ G , then
necessarily φ is the equilibrium measure λS of S (as defined in e.g. [1]). Notice that (8) is the
perfect multivariate analogue of the univariate (4) for S = [−1,1] and its equilibrium measure
φ = dx/π

p
1−x2; therefore we propose to name (8) a generalized Pell’s equation as it is the

analogue of (4) for several polynomials g , and the solutions (1/Λg ·φ
t )g∈G are sums-of-squares (and

not a single square as in the multivariate Pell’s equation [7].) So in this case, for every t ≥ t0, as
an element of int(Qt (G)∗), the vector of degree-2t moments of the equilibrium measure λS , is
strongly related to the constant polynomial “1” in int(Qt (G)) (which can be viewed as the density
of λS w.r.t. λS ). Such a situation is likely to hold only for specify cases of sets S (with S = [−1,1]
and λS = dx/π

√
(1−x2) being the prototype example).

However we also show that in the general case, the vector of degree-2t moments of the
equilibrium measure λS , is still related to the constant polynomial “1” but in a weaker fashion.
Namely, let µt = p∗

t λS be the probability measure whose density p∗
t w.r.t. λS is the polynomial

in the left-hand-side of (8) (with φ = λS ). Then limt→∞µt = λS for the weak convergence of
probability measures. That is, asymptotically as t grows, and as a density w.r.t. λS , p∗

t behaves
like the constant density “1” when integrating continuous functions against p∗

t λS .

(ii). We next provide an if and only if condition on S and its representation (5) so that indeed, for
every t ≥ t0, there exists a distinguished linear functional φ∗

2t ∈ R[x]∗2t , positive on Qt (G), which
satisfies

1 = 1∑
g∈Gt s(t − tg )

∑
g∈Gt

g · (Λ
g ·φ∗

2t
t )−1 , (9)

an analogue of (8) with Christoffel functions Λ
g ·φ∗

2t
t associated with φ∗

2t . Interestingly, this condi-
tion which states that

1 ∈ int(Qt (G)) , ∀ t ∈N , (10)

is a question of real algebraic geometry related to a (degree-2t truncated) quadratic module
associated with a set G of generators of S. Among all possible sets of generators for a given
compact semi-algebraic set S, those G for which (10) holds, deserve to be distinguished.

(iii). Next, if condition (10) is satisfied then for every fixed t , the moment vector φ∗
2t associated

with the linear functional φ∗
2t in (ii), is the unique optimal solution of a convex optimization

problem (with a “logdet” criterion) which can be solved efficiently via off-the-shelf softwares like
e.g. CVX [3] or Julia [2]. In fact, (9) is an algebraic “certificate” that condition (10) holds, and even
more, (9) and (10) are equivalent. Of course, the larger t is, the larger is the size of the resulting
convex optimization problem to solve.

Moreover, every (infinite sequence) accumulation point φ∗ = (φ∗
α)α∈Nn of the sequence of

finite moment-vectors (φ∗
2t )t∈N associated with the linear functional φ∗

2t , is represented by a
Borel measure φ on S. Then φ satisfies (8) if and only if the whole sequence (φ∗

2t )t∈N converges
to φ∗ and the convergence is finite. That is, there exists t0 ∈ N such that for every t ≥ t0, φ is
a representing measure of φ∗

2t . Equivalently, for every t ≥ t0, φ∗
2(t+1) is an extension of φ∗

2t . In
addition, if the measure φ is such that (S, g ·φ) satisfies the Bernstein–Markov property for all
g ∈G , then necessarily φ is the equilibrium measure λS of S (by (i)).

Interestingly, this hierarchy of convex optimization problems provides a practical numerical
scheme (at least for moderate values of t ) to check whether the (unique) optimal solutionφ∗

2(t+1)
is an extension of φ∗

2t , for an arbitrary fixed t ∈N, which should eventually happen if (8) has ever
to hold for the limit measure φ associated with the sequence (φ∗

2t )t∈N.
Ifφ∗

2(t+1) is an extension ofφ∗
2t for some t , then it is a good indication that indeed (8) may hold

with φ∗
2t being moments of φ (up to degree 2t ). On the other hand, if φ∗

2(t+1) is not an extension
ofφ∗

2t then it may be because (i) there is no limit measureφ that satisfies (8), or (ii) one must wait
for a larger t (t ≥ t0) to see a possible “extension”, or (iii) perhaps G is not an appropriate set of
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generators of S. However, in that case it remains to check whether the limit measure φ is still the
equilibrium measure of S, and if not, to detect its distinguishing features.

(iv). Finally, in support that (8) may be valid for sets S other than [−1,1], we also show that
for t = 1,2,3, (8) holds when S is the 2D-Euclidean unit ball and unit box, as well as the 2D-
simplex, in which case λS is proportional to dxdy/

√
1−x2 − y2, dxdy/

√
(1−x2)(1− y2), and

dxdy/
√

x y (1−x − y), respectively.

2. Main result

2.1. Notation and definitions

Let R[x] denote the ring of real polynomials in the variables x = (x1, . . . , xn) and R[x]t ⊂R[x] be its
subset of polynomials of total degree at most t . Let Nn

t := {α ∈ Nn | |α| ≤ t } (where |α| = ∑
i αi )

with cardinal s(t ) = (n+t
n

)
. Let vt (x) = (xα)α∈Nn

t
be the vector of monomials up to degree t , and

let Σ[x]t ⊂R[x]2t be the convex cone of polynomials of total degree at most 2t which are sum-of-
squares (in short SOS).

For a real symmetric matrix A = AT the notation A ⪰ 0 (resp. A ≻ 0) stands for A is positive
semidefinite (p.s.d.) (resp. positive definite (p.d.)). The support of a Borel measure µ on Rn is the
smallest closed set A such that µ(Rn \ A) = 0, and such a set A is unique. Denote by C (S) the space
of real continuous functions on S.

Riesz functional, moment and localizing matrix. With a real sequence φ= (φα)α∈Nn (in bold) is
associated the Riesz linear functional φ ∈R[x]∗ (not in bold) defined by

p

(
=∑

α
pαxα

)
7→ φ(p) = 〈φ, p〉 =∑

α
pαφα , ∀ p ∈R[x] ,

and the moment matrix Mt (φ) with rows and columns indexed byNn
t (hence of size s(t ) := (n+t

t

)
),

and with entries

Mt (φ)(α,β) :=φ(xα+β) =φα+β , α,β ∈Nn
t .

Similarly given g ∈R[x] (x 7→∑
γ gγxγ), define the new sequence

g ·φ :=
(∑
γ

gγφα+γ
)
α∈Nn

,

and the localizing matrix associated with φ and g ,

Mt (g ·φ)(α,β) :=∑
γ

gγφα+β+γ , α,β ∈Nn
t .

Equivalently, Mt (g ·φ) is the moment matrix associated with the new sequence g ·φ. The Riesz
linear functional g ·φ associated with the sequence g ·φ satisfies

g ·φ(p) =φ(g ·p) , ∀ p ∈R[x] .

In particular, for any real symmetric s(t )× s(t ) matrix Q

φ(g (x)vt (x)T Qvt (x)) = g ·φ(vt (x)T Qvt (x)) = 〈Q,Mt (g ·φ)〉 . (11)

A real sequence φ = (φα)α∈Nn has a representing mesure if its associated linear functional φ is
a Borel measure on Rn . In this case Mt (φ) ⪰ 0 for all t ; the converse is not true in general. In
addition, if φ is supported on the set {x ∈Rn : g (x) ≥ 0} then necessarily Mt (g ·φ) ⪰ 0 for all t .
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Christoffel function. Letφ ∈R[x]∗ be a Riesz functional (not necessarily with a representing mea-
sure) such that Mt (φ) ≻ 0. As for Borel measures, we may also define the (degree-t ) Christoffel
function

x 7→Λ
φ
t (x)−1 := vt (x)T Mt (φ)−1vt (x) , ∀ x ∈Rn ,

associated with φ. Alternatively, if (Pα)α∈Nn ⊂R[x] is a family of polynomials which are orthonor-
mal with respect to φ, then

Λ
φ
t (x)−1 = ∑

α∈Nn
t

Pα(x)2 , ∀ x ∈Rn . (12)

Similarly, if Mt (g ·φ) ≻ 0, we may also define the (degree-t ) Christoffel function

x 7→Λ
g ·φ
t (x)−1 := vt (x)T Mt (g ·φ)−1vt (x) , ∀ x ∈Rn ,

associated with the Riesz functional g ·φ.
All the above definitions also hold for finite sequences φ2t = (φα)α∈Nn

2t
and associated Riesz

linear functionalφ2t ∈R[x]∗2t . Indeed when t is fixed,Λφt and Mt (φ) only depend on the degree 2t-
truncation φ2t of the infinite sequence φ. Then the notation Mt (φ) or Mt (φ2t ) (and similarly
Λ
φ2t
t or Λφt ) can be used interchangeably. Finally, a sequence φ2(t+1) is an extension of φ2t if

(φ2(t+1))α = (φ2t )α for all α ∈ Nn
2t , i.e., if φ2t is the restriction of φ2(t+1) to all moments up to

degree 2t .

Bernstein–Markov property. A Borel measure µ supported on a compact set S ⊂ Rn satisfies the
Bernstein–Markov property if there exists a sequence of positive numbers (Mt )t∈N such that for
all t and p ∈R[x]t ,

sup
x∈S

|p(x)| ≤ Mt ·
(∫

S
p2 dµ

)1/2

, and lim
t→∞ log(Mt )/t = 0 (13)

(see e.g. [6, Section 4.3.3]). The Bernstein–Markov property allows qualitative description for
asymptotics of the Christoffel function as t grows. When it holds it permits to establish a strong
link between the Christoffel function and Siciak’s extremal function

x 7→VS (x) := sup

{
log |p(x)|

deg(p)

∣∣∣∣∥p∥S ≤ 1, deg(p) > 0

}
, x ∈Rn .

A compact set S is said to be regular if its associated Siciak’s function is continuous everywhere
in Rn (the same definition also extends to Cn ; see [6, Definition 4.4.2, p. 53]). If S is regular and
(S,µ) satisfies the Bernstein–Markov property, then

uniformly on compact subsets of Rn : lim
t→∞

1

2t
logΛµt (x) =−VS (x) .

Equilibrium measure. The notion of equilibrium measure associated to a given set, originates
from logarithmic potential theory (working in C in the univariate case) to minimize some energy
functional. For instance, the equilibrium (Chebsyshev) measure dφ := dx/π

p
1−x2 minimizes

the Riesz s-energy functional ∫ ∫
1

|x − y |s dµ(x)dµ(y)

with s = 2, among all measure µ equivalent to φ. Some generalizations have been obtained in
the multivariate case via pluripotential theory in Cn . In particular if S ⊂Rn ⊂Cn is compact then
the equilibrium measure (let us denote it by λS ) is equivalent to Lebesgue measure on compact
subsets of int(S). It has an even explicit expression if S is convex and symmetric about the origin;
see e.g. Bedford and Taylor [1, Theorem 1.1] and [1, Theorem 1.2]. Moreover if µ is a Borel
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measure on S and (S,µ) has the Bernstein–Markov property (13) then the sequence of measures
dνt = dµ(x)

s(t )Λ
µ
t (x)

, t ∈N, converges to λS for the weak-⋆ topology and therefore in particular:

lim
t→∞

∫
S

xαdνt = lim
t→∞

∫
S

xαdµ(x)

s(t )Λµt (x)
=

∫
S

xαdλS , ∀α ∈Nn (14)

(see e.g. [6, Theorem 4.4.4]). In addition, if a compact S ⊂ Rn is regular then (S,λS ) has the
Bernstein–Markov property; see [6, p. 59]. For a brief account on equilibrium mesures see the
discussion in [6, Section 4–5, pp. 56–60] while for more detailed expositions see some of the
references indicated there.

2.2. Brief summary of main results

In Section 2.3, Theorem 2 shows that if a linear functional φ ∈ R[x]∗ satisfies the multivariate
analogue (8) of (4) for S in (5), then under a certain technical assumption, φ is necessarily the
equilibrium measure λS of S. Corollary 4 shows that (8) is also a strong property of orthonormal
polynomials associated with λS , the perfect analogue of (2) for Chebyshev polynomials on S =
[−1,1]. As this strong property is not expected to hold for general sets S in (5), we next show in
Theorem 3 that in general, the polynomial

p∗
t := 1∑

g∈Gt s(t − tg )

∑
g∈Gt

g · (Λg ·λS
t )−1 , t ∈N ,

associated with λS (now not necessarily constant (equal to 1) as in Theorem 2) has still a
strong property related to the constant polynomial “1”. Namely asymptotically, the sequence of
probability measures (µt := p∗

t λS )t∈N (with densities p∗
t w.r.t. λS ) converges to λS for the weak-⋆

topology of M (S). That is, informally, the polynomial density p∗
t “behaves” asymptotically like

the constant (equal to 1) density when integrating continuous functions against p∗
t λS . Hence

somehow, the vector of degree-2t moments of λS in the convex cone (Qt (G))∗ are still intimately
related to the constant polynomial 1 in Qt (G) (but not as directly as in Theorem 2).

Next, in Section 2.4 we still consider again the constant polynomial 1 and in Theorem 6 we
show that under a simple condition, indeed 1 ∈ int(Qt (G) for all t , and therefore there exists a
sequence of linear functional (φ2t )t∈N that satisfies (9) for all t . For each t , the linear functional
φ2t is the unique optimal solution of a simple convex optimization problem with logdet criterion
to maximize. (In addition, in the case when S = {x : g (x) ≥ 0} for some g ∈ R[x], Lemma 9 relates
solutions to Pell’s equation with φ2t and S.)

In Section 2.5 one is concerned with the asymptotic behavior of the linear functionals (φ2t )t∈N
as t grows, and Theorem 10 shows that there exists a limit moment sequence φ which has a
representing probability measureφ on S. Moreoverφ satisfies (8) and is the equilibrium measure
λS , if and only if finite convergence takes place, that is, for every t ≥ t0, φ2t is the vector of
degree-2t moments of φ. So an interesting issue (not treated here) is to relate φ and λS when
the convergence is only asymptotic and not finite.

Finally in Section 3 we provide numerical examples of sets S where (8) holds at least for
t = 1,2,3.

2.3. Two preliminary results

For simplicity of exposition, we will consider sets S in (5) for which the quadratic polynomial
x 7→ R −∥x∥2 belongs to Q1(G); in particular, S is contained in the Euclidean ball of radius

p
R for

some R > 0, and the quadratic module Q(G) is Archimedean; see e.g. [4]. LetλS be the equilibrium
measure of S (as described in e.g. [1]) and recall that g0 = 1 (so that g0 ·λS = λS ). Let C (S) be the
space of continuous functions on S.
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Assumption 1. The set S in (5) is compact with nonempty interior. Moreover, there exists R > 0
such that the quadratic polynomial x 7→ θ(x) := R −∥x∥2 is an element of Q1(G). In other words,
h ∈Q1(G) is an “algebraic certificate” that S in (5) is compact.

Theorem 2. With S as in (5), let Assumption 1 hold. Let φ= (φα)α∈Nn (with φ0 = 1) be such that
Mt (g ·φ) ≻ 0 for all t ∈ N and all g ∈ G, so that the Christoffel functions Λg ·φ

t are all well defined
(recall that φ ∈ R[x]∗ is the Riesz linear functional associated with the moment sequence φ). In
addition, suppose that there exists t0 ∈N such that

1 = 1∑
g∈Gt s(t − tg )

∑
g∈Gt

g · (Λg ·φ
t−tg

)−1 , ∀ t ≥ t0 . (15)

Then φ is a Borel measure on S and the unique representing measure of φ. Moreover, if (S, g ·φ)
satisfies the Bernstein–Markov property for every g ∈ G, then φ = λS and therefore the Christoffel
polynomials (Λg ·λS

t )−1
g∈Gt

satisfy the generalized Pell’s equations:

1 = 1∑
g∈Gt s(t − tg )

∑
g∈Gt

g · (Λg ·λS
t−tg

)−1 , ∀ t ≥ t0 . (16)

Proof. In view of Assumption 1, the quadratic module Q(G) is Archimedean. Next, as Mt (g ·φ) ≻ 0
for all t ∈ N and all g ∈ G , then by Putinar’s Positivstellensatz [10], φ has a unique representing
measure on S; that is, the Riesz linear functional φ associated with φ is a Borel measure on S.
Next, write (15) as

1 = ∑
g∈Gt

g ·
(
Λ

g ·φ
t−tg

)−1

s(t − tg )
· s(t − tg )∑

g∈G s(t − tg )
, ∀ t ≥ t0 , (17)

and let α ∈ Nn be fixed arbitrary. As (S, g ·φ) satisfies the Bernstein–Markov property for every
g ∈G , then by [6, Theorem 4.4.4],

lim
t→∞

∫
S

xα
(
Λ

g ·φ
t

)−1

s(t )
g dφ=

∫
S

xαdλS , ∀ g ∈G ,

where λS is the equilibrium measure of S; see [1,6]. Hence multiplying (17) by xα and integrating
w.r.t. φ yields ∫

S
xαdφ= ∑

g∈Gt

s(t − tg )∑
g∈Gt s(t − tg )

·
∫

S

xα · (Λg ·φ
t−tg

)−1

s(t − tg )
g dφ , ∀ t ≥ t0 .

Each term of the product in the above sum of the right-hand-side has a limit as t grows. Moreover
Gt =G for t sufficiently large. Therefore taking limit as t increases yields∫

S
xαdφ= ∑

g∈G
lim

t→∞
s(t − tg )∑

g∈G s(t − tg )
· lim

t→∞

∫
S

xα · (Λg ·φ
t−tg

)−1

s(t − tg )
g dφ

=
∫

S
xαdλS ·

∑
g∈G

lim
t→∞

∑
g∈G

s(t − tg )∑
g∈G s(t − tg )

=
∫

S
xαdλS ·

∑
g∈G

(#G)−1 =
∫

S
xαdλS .

As α ∈Nn was arbitrary and S is compact, then necessarily φ=λS . □

Theorem 2 reveals a strong property of Christoffel functions Λg ·λS
t and is likely to hold only in

some specific cases. The prototype example is S = [−1,1] = { x : g (x) ≥ 0} with x 7→ g (x) = 1− x2.
Then indeed (4) is exactly (16), and by analogy with the Chebyshev univariate case, we propose
to call Equation (16) a generalized Pell’s (polynomial) equation of degree 2t . It is satisfied by the
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polynomials (g · (Λg ·λS
t−tg

)−1)g∈Gt , all of degree less than 2t . If true for all t , then (S,λS ) satisfies the
generalized Pell’s equations for all degrees.

Of course, to be valid (16) requires conditions on S and its representation (5) by the poly-
nomials g ∈ G . For instance, as shown in Section 3 below, if S is the 2D-Euclidean unit ball
with g = 1−∥x∥2, (in which case Gt = G1 for all t ≥ 1), then λS = dx/(π

√
1−∥x∥2) and we can

show that (16) holds for t = 1,2,3. Similarly, if S is the 2D-simplex {x : x1, x2 ≥ 0; x1 + x2 ≤ 1},
then λS = dx/(π

p
x1 · x2 · (1−x1 −x2) and we can show that (16) holds for t = 1,2,3, for the qua-

dratic generators in G = {g0, g1, g2, g3} with g1(x) = x1 · (1− x1 − x2), g2(x) = x2 · (1− x1 − x2), and
g3(x) = x1 · x2.

However in the general case we have the following weaker result, still related to Theorem 2.

Theorem 3. Let λS be the equilibrium measure of S and assume that for every g ∈ G, (S, g ·λS )
satisfies the Bernstein–Markov property. For every t , define the polynomial

p∗
t := 1∑

g∈Gt s(t − tg )

∑
g∈Gt

g · (Λg ·λS
t )−1 , t ∈N . (18)

Then the sequence of probability measures (µt := p∗
t λS )t≥t0 converges toλS for the weak-⋆ topology

of M (S), i.e.,

lim
t→∞

∫
S

f p∗
t dλS =

∫
S

f dλS , ∀ f ∈C (S) . (19)

Proof. The polynomial p∗
t in (18) is well defined because the matrices Mt−tg (g · λS ) are non

singular. Each µt is a probability measure on S because∫
p∗

t dλS = 1∑
g∈Gt s(t − tg )

∑
g∈Gt

∫
g · (Λg ·λS

t )−1 dλS

= 1∑
g∈Gt s(t − tg )

∑
g∈Gt

〈Mt−tg (g ·λS ),Mt−tg (g ·λS )−1〉

= 1∑
g∈Gt s(t − tg )

∑
g∈Gt

s(t − tg ) = 1.

As (S, g ·λS ) satisfies the Bernstein–Markov property for every g ∈G , then by [6, Theorem 4.4.4],

lim
t→∞

∫
S

f
(Λg ·λS

t )−1

s(t )
g dλS =

∫
S

f dλS , ∀ f ∈C (S) , ∀ g ∈G .

Hence multiplying (18) by f ∈C (S) and integrating w.r.t. λS , yields∫
S

f dµt =
∫

S
f p∗

t dλS = ∑
g∈Gt

s(t − tg )∑
g∈Gt s(t − tg )

·
∫

S

f · (Λg ·λS
t−tg

)−1

s(t − tg )
g dλS , ∀ t ≥ t0 .

Each term of the product in the above sum of the right-hand-side has a limit as t grows. Moreover
Gt =G for t sufficiently large. Therefore taking limit as t increases, yields

lim
t→∞

∫
S

f dµt = lim
t→∞

∫
S

f p∗
t dλS = ∑

g∈G
lim

t→∞
s(t − tg )∑

g∈G s(t − tg )
· lim

t→∞

∫
S

f · (Λg ·λS
t−tg

)−1

s(t − tg )
g dλS

=
∫

S
f dλS ·

∑
g∈G

lim
t→∞

∑
g∈G

s(t − tg )∑
g∈G s(t − tg )

=
∫

S
f dλS ·

∑
g∈G

(#G)−1 =
∫

S
f dλS , ∀ f ∈C (S) .

As S is compact it implies that the sequence of probability measures (µt )t∈N ⊂M (S)+ converges
to λS for the weak-⋆ topology σ(M (S),C (S)) of M (S). □
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In other words (and in an informal language), when integrating continuous functions against
µt , the density p∗

t ofµt w.r.t.λS behaves asymptotically like the constant (equal to 1) density. That
is, Theorem 3 is a more general (but weaker) version of Theorem 2.

Corollary 4. Let φ be the Borel measure on S in Theorem 2, and for each g ∈G, let (P g ·φ
α )α∈Nn be a

family of polynomials, orthonormal with respect to the measure g ·φ. Then for every t ≥ t0 +1:∑
g∈Gt

∑
|α|=t−tg

g · (P g ·φ
α )2 = ∑

g∈Gt

s(t − tg )− ∑
g∈Gt

s(t − tg −1) (20)

= ∑
g∈Gt

(
n −1+ t − tg

n −1

)
.

Proof. Recalling (12), for each g ∈Gt with t ≥ t0 +1:

(Λg ·φ
t−tg

)−1 = ∑
α∈Nn

t−tg

(P g ·φ
α )2 = ∑

|α|<t−tg

(P g ·φ
α )2 + ∑

|α|=t−tg

(P g ·φ
α )2 = (Λg ·φ

t−tg −1)−1 + ∑
|α|=t−tg

(P g ·φ
α )2 ,

which combined with (15) yields (20). □

Remark 5. Observe that (20) which states a property satisfied by orthonormal polynomials as-
sociated with g ·φ, g ∈ Gt , is a multivariate and multi-generator analogue of (2), the polynomial
Pell’s equation satisfied by normalized Chebyshev polynomials. However there are several differ-
ences between (20) and (2).

In (2), where G = {g } with g = (1−x2) (and so with tg = 1), the triplet (T̂t ,−g ,Ût−tg ) is a solution
to the polynomial Pell equation C 2 − F H 2 = 1 which involves single squares C 2 and H 2 and a
single generator F . On the other hand, (20) addresses the multivariate case with possibly several
generators g ∈Gt and in compact form reads

∑
g∈Gt g Cg = 1 which now involves SOS polynomials

(Cg )g∈Gt and several generators g ∈Gt .
For instance, in case of a single generator G = {g }, in compact form (20) reads C −F H = 1 with

now SOS polynomials C , H and generator F =−g . Writing C =∑r
i=1 C 2

i and H =∑q
j=1 H 2

j ,

1 =C −F H =
r∑

i=1
C 2

i −
q∑

j=1
F H 2

i .

This is why we think that it is fair to call (20) (as well as (8)) a generalized polynomial Pell equation
where SOS (rather than just single squares) are allowed. In fact, even in the univariate Chebyshev
case, when summing over n, (3) is a generalized Pell equation in the form C −F H = 1 with SOS
polynomials C , H .

2.4. A convex optimization problem and its dual

In Theorem 2 we have taken for granted existence of a linear functional φ such that its moment
sequence φ satisfies (15). The next issue is:

Given a compact set S as in (5), can we provide such a moment sequence φ? At least, can we
define a numerical scheme which provides finite sequences (φ2t )t∈N which “converge” to such a
desirable φ as t grows?

As we next see, this issue essentially translates to the following simple issue in real algebraic
geometry. Do we have 1 ∈ int(Qt (G)) for every t ∈ N? If the answer is yes then indeed such a φ
exists. But then the associated linear functional φwill satisfy (15) only if the convergence is finite.
Moreover the conditions can be checked by solving a sequence of convex optimization problems
described in the next section.
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With tg := ⌈deg(g )/2⌉, for every t ∈N, consider the two convex optimization problems:

ρt = inf
φ2t

{
− ∑

g∈Gt

logdet(Mt−tg (g ·φ2t ))

∣∣∣∣∣φ2t (1) = 1;s.t. Mt−tg (g ·φ2t ) ⪰ 0, ∀ g ∈Gt

}
, (21)

and:

ρ∗
t = sup

Qg

 ∑
g∈Gt

logdet(Qg )

∣∣∣∣∣∣
Qg ⪰ 0, ∀ g ∈Gt ;

s.t.
∑

g∈Gt

s(t − tg ) = ∑
g∈Gt

g (x) ·vt−tg (x)T Qg vt−tg (x), x ∈Rn

 . (22)

Problem (21) and (22) are convex optimization problems.

Theorem 6. With t ∈ N fixed, Problems (21) and (22) have same finite optimal value ρt = ρ∗
t if

and only if 1 ∈ int(Qt (G)). Then both have a unique optimal solution φ∗
2t ∈ Rs(2t ) and (Q∗

g )g∈Gt

respectively, which satisfy Q∗
g = Mt−tg (g ·φ∗

2t )−1 for all g ∈Gt . Therefore

1 = 1∑
g∈Gt s(t − tg )

∑
g∈Gt

g (x)vt−tg (x)T Mt−tg (g ·φ∗
2t )−1vt−tg (x)

= 1∑
g∈Gt s(t − tg )

∑
g∈Gt

g (x)Λ
g ·φ∗

2t
t−tg

(x)−1 , ∀ x ∈Rn . (23)

Proof. For every fixed t , the convex cone Qt (G) is a particular case of the convex cone K (q̄)
investigated in Nesterov [8, p. 415, Section 2.2] when the functional system {v(x)} in [8] is the
set of monomials (xα)α∈Nn

2t
and the functions (q̄1, . . . , q̄l ) are our polynomials g in Gt . Then

K (q̄1, . . . , q̄l )∗ =Qt (G)∗ = {φ2t : Mt−tg (g ·φ) ⪰ 0, g ∈Gt } .

By [8, Theorem 17.7]

p ∈ int(K (q̄1, . . . , q̄l )) if and only if p = ∑
g∈Gt

g ·vt−tg (x)T Mt−tg (g ·φp )−1vt−tg (x) ,

for some unique φp ∈ K (q̄1, . . . , q̄l )∗. In addition, letting Qg := Mt−tg (g · φp )−1, g ∈ Gt , the
sequence (Qg )g∈Gt is the unique solution of (22), with p instead of

∑
g∈Gt s(t−tg ) in the left-hand-

side of the constraint. Therefore, by [8, Theorem 17.7] for the constant polynomial p = 1,

1 ∈ int(Qt (G)) ⇐⇒ 1 = ∑
g∈Gt

g ·vt−tg (x)T Mt−tg (g ·φ)−1vt−tg (x) ,

for some distinguished φ ∈ Qt (G)∗. Then as 1 ∈ int(Qt (G)) for every t , letting p be the constant
polynomial

∑
g∈Gt s(t − tg ), one obtains∑

g∈Gt

s(t − tg ) = ∑
g∈Gt

g ·vt−tg (x)T Mt−tg (g ·φ∗
2t )−1vt−tg (x) ,

for some unique φ∗
2t ∈Qt (G)∗, and Q∗

g := Mt−tg (g ·φ∗
2t )−1, g ∈Gt , is the unique optimal solution

of (22). Next, φ∗
2t is a feasible solution of (21), and∑

g∈Gt

logdet(Q∗
g ) =− ∑

g∈Gt

logdet(Mt−tg (g ·φ∗
2t )) ≥ ρt .

We next prove weak duality, i.e., ρ∗
t ≤ ρt , so that φ∗

2t (resp. (Q∗
g )g∈Gt ) is the unique optimal

solution of (21) (resp. (22)) and ρt = ρ∗
t . So letφ2t (resp. (Qg )g∈Gt ) be an arbitrary feasible solution

of (21) (resp. (22)). Then by Lemma 12, for every g ∈Gt ,

s(t − tg )+ logdet(Mt−tg (g ·φ2t ))+ logdet(Qg ) ≤ 〈Mt−tg (g ·φ2t ),Qg 〉 .
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In addition, as φ2t (1) = 1∑
g∈Gt

s(t − tg ) =φ2t

( ∑
g∈Gt

s(t − tg )

)
= ∑

g∈Gt

φ2t (g (x)vt−tg (x)T Qg vt−tg (x))

= ∑
g∈Gt

g ·φ2t (vt−tg (x)T Qg vt−tg (x))

= ∑
g∈Gt

〈Qg ,Mt−tg (g ·φ2t )〉 [by (11)]

≥ ∑
g∈Gt

[s(t − tg )+ logdet(Mt−tg (g ·φ2t ))+ logdet(Qg ) ] ,

from which we deduce weak duality, that is,∑
g∈Gt

logdet(Qg ) ≤ − ∑
g∈Gt

logdet(Mt−tg (g ·φ2t )) . □

So as one can see, (23) is a multivariate analogue of (4). Crucial in Theorem 6 is the condition
1 ∈ int(Qt (G)) for all t . Below is a simple sufficient condition.

Lemma 7. Let S be as in (5) with G = {g0, g1, . . . , gm}, and let Assumption 1 hold. Then 1 ∈
int(Qt (G)) for every t .

For clarity of exposition the proof is postponed to Section 3.1.

Remark 8. Let n = 1 and S = [−1,1] = {x ∈ R : g (x) ≥ 0} with x 7→ g (x) = 1− x2. Then G = {g }, the
unique optimal solution φ∗

2t of (21) is the vector of moments up to degree 2t of the Chebyshev
measure dx/π

p
1−x2 on [−1,1], and (23) is exactly (4).

Lemma 9. Let g ∈R[x] of even degree be fixed, G := {g }, and suppose that there are two polynomials
of even degree p ∈ int(Σt ), and q ∈ int(Σt−tg ) such that p + g q = 1. Then there exists a linear
functional φ ∈R[x]∗2t with φ ∈ int(Qt (G)∗) such that

1 = vt (x)TΛ
φ
t (x)−1 vt (x)+ g (x)vt−tg (x)TΛ

g ·φ
t−tg

(x)−1 vt (x) , ∀ x ∈Rn . (24)

In particular with g ∈ R[x] fixed: If there exist polynomials (Ci , Hi )i∈I ⊂ Z[x] that solve Pell’s
polynomial equation C 2

i + g H 2
i = 1, i ∈ I , and if

∑
i∈I C 2

i ∈ int(Σ[x]t ),
∑

i∈I H 2
i ∈ int(Σ[x]t−tg ),

then (24) holds for some φ ∈ int(Qt (G)∗).

Proof. Let G := {g } and let Qt (G) be as in (7). As p ∈ int(Σt ), and q ∈ int(Σt−tg ), 1 = p + g q ∈
int(Qt (G)) and by [5, Lemma 4], (24) holds. The second statement is a direct consequence by
taking p =∑

i∈I C 2
i and q =∑

i∈I H 2
i . □

So Lemma 9 states that if the triple (p, g , q) solve the generalized Pell’s equation p + g q = 1,
with p ∈ int(Σt ) and q ∈ int(Σt−tg ), then p (resp. q) is the Christoffel polynomial (Λφt )−1 (resp.

(Λg ·φ
t−tg

)−1) associated with some linear functional φ ∈R[x]∗2t such that φ ∈ int(Qt (G)∗).

2.5. An asymptotic result

We now consider asymptotics for the sequence (φ∗
2t )t∈N obtained in Theorem 6, as t grows.

Theorem 10. Under Assumption 1, let φ∗
2t be an optimal solution of (21), t ∈ N, guaranteed to

exist by Theorem 6. Then:

(i) The sequence (φ∗
2t )t∈N has accumulation points, and for each converging subsequence

(tk )k∈N, (φ∗
2tk

)k∈N converges pointwise to the vector φ = (φα)α∈Nn of moments of some
probability measure φ on S, that is,

lim
k→∞

(φ∗
2tk

)α =φα =φ(xα) =
∫

S
xαdφ , ∀α ∈Nn . (25)
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(ii) A limit probability measure φ as in (i) satisfies (15) if and only if the whole sequence
(φ∗

2t )t∈N converges to φ and finite convergence takes place. That is, there exists t0 such that
for all t ≥ t0,

(φ∗
2t )α =φα =φ(xα) =

∫
S

xαdφ , ∀α ∈Nn
2t , (26)

and so φ is a representing measure of φ∗
2t for all t ≥ t0. In addition, under the condition of

Theorem 2, φ is the equilibrium measure λS of S.

Proof.

(i). As R−∥x∥2 ∈Q1(G), the set of feasible solutions of (21) is compact. Indeed, letφ2t be feasible
for (21). Then as φ2t (1) = 1, R ≥ φ2t (x2

i ) for all i = 1, . . . ,n. Next in multiplying by xi (with i
arbitrary), R x2

i −x2
i · ∥x∥2 ∈Q2(G) and so

R2 ≥ Rφ2t (x2
i ) ≥ φ2t (x2

i · ∥x∥2) ≥ φ2t (x4
i ) ⇒ R2 ≥φ2t (x4

i ) .

Iterating yields R t ≥φ2t (x2t
i ) for every i = 1, . . . ,n. Then by [4, Proposition 2.38, p. 41] one obtains

|(φ2t )α| ≤ max[1,R t ] for all α ∈ Nn
2t , and all φ2t ∈ Qt (G)∗. In fact (and assuming R ≥ 1) we even

have |(φ2t )α| ≤ R |α|/2, for all |α| ≤ 2t , and all φ2t ∈Qt (G)∗.
By completing with zeros, the finite sequence φ∗

2t is viewed as an infinite sequence indexed
by Nn . Then by a standard argument involving scaling and the σ(ℓ∞,ℓ1) weak-⋆ topology, the
sequence (φ∗

2t )t∈N has accumulation points and for each subsequence (tk )k∈N converging to
some φ ∈ Nn , one obtains the pointwise convergence limk→∞ (φ∗

2tk
)α = φα, for every α ∈ Nn .

Next, let d ∈N and g ∈G be fixed, arbitrary. Observe that Md (φ∗
2tk

) ⪰ 0 as a principal submatrix of
Mtk (φ∗

2tk
) ⪰ 0, and similarly Md (g ·φ∗

2tk
) ⪰ 0 as a principal submatrix of Mtk (g ·φ∗

2tk
) ⪰ 0 (when k is

sufficiently large so that Gtk =G). Therefore by the above pointwise convergence, Md (g ·φ∗
2tk

) →
Md (g ·φ) ⪰ 0 as k increases. As Q(G) is Archimedean, then by Putinar’s Positivstellensatz [10], φ
is a Borel probability measure on S (as φ∗

2tk
(1) = 1 for all k).

(ii). Let φ be as in (i) and suppose that φ satisfies (15). Then for each t ≥ t0, the vector φ2t =
(φα)α∈Nn

2t
is an optimal solution of (21), and by uniqueness,φ2t =φ∗

2t . That is,φ is a representing
measure for φ∗

2t for all t ≥ t0. But this implies that φ∗
2(t+1) is an extension of φ∗

2t for all t ≥ t0, and
therefore the whole sequence converges to φ, and the convergence is finite.

Conversely, if finite convergence takes place, that is, if φ∗
2(t+1) is an extension of φ∗

2t for all
t ≥ t0, then φ in (i) is the unique accumulation point and its associated measure φ satisfies (15).

Finally, if (S, g ·φ) satisfies the Bernstein–Markov property for all g ∈ G , then by Theorem 2,
φ=λS , which concludes the proof. □

Remark 11. Theorem 10 provides a simple test to detect whether the set G of generators of S is a
good one, and if so, a numerical scheme to compute moments of the equilibrium measure λS of
S. Indeed if (26) has to hold for the equilibrium measure λS , then necessarily, the unique optimal
solution φ∗

2(t+1) of (21) for t +1 must be an extension of the unique optimal solution φ∗
2t of (21)

for t , whenever t is sufficiently large. So for instance, if one observes that φ∗
2 is an extension of

φ∗
1 after solving (21) for t = 1 and t = 2, then it already provides a good indication that finite

convergence may indeed take place.

3. Examples on some particular sets S

We know that Theorem 10 holds for the equilibrium measure λS = 1[−1,1](x) dx
π
p

1−x2
of the interval

S = [−1,1]. Next, we first show how (26) holds at least for t = 1,2,3 in the bivariate case with S
being the Euclidean unit box and unit ball, or the canonical simplex, indeed φ∗

2 , φ∗
4 , and φ∗

6 , are
moment vectors up to degree 2 and 4 and 6, of the equilibrium measures dxdy/2π

√
1−x2 − y2,

dxdy/π2
√

(1−x2)(1− y2), and dxdy/π
√

x · y · (1−x − y), respectively.
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On the Euclidean unit box. With S := [−1,1]2 and λS = dxdy/π2
√

(1−x2)(1− y2). With the
univariate Chebyshev polynomials Tn of first kind and Un of second kind, and letting

• g1(x, y) := (1−x2) ; g2(x, y) := (1− y2) ; g3(x, y) := (1−x2)(1− y2) ; G = {g1, g2, g3} ,
• (Pi j (x, y) := T̂ i (x)T̂ j (y))i , j∈N form an orthonormal family with respect to dλS ,
• (P g1

i j (x, y) := Û i (x)T̂ j (y))i , j∈N form an orthonormal family with respect to (1−x2)dλS ,

• (P g2
i j (x, y) := T̂ i (x)Û j (y))i , j∈N form an orthonormal family with respect to (1− y2)dλS ,

• (P g3
i j (x, y) := Û i (x)Û j (y))i , j∈N form an orthonormal family with respect to (1−x2)(1−y2)dλS .

Then

P10(x, y)2 +P 2
01(x, y)+ (1−x2)P g1

00 (x, y)2 + (1− y2)P g2
00 (x, y)2 = 2,

from which we obtain:

(ΛλS
1 )−1 + g1 · (Λg1·λS

0 )−1 + g2 · (Λg2·λS
0 )−1 = 5 = s(1)+2s(0) .

Next,

P20(x, y)2 +P11(x, y)2 +P02(x, y)2 = 8x4 +8y4 −8x2 −8y2 +4x2 y2 +4

(1−x2) ((P g1
10 )2 + (P g1

10 )2) = 8x2 −8x4 +4y2 −4x2 y2

(1− y2) ((P g2
10 )2 + (P g1

10 )2) = 8y2 −8y4 +4x2 −4x2 y2

(1−x2)(1− y2) (P g3
00 )2 = 4−4x2 −4y2 +4x2 y2 .

Again after scaling (to get borthonormal polynomials) and summing up, one obtains

(ΛλS
2 )−1 + g1 · (Λg1·λS

1 )−1 + g2 · (Λg2·λS
1 )−1 + g3 · (Λg3·λS

0 )−1 = 13 = s(2)+2s(1)+ s(0) .

On the 2D-Euclidean ball. With λS = dx dy

2π
p

1−x2−y2
and µi j := ∫

xi y j dµ(x, y), for all i , j ∈ N, one

obtains:

M2(µ) =



1 0 0 1/3 0 1/3
0 1/3 0 0 0 0
0 0 1/3 0 0 0

1/3 0 0 1/5 0 1/15
0 0 0 0 1/15 0

1/3 0 0 1/15 0 1/5

 .

Similarly, with g ·µ= (1−x2 − y2)dx dy =
√

1−x2 − y2 dx dy/2π,

M1(g ·µ) =
1/3 0 0

0 1/15 0
0 0 1/15

 ,

which yields

Λ
µ
1 (x, y)−1 + (1−x2 − y2) ·Λg ·µ

0 (x, y)−1 = 3+1 = s(1)+ s(0) ,

as well as

Λ
µ
2 (x, y)−1 + (1−x2 − y2) ·Λg ·µ

1 (x, y)−1 = 9 = s(2)+ s(1) ,

and similarly

Λ
µ
3 (x, y)−1 + (1−x2 − y2) ·Λg ·µ

2 (x, y)−1 = 16 = s(3)+ s(2)+ s(1) ,

as predicted by Theorem 10.
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On the simplex. Consider the canonical simplex S = {(x, y) ∈ R2 : x + y ≤ 1; x , y ≥ 0} with
equilibrium measure reads:

λS = 1S (x, y)dx dy

2π
p

x
p

y
√

1−x − y
.

There are several ways to represent S and in particular, consider G = {g1, g2, g3} with

(x, y) 7→ g1(x, y) := x · (1−x − y) ; g2(x, y) := y · (1−x − y) ,

and (x, y) 7→ g3(x, y) := x · y . Do we have

Λ
λS
t (x)−1 + g1 ·Λg1·λS

t−1 (x)−1 + g2 ·Λg2·λS
t−1 (x)−1 + g3 ·Λg3·λS

t−1 (x, y)−1 = 1?

With t = 1, the moment matrix of λS reads:

M1(µ) = 1

15

15 5 5
5 3 1
5 1 3

 .

Next, we obtain∫
S

x · (1−x − y)dλS =
∫

S
y · (1−x − y)dλS = 1

15
;

∫
S

x y · (1−x − y)dλS = 1

15
.

Hence

Λ
µ
1 (x, y)−1 = 15(

2

5
−x − y +x2 + y2 +x y)

x · (1−x − y)Λν1
0 (x, y)−1 = 15(x −x2 −x y)

y · (1−x − y)Λν2
0 (x, y)−1 = 15(y − y2 −x y)

x · yΛν3
0 (x, y)−1 = 15 x y ,

and therefore

Λ
µ
1 (x, y)−1+x · (1−x− y)Λν1

0 (x, y)−1+ y · (1−x− y)Λν2
0 (x, y)−1+x · yΛν3

0 (x, y)−1 = 6 = s(1)+3 s(0) ,

as predicted by Theorem 10. Similarly,

M2(λS ) =



1.0000 0.3333 0.3333 0.2000 0.0667 0.2000
0.3333 0.2000 0.0667 0.1429 0.0286 0.0286
0.3333 0.0667 0.2000 0.0286 0.0286 0.1429
0.2000 0.1429 0.0286 0.1111 0.0159 0.0095
0.0667 0.0286 0.0286 0.0159 0.0095 0.0159
0.2000 0.0286 0.1429 0.0095 0.0159 0.1111


and

M1(g1 ·λS ) =
0.0667 0.0286 0.0095

0.0286 0.0159 0.0032
0.0095 0.0032 0.0032

 ; M1(g2 ·λS ) =
0.0667 0.0095 0.0286

0.0095 0.0032 0.0032
0.0286 0.0032 0.0159


and

M1(g3 ·λS ) =
0.0667 0.0286 0.0286

0.0286 0.0159 0.0095
0.0286 0.0095 0.0159

 .

Then this implies (
Λ
λS
2

)−1 +
3∑

i=1
gi ·

(
Λ

gi ·λS
1

)−1 = 15 = s(2)+3 s(1) .

In continuing with t = 3 we also obtain(
Λ
λS
3

)−1 +
3∑

i=1
gi ·

(
Λ

gi ·λS
2

)−1 = 28 = s(3)+3 s(2) .
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Intersection of two ellipsoids. Here we consider S ⊂R2, G = {g0, g1, g2}, with

g1(x, y) := 1−2 x2 −3 y2 ; g2(x, y) := 1−3 x2 −2 y2 .

so that S is the intersection of two ellipsoids. With t = 1,2,3, the respective optimal solutions
φ∗

2 ,φ∗
4 and φ∗

6 of (21) are such that φ∗
4 seems to be an extension of φ∗

2 , and φ∗
6 seems to be an

extension of φ∗
4 , up to some numerical imprecision due to the solver; indeed the norm of the

difference between φ∗
4 and the restriction of φ∗

6 is about 0.006, and for instance

φ∗
2 = (1,0,0,0.00999961,0,0.00999962) φ∗

4 = (1,0,0,0.0117564,0,0.01175, . . . ) .

φ∗
4 = (1,0,0,0.0117564,0,0.01175, . . . ) ; φ∗

6 = (1,0,0,0.011506,0,0.0111425, . . . ) .

However, as the solver is not very accurate, it is difficult to conclude whether or not the differences
between φ2,φ4 and φ6 are due to numerical inaccuracies.

The TV-screen. Let S := { (x, y) ∈ R2 : x4 + y4 ≤ 1}. By solving numerically (21)-(22) with t = 2 and
t = 3, we find

Λ
φ∗

4
2 (x, y))−1 + (1−x4 − y4)Λ

g ·φ∗
4

0 (x, y)−1 = 6+1 = s(2)+ s(0)

Λ
φ∗

6
3 (x, y)−1 + (1−x4 − y4)Λ

g ·φ∗
6

1 (x, y)−1 = 10+3 = s(3)+ s(1)

respectively, as predicted by Theorem 6. However, we observed thatφ∗
6 is not an extension ofφ∗

4 .

The Gaussian case. Finally, in the same spirit but not in the preceding context of a compact set
S ⊂ Rn , we consider the case of Rn where by [5, Lemma 3] any polynomial p ∈ int(Σ[x]t ) is the
Christoffel function of some linear functional φp ∈ Σ[x]∗t . Let Σ ≻ 0 be a real symmetric n ×n
matrix, and associated with Σ, let p be the quadratic polynomial

x 7→ p(x) := 1+〈x,Σ−1 x〉 , x ∈Rn ,

which is in the interior of the convex cone Σ[x]1. Therefore, by [8] and [5, Lemma 3]

p(x) = v1(x)T M1(φ)−1v1(x) , ∀ x ∈Rn ,

for some unique φ ∈Σ[x]∗1 . It is straightforward to check that

p(x) = v1(x)T
[

1 0
0 Σ

]−1

v1(x) , ∀ x ∈Rn ,

and
[

1 0
0 Σ

]−1 is the moment matrix of the Gaussian measure

dφp = (det(2πΣ))−1/2 exp(−xTΣ−1x/2)dx.

That is,φ is represented by the Gaussian measureφp andΛφ1 is the Christoffel function of degree 2
of the Gaussian measure φp .

Λ
φp

1 (x)−1 = (1,x)T
[

1 0
0 Σ

]−1

(1,x) = 1+xTΣ−1x = p(x).

3.1. Discussion

There are several issues that are worth investigating. The first one is to completely validate our
result for t > 3, for the cases where S is the unit box, the Euclidean unit ball, and the simplex. One
possibility is to use Corollary 4 for each degree t , which only requires to show (20) (a property
of orthonormal polynomials associated with the measures (g ·λS )g∈G ) as we did on some of the
above examples.

Another issue is to investigate what is a distinguishing feature of the limit measure φ in
Theorem 10 when φ does not satisfy the generalized Pell’s equation (8). Could φ still be the
equilibrium measure of S?
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Finally, one would like to extend the present framework and characterize the linear functional
φp ∈ Qt (G)∗ in [5, Lemma 4], associated with a non constant polynomial p ∈ int(Qt (G)). Then
with arguments that mimic those used for the constant polynomial p = 1, if p ∈ int(Qt (G)) for
every t ∈ N, then a natural candidate seems to be φp := λS /p, that is, φp is the measure with
density 1/p with respect to the equilibrium measure λS of S.

Appendix

Lemma 12. Let S n be the space of real symmetric n×n matrices and let S n++ ⊂S n be the convex
cone of real n ×n positive definite matrices Q (denoted Q ≻ 0). Then

n + logdet(M)+ logdet(Q) ≤ 〈M,Q〉 , ∀ M ,Q ,∈ S n
++ . (27)

with equality if and only if Q = M−1.

Proof. Consider the concave function

f : S n →R∪ {−∞} Q 7→ f (Q) =
{

logdet(Q) if Q ∈S n++,

−∞ otherwise,

and let f ∗ be its (concave analogue) of Legendre–Fenchel conjugate, i.e.,

M 7→ f ∗(M) := inf
Q∈S n

〈M,Q〉− f (Q) .

It turns out that

f ∗(M) =
{

n + logdet(M) (= n + f (M)) if M ∈ S n++,

−∞ otherwise.

Hence the concave analogue of Legendre–Fenchel inequality states that

f ∗(M)+ f (Q) ≤ 〈M,Q〉 , ∀ M ,Q ∈ S n ,

and yields (27). □

Proof of Lemma 7. Recall that θ(x) = 1−∥x∥2. By [9, Lemma 3.4]

(R +1)t = (1+∥x∥2)t︸ ︷︷ ︸
∆

+θ(x)
t−1∑
j=0

(R +1) j (1+∥x∥2)t− j−1

︸ ︷︷ ︸
Γ

.

Note that

∆(x) = ∑
α∈Nn

t

Θαx2α = vt (x)T G0vt (x) , ∀ x ,

Γ(x) = ∑
α∈Nn

t−1

Γαx2α = vt−1(x)T G1vt−1(x) , ∀ x ,

where G0,G1 are diagonal positive definite matrices (i.e. G0,G1 ≻ 0), and so (R+1)t =∆+θΓ. Next,
let W be a real symmetric matrix such that

vt (x)T W vt (x) = ∑
g∈Gt

g (x)vt−tg (x)It−tg vt−tg (x) ,

where It−tg is the s(t − tg )-identity matrix. As G0 ≻ 0 there exists δ> 0 such that G0 −δW ≻ 0. But
then

(R +1)t = vt (x)T (G0 −δW)vt (x)+δ ∑
g∈Gt

g (x)vt−tg (x)It−tg vt−tg (x)+θ(x)vt−1(x)T G1vt−1(x) .

Finally, as θ ∈Q1(G) and deg(g ) ≤ 2 for all g ∈G1, write

θ(x) = v1(x)T A0v1(x)+ ∑
g0 ̸=g∈G1

g (x) ag
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with ag ≥ 0 and A0 ⪰ 0, to obtain

(R +1)t = vt (x)T (G0 −δW)vt (x)+δ ∑
g∈Gt \G1

g (x)vt−tg (x)It−tg vt−tg (x)

+ ∑
g∈G1;g ̸=g0

g (x) [δvt−1(x)It−1vt−1(x)+ag vt−1(x)T G1vt−1(x)] ,

+δvt (x)It vt (x)+v1(x)T A0v1(x)vt−1(x)T G1vt−1(x)︸ ︷︷ ︸
vt (x)T V vt (x) ; V⪰0

,

and therefore (R +1)t ∈ int(Qt (G)). □
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