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1. Introduction

The task of finding the regions containing all the zeros of a polynomial on using various methods
of the geometric function theory is a classical topic in analysis. In addition to having great
importance in the geometric function theory, this study is equally important in the application
areas such as physical systems. We can see a large body of research concerning the regions,
mostly circular or annular, containing all the zeros of a polynomial in terms of the coefficients
of the polynomial. One of the most known results about the distribution of zeros of a complex
polynomial and is particularly important in the study of the stability of numerical methods for
differential equations is the following Eneström–Kakeya theorem [10].

Theorem 1. If T (z) =∑n
v=0 av zv , is a polynomial of degree n (where z is a complex variable) with

real coefficients satisfying

an ≥ an−1 ≥ ·· · ≥ a1 ≥ a0 ≥ 0,

then all the zeros of T (z) lie in

|z| ≤ 1.
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In the literature (for example, see [7, 8]) there exist several extensions of the Eneström–Kakeya
theorem. An exhaustive survey on the Eneström–Kakeya theorem and its various generalizations
is given in the comprehensive books of Marden [10] and Milovanović et al. [11]. In 1967, Joyal, La-
belle and Rahman [8] extended Theorem 1 to the polynomials whose coefficients are monotonic
but not necessarily non-negative in the form of following result.

Theorem 2. If T (z) =∑n
v=0 av zv , is a polynomial of degree n (where z is a complex variable) with

real coefficients satisfying

an ≥ an−1 ≥ ·· · ≥ a1 ≥ a0,

then all the zeros of T (z) lie in

|z| ≤ an −a0 +|a0|
|an |

.

The extension of Theorem 1 to complex coefficients was established by Govil and Rahman [7]
in the form of following result.

Theorem 3. If T (z) = ∑n
v=0 av zv , is a polynomial of degree n with complex coefficients where

Re(av ) =αv , Im(av ) =βv , for 0 ≤ v ≤ n, and satisfying

αn ≥αn−1 ≥ ·· · ≥α1 ≥α0 ≥ 0,αn ̸= 0,

then all the zeros of T (z) lie in

|z| ≤ 1+ 2

αn

n∑
v=0

|βv |.

Various estimates for the location of zeros in terms of coefficients, with emphasis on the
distribution of zeros of the algebraic polynomials with restricted coefficients has been intensively
studied since the second half of the nineteenth century, and substantial breakthroughs have been
achieved. The Eneström–Kakeya theorem and its various generalizations as mentioned above are
the classic and significant examples of this kind. Provided such a richness of the complex setting,
a natural question is to ask what kind of results in the quaternionic setting can be obtained. The
goal of this paper is to present extensions to the quaternionic setting of some classical results of
Eneström–Kakeya type as discussed above.

2. Preliminary knowledge

In order to introduce the framework in which we will work, let us introduce some preliminaries on
quaternions and regular functions of a quaternionic variable which will be useful in the sequel.
Quaternions are essentially a generalization of complex numbers to four dimensions (one real
and three imaginary parts) and were first studied and developed by Sir Rowan William Hamilton
in 1843. This number system of quaternions is denoted by H in honor of Hamilton. This theory
of quaternions is by now very well developed in many different directions, and we refer the
reader to [15] for the basic features of quaternionic functions. Before we proceed further, we
need to introduce some preliminaries on quaternions and quaternionic polynomials. The set
of quaternions denoted by H is a noncommutative division ring. It consists of elements of the
form q =α+βi +γ j +δk, α,β,γ,δ ∈ R, where the imaginary units i , j ,k satisfy i 2 = j 2 = k2 =−1,
i j =− j i = k, j k =−k j = i , ki =−i k = j . Every element q =α+βi +γ j +δk ∈H is composed by
the real part Re(q) =α and the imaginary part Im(q) =βi +γ j +δk. The conjugate of q is denoted
by q and is defined as q = α−βi −γ j −δk and the norm of q is |q | = √

qq =
√
α2 +β2 +γ2 +δ2.
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The inverse of each non zero element q ofH is given by q−1 = |q |−2q . For r > 0, we define the ball
B(0,r ) = {q ∈H; |q | < r }. By B we denote the open unit ball in H centered at the origin, i.e.,

B= {q =α+βi +γ j +δk : α2 +β2 +γ2 +δ2 < 1},

and by S the unit sphere of purely imaginary quaternions, i.e.,

S= {q =βi +γ j +δk : β2 +γ2 +δ2 = 1}.

We represent the indeterminate for a quaternionic polynomial as q . A quaternionic polynomial
T of degree n in the variable q , namely a polynomial with coefficients on the right and indeter-
minate on the left is given by T (q) =:

∑n
v=0 q v av , av ∈H, v = 0,1,2, . . . ,n. These polynomials sat-

isfy the regularity conditions and their behavior resembles very closely to that of holomorphic
functions of a complex variable. In the theory of polynomials of this kind over skew-fields, one
defines a different product (we use the symbol ∗ to denote such a product) which guarantees that
the product of regular functions is regular. For polynomials, for example, this product is defined
as follows:

Two quaternionic polynomials of this kind can be multiplied according to the convolution
product (Cauchy multiplication rule): given T1(q) =∑n

i=0 q i ai , T2(q) =∑m
j=0 q j b j , we define

(T1 ∗T2)(q) := ∑
i=0,1,...,n

j=0,1,...,m

q i+ j ai b j .

If T1 has real coefficients, the so called ∗ multiplication coincides with the usual point wise
multiplication. Notice that the ∗ product is associative and not, in general, commutative. The
absence of commutativity leads to a behavior of polynomials rather unlike their behavior in
the real or complex setting. It is observed that the zeros of the aforementioned polynomial of a
quaternionic variable are either isolated or spherical. In the quaternionic setting, for example,
the second degree polynomial q2 + 1 vanishes for every q ∈ S. These regular functions of a
quaternionic variable have been introduced and intensively studied in the past decade, and they
have proven to be a fertile topic in analysis, and their rapid development has been largely driven
by the applications to operator theory. In the recent study (for example, see [2–6,9]), a new theory
of regularity for functions, particularly for polynomials of a quaternionic variable was developed,
and is extremely useful in replicating many important properties of holomorphic functions. One
of the basic properties of holomorphic functions of a complex variable is the discreteness of
their zero sets (except when the function vanishes identically). Given a regular function of a
quaternionic variable, all its restrictions to complex lines are holomorphic and hence either have
a discrete zero set or vanishes identically. In the preliminary steps, the structure of the zero sets
of a quaternionic regular function and the factorization property of zeros was described. In this
regard, Gentili and Stoppato [4] (see also [6]) gave a necessary and sufficient condition for a
quaternionic regular function to have a zero at a point in terms of the coefficients of the power
series expansion of the function. This extends to quaterniomic power series the theory presented
in [9] for polynomials. The following result which completely describes the zero sets of a regular
product of two polynomials in terms of the zero sets of the two factors is from [9] (see also [4]
and [6]).

Theorem 4. Let f and g be given quaternionic polynomials. Then ( f ∗ g )(q0) = 0 if and only if
f (q0) = 0 or f (q0) ̸= 0 implies g

(
f (q0)−1q0 f (q0)

)= 0.

Gentili and Struppa [5] introduced a maximum modulus theorem for regular functions, which
includes convergent power series and polynomials in the form of the following result.
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Theorem 5 (Maximum Modulus Theorem). Let B = B(0,r ) be a ball inHwith centre 0 and radius
r > 0, and let f : B →H be a regular function. If | f | has a relative maximum at a point a ∈ B, then
f is a constant on B.

In [4–6] the structure of the zeros of polynomials was used and a proof of the Fundamen-
tal Theorem of Algebra was established. We point out that the Fundamental Theorem of Alge-
bra for regular polynomials with coefficients in H was already proved by Niven (for reference,
see [12, 13]), by using different techniques. This led to the complete identification of the zeros
of polynomials in terms of their factorization, for reference see [14]. Thus it became an interest-
ing perspective to think about the regions containing some or all the zeros of a regular polyno-
mial of quaternionic variable. Very recently, Carney et al. [1] extended the Eneström–Kakeya the-
orem and its various generalizations from complex polynomials to quaternionic polynomials by
making use of Theorems 4 and 5. Firstly, they established the following quaternionic analogue of
Theorem 1.

Theorem 6. If T (q) =∑n
v=0 q v av , is a polynomial of degree n (where q is a quaternionic variable)

with real coefficients satisfying

an ≥ an−1 ≥ ·· · ≥ a1 ≥ a0 ≥ 0,

then all the zeros of T (q) lie in

|q | ≤ 1.

In the same paper, Carney et al. [1] also established the following quaternionic analogue of
Theorem 3 in the form of the following result.

Theorem 7. If T (q) =∑n
v=0 q v av , is a quaternionic polynomial of degree n, where av =αv +βv i +

γv j +δv k for v = 0,1,2, . . . ,n, satisfying

αn ≥αn−1 ≥ ·· · ≥α1 ≥α0 ≥ 0, αn ̸= 0,

then all the zeros of T (q) lie in

|q| ≤ 1+ 2

αn

n∑
v=0

(|βv |+ |γv |+ |δv |).

Recently, Tripathi ([16, Corollary 3.3]) established the following generalization of Theorem 6 in
the form of the following result.

Theorem 8. If T (q) =∑n
v=0 q v av , is a polynomial of degree n (where q is a quaternionic variable)

with real coefficients satisfying

an ≥ an−1 ≥ ·· · ≥ a1 ≥ a0,

then all the zeros of T (q) lie in

|q | ≤ 1

|an |
(
|a0|+

n∑
v=1

|av −av−1|
)
= 1

|an | (|a0|−a0 +an) .

In the literature, we could not find much except the above mentioned papers and the results
therein, about the distribution of zeros of polynomials with quaternionic variable and quater-
nionic coefficients. The main purpose of this paper is to extend various results of Eneström–
Kakeya type from the complex to quaternionic setting by making use of a recently established
maximum modulus theorem (Theorem 5) and the structure of the zero sets of regular functions
(Theorem 4) of a quaternionic variable. The obtained results also produce various generalizations
of Theorems 6, 7 and 8.
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3. Main results

In this section, we state our main results. Their proofs are given in the next section. We start with
the following generalization of Theorem 6. As a consequence, it also provides a generalization of
Theorem 7.

Theorem 9. If T (q) = ∑n
v=0 q v av , is a quaternionic polynomial of degree n with quaternionic

coefficients, where av =αv +βv i +γv j +δv k for v = 0,1,2, . . . ,n, satisfying

λ+αn ≥αn−1 ≥ ·· · ≥α1 ≥α0 −µ≥ 0,αn > 0,

for some non-negative real numbers λ and µ, then all the zeros of T (q) lie in∣∣∣∣q + λ

an

∣∣∣∣≤ 1

|an |
[αn +λ+2µ+M0],

where M0 =
n∑

v=0

[|βv −βv−1|+ |γv −γv−1|+ |δv −δv−1|
]
, β−1 = γ−1 = δ−1 = 0.

Taking λ= (R −1)αn , with R ≥ 1 and µ= (1− r )α0 with 0 < r ≤ 1 in the above theorem, we get
the following result.

Corollary 10. If T (q) = ∑n
v=0 q v av , is a quaternionic polynomial of degree n with quaternionic

coefficients, where av =αv +βv i +γv j +δv k for v = 0,1,2, . . . ,n, satisfying

Rαn ≥αn−1 ≥ ·· · ≥α1 ≥ rα0 > 0,

for some R ≥ 1 and 0 < r ≤ 1, then all the zeros of T (q) lie in∣∣∣∣q + (R −1)αn

an

∣∣∣∣≤ 1

|an |
[Rαn +2(1− r )α0 +M0],

where M0 is as defined in Theorem 9.

Taking r = 1 and βv = γv = δv = 0, in Corollary 10, we get the following generalization of
Theorem 6.

Corollary 11. If T (q) = ∑n
v=0 q v av , is a polynomial of degree n (where q is a quaternionic

variable), with real coefficients satisfying

Ran ≥ an−1 ≥ ·· · ≥ a1 ≥ a0 > 0,

for some R ≥ 1, then all the zeros of T (q) lie in∣∣q +R −1
∣∣≤ R.

Remark 12. Taking R = 1 in Corollary 11, we get Theorem 6.

It is easy to verify that M0 ≤ 2
∑n

v=0(|βv |+ |γv |+ |δv |). Using this and take µ = 0 in Theorem 9,
we get the following generalization of Theorem 7.

Corollary 13. If T (q) = ∑n
v=0 q v av , is a quaternionic polynomial of degree n with quaternionic

coefficients, where av =αv +βv i +γv j +δv k for v = 0,1,2, . . . ,n, satisfying

λ+αn ≥αn−1 ≥ ·· · ≥α1 ≥α0 ≥ 0, αn > 0,

for some λ≥ 0, then all the zeros of T (q) lie in∣∣∣∣q + λ

an

∣∣∣∣≤ 1+ 1

αn

[
λ+2

n∑
v=0

(|βv |+ |γv |+ |δv |)
]

,

Remark 14. For λ= 0, Corollary 13 reduces to Theorem 7.

By taking µ= 0 and assume βv ≥ βv−1, γv ≥ γv−1, δv ≥ δv−1 for v = 1,2,3, . . . ,n, in Theorem 9,
we get the following extension of Theorem 6 to quaternionic coefficients.
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Corollary 15. If T (q) = ∑n
v=0 q v av , is a polynomial of degree n with quaternionic coefficients,

where av =αv +βv i +γv j +δv k for v = 0,1,2, . . . ,n, satisfying

λ+αn ≥αn−1 ≥ ·· · ≥α1 ≥α0 ≥ 0, αn > 0,

βn ≥βn−1 ≥ ·· · ≥β1 ≥β0 ≥ 0,

γn ≥ γn−1 ≥ ·· · ≥ γ1 ≥ γ0 ≥ 0,

δn ≥ δn−1 ≥ ·· · ≥ δ1 ≥ δ0 ≥ 0,

where λ≥ 0, then all the zeros of T (q) lie in∣∣∣∣q + λ

an

∣∣∣∣≤ 2+ λ

|an |
.

Remark 16. For λ = 0, Corollary 15 represents an extension of Theorem 6 to quaternionic
coefficients.

Next, we shall obtain the following more general result giving a ring shaped region containing
all the zeros of a quaternionic polynomial with quaternionic coefficients. The interest of this
theorem lies in its flexibility. It weakens the hypothesis of Theorem 8 and is applicable to a larger
class of polynomials of a quaternionic variable.

Theorem 17. If T (q) = ∑n
v=0 q v av , is a polynomial of degree n with quaternionic coefficients,

where av =αv +βv i +γv j +δv k for v = 0,1,2, . . . ,n, satisfying

αn ≤αn−1 ≤ ·· · ≤αλ+1 ≤αλ ≥αλ−1 ≥ ·· · ≥α1 ≥α0,

where 0 ≤λ≤ n, then all the zeros of T (q) lie in

min(1,R1) ≤ |q | ≤ max(1,R2),

where

R1 = |a0|
2αλ+|an |−αn −α0 +M1

,

R2 = 2αλ−αn −α0 +|a0|+M1

|an |
,

and M1 =
n∑

v=1

(|βv −βv−1|+ |γv −γv−1|+ |δv −δv−1|
)
.

If in Theorem 17, we take λ = n and assume βv ≥ βv−1,γv ≥ γv−1,δv ≥ δv−1 for v = 1,2, . . . ,n,
we get the following result.

Corollary 18. If T (q) = ∑n
v=0 q v av , is a polynomial of degree n with quaternionic coefficients,

where av =αv +βv i +γv j +δv k for v = 0,1,2, . . . ,n, satisfying

αn ≥αn−1 ≥ ·· · ≥α1 ≥α0,

βn ≥βn−1 ≥ ·· · ≥β1 ≥β0,

γn ≥ γn−1 ≥ ·· · ≥ γ1 ≥ γ0,

δn ≥ δn−1 ≥ ·· · ≥ δ1 ≥ δ0,

then all the zeros of T (q) lie in

r1 ≤ |q| ≤ r2,

where

r1 = |a0|
(αn +βn +γn +δn)+|an |− (α0 +β0 +γ0 +δ0)

,

r2 = |a0|− (α0 +β0 +γ0 +δ0)+ (αn +βn +γn +δn)

|an |
.
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Remark 19. The above Corollary 18 subsumes a result of Carney et al. ([1, Theorem 9]).

In particular, if all the coefficients av , 0 ≤ v ≤ n, are real, that is, βv = γv = δv = 0 for 0 ≤ v ≤ n,
the above Corollary 18 gives that all the zeros of T (q) lie in

|a0|
an +|an |−a0

≤ |q | ≤ |a0|−a0 +an

|an |
,

which is a refinement of Theorem 8. It also strengthens another result of Tripathi ([16, Corol-
lary 3.8]). Further, if a0 > 0, then it implies a refinement to Theorem 6. By taking λ = 0 and as-
sume βv ≤βv−1, γv ≤ γv−1, δv ≤ δv−1 for v = 1,2, . . . ,n, in Theorem 17, we get the following result
which is also of interest.

Corollary 20. If T (q) = ∑n
v=0 q v av , is a polynomial of degree n with quaternionic coefficients,

where av =αv +βv i +γv j +δv k for v = 0,1,2, . . . ,n, satisfying

α0 ≥α1 ≥ ·· · ≥αn ,

β0 ≥β1 ≥ ·· · ≥βn ,

γ0 ≥ γ1 ≥ ·· · ≥ γn ,

δ0 ≥ δ1 ≥ ·· · ≥ δn ,

then all the zeros of T (q) lie in

r3 ≤ |q | ≤ r4,

where

r3 = |a0|
|an |+ (α0 +β0 +γ0 +δ0)− (αn +βn +γn +δn)

,

r4 = |a0|+ (α0 +β0 +γ0 +δ0)− (αn +βn +γn +δn)

|an |
.

4. Proofs of the main results

Proof of Theorem 9. Consider the polynomial

T (q)∗ (1−q) = a0 +q(a1 −a0)+q2(a2 −a1)+·· ·+qn(an −an−1)−qn+1an

=
n−1∑
v=0

q v (av −av−1)+qn(λ+an −an−1)−qnλ−qn+1an , (a−1 = 0)

= f (q)−qnλ−qn+1an ,

where f (q) =
n−1∑
v=0

q v (av −av−1)+qn(λ+an −an−1)

=α0 −qµ+q(α1 +µ−α0)+
n−1∑
v=2

q v (αv −αv−1)+qn(λ+αn −αn−1)

+
n∑

v=0
q v

{
(βv −βv−1)i + (γv −γv−1) j + (δv −δv−1)k

}
, (β−1 = γ−1 = δ−1 = 0).

By Theorem 4, T (q)∗(1−q) = 0 if and only if either T (q) = 0 or T (q) ̸= 0 implies T (q)−1qT (q)−1 =
0, that is T (q)−1qT (q) = 1. Thus, if T (q) ̸= 0, this implies q = 1, so the only zeros of T (q)∗ (1−q)
are q = 1 and the zeros of T (q).
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For |q | = 1, we have

| f (q)| ≤ |α0|+ |qµ|+ |q(α1 +µ−α0)|+
n−1∑
v=2

∣∣q v (αv −αv−1)
∣∣+|qn(λ+αn −αn−1)|

+
n∑

v=0

∣∣∣q v
{

(βv −βv−1)i + (γv −γv−1) j + (δv −δv−1)k
}∣∣∣

≤α0 +µ+α1 +µ−α0 +
n−1∑
v=2

(αv −αv−1)+ (λ+αn −αn−1)+M0

=αn +λ+2µ+M0,

where M0 =
n∑

v=0

[|βv −βv−1|+ |γv −γv−1|+ |δv −δv−1|
]
.

Notice that, we have

max
|q |=1

∣∣∣∣qn ∗ f

(
1

q

)∣∣∣∣= max
|q |=1

∣∣∣∣qn f

(
1

q

)∣∣∣∣= max
|q|=1

∣∣∣∣ f

(
1

q

)∣∣∣∣= max
|q|=1

| f (q)|,

it is clear that qn ∗ f
(

1
q

)
has the same bound on |q | = 1 as f , that is∣∣∣∣qn ∗ f

(
1

q

)∣∣∣∣≤αn +λ+2µ+M0 for |q | = 1.

Since qn ∗ f
(

1
q

)
is a polynomial and so is regular in |q | ≤ 1, it follows by the Maximum Modulus

Theorem (Theorem 5), that∣∣∣∣qn ∗ f

(
1

q

)∣∣∣∣= ∣∣∣∣qn f

(
1

q

)∣∣∣∣≤αn +λ+2µ+M0 for |q | ≤ 1.

Hence ∣∣∣∣ f

(
1

q

)∣∣∣∣≤ αn +λ+2µ+M0

|q |n for |q | ≤ 1.

Replacing q by 1
q , we see that

| f (q)| ≤ (αn +λ+2µ+M0)|q |n for |q | ≥ 1. (1)

For |q | ≥ 1, we have

|T (q)∗ (1−q)| = | f (q)−qnλ−qn+1an |
≥ |qn ||qan +λ|− | f (q)|
≥ |q |n[|qan +λ|− (αn +λ+2µ+M0)] (by (1)).

Hence, if ∣∣∣∣q + λ

an

∣∣∣∣> αn +λ+2µ+M0

|an |
,

then |T (q)∗ (1− q)| > 0, that is T (q)∗ (1− q) ̸= 0. Since the only zeros of T (q)∗ (1− q) are q = 1
and the zeros of T (q), therefore, T (q) ̸= 0 for∣∣∣∣q + λ

an

∣∣∣∣> αn +λ+2µ+M0

|an |
.

In other words, all the zeros of T (q) lie in∣∣∣∣q + λ

an

∣∣∣∣≤ αn +λ+2µ+M0

|an |
.

This completes the proof of Theorem 9. □
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Proof of Corollary 15. By using the given hypothesis, it is easy to see that

M0 =
n∑

v=0

[|βv −βv−1|+ |γv −γv−1|+ |δv −δv−1|
]=βn +γn +δn .

Also, since |an | =
√
α2

n +β2
n +γ2

n +δ2
n , and by the Cauchy–Schwarz inequality, it follows that

αn +βn +γn +δn√
α2

n +β2
n +γ2

n +δ2
n

≤ 2.

Using µ= 0 and the fact that αv ,βv ,γv ,δv ≥ 0, for v = 0,1, . . . ,n, in Theorem 9, we get as claimed
in Corollary 15. □

Proof of Theorem 17. Consider the polynomial

T (q)∗ (1−q) = a0 +q(a1 −a0)+·· ·+qn(an −an−1)−qn+1an

=φ(q)−qn+1an ,

where φ(q) = a0 +q(a1 −a0)+·· ·+qn(an −an−1).

By Theorem 4, T (q)∗(1−q) = 0 if and only if either T (q) = 0 or T (q) ̸= 0 implies T (q)−1qT (q)−1 =
0, that is T (q)−1qT (q) = 1. Thus, if T (q) ̸= 0, this implies q = 1, so the only zero of T (q)∗ (1− q)
are q = 1 and the zeros of T (q). We first note that

|av −av−1| = |(αv −αv−1)+ (βv −βv−1)i + (γv −γv−1) j + (δv −δv−1)k|
≤ |αv −αv−1|+ |βv −βv−1|+ |γv −γv−1|+ |δv −δv−1|.

For |q | = 1, we have

|φ(q)| =
∣∣∣∣a0 +

n∑
v=1

q v (av −av−1)

∣∣∣∣
≤ |a0|+

n∑
v=1

|av −av−1|

= |a0|+
λ∑

v=1
(αv −αv−1)+

n∑
v=λ+1

(αv−1 −αv )

+
n∑

v=1

(|βv −βv−1|+ |γv −γv−1|+ |δv −δv−1|
)

= |a0|+2αλ−α0 −αn +M1

where M1 =
n∑

v=1

(|βv −βv−1|+ |γv −γv−1|+ |δv −δv−1|
)

.

Notice that, we have

max
|q |=1

∣∣∣∣qn ∗φ
(

1

q

)∣∣∣∣= max
|q |=1

∣∣∣∣qnφ

(
1

q

)∣∣∣∣= max
|q|=1

∣∣∣∣φ(
1

q

)∣∣∣∣= max
|q |=1

|φ(q)|,

it is clear that qn ∗φ
(

1
q

)
has the same bound on |q | = 1 as φ, that is∣∣∣∣qn ∗φ

(
1

q

)∣∣∣∣≤ |a0|+2αλ−α0 −αn +M1 for |q | = 1.

Therefore, by the same reasoning as in the proof of Theorem 9, it follows by the Maximum
Modulus Theorem (Theorem 5), that∣∣∣∣qn ∗φ

(
1

q

)∣∣∣∣= ∣∣∣∣qnφ

(
1

q

)∣∣∣∣≤ |a0|+2αλ−α0 −αn +M1 for |q| ≤ 1.
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Hence ∣∣∣∣φ(
1

q

)∣∣∣∣≤ |a0|+2αλ−α0 −αn +M1

|q |n for |q | ≤ 1.

Replacing q by 1
q , we see that

|φ(q)| ≤ (|a0|+2αλ−α0 −αn +M1)|q |n for |q | ≥ 1. (2)

For |q | ≥ 1, we have

|T (q)∗ (1−q)| = |φ(q)−qn+1an |
≥ |q |n+1|an |− |φ(q)|
≥ |q|n [|q ||an |− (|a0|+2αλ−α0 −αn +M1)

]
(by (2)).

Hence, if |q | ≥ 1 and

|q | > |a0|+2αλ−α0 −αn +M1

|an |
,

then |T (q)∗ (1−q)| > 0, that is T (q)∗ (1−q) ̸= 0. Hence all the zeros of T (q)∗ (1−q) whose norm
is greater than or equal to one lie in

|q | ≤ 2αλ−αn +|a0|−α0 +M1

|an |
.

In other words, all the zeros of T (q) lie in

|q| ≤ max

(
1,

2αλ−αn +|a0|−α0 +M1

|an |
)

.

For the inner bound, consider the reciprocal polynomial

P (q) = qn ∗T

(
1

q

)
= qnT

(
1

q

)
= qn a0 +qn−1a1 +·· ·+qan−1 +an ,

and consider

P (q)∗ (1−q) = an +q(an−1 −an)+q2(an−2 −an−1)+·· ·+qn(a0 −a1)−qn+1a0

=ψ(q)−qn+1a0,

where ψ(q) = an +
n∑

v=1
qn−v+1(av−1 −av ).

For |q | = 1, we have

|ψ(q)| ≤ |an |+
n∑

v=1
|qn−v+1(av−1 −av )|

≤ |an |+
n∑

v=1

(|αv−1 −αv |+ |βv−1 −βv |+ |γv−1 −γv |+ |δv−1 −δv |
)

= |an |+2αλ−α0 −αn +M1.

Proceeding as in the first part of this theorem, we get for |q | ≥ 1,

|ψ(q)| ≤ (2αλ+|an |−αn −α0 +M1)|q |n . (3)



Abdullah Mir and Abrar Ahmad 1061

For |q | ≥ 1, we have

|P (q)∗ (1−q)| = |ψ(q)−qn+1a0|
≥ |q |n+1|a0|− |ψ(q)|
≥ |q |n [|q ||a0|− (2αλ+|an |−αn −α0 +M1)

]
(by (3)).

Hence, if |q | ≥ 1 and

|q | > 2αλ+|an |−αn −α0 +M1

|a0|
,

then |P (q)∗ (1−q)| > 0, that is P (q)∗ (1−q) ̸= 0. Hence all the zeros of P (q)∗ (1−q) where norm
is greater than or equal to one lie in

|q | ≤ 2αλ+|an |−αn −α0 +M1

|a0|
,

i.e, all the zeros of P (q) lie in

|q | ≤ max

(
1,

2αλ+|an |−αn −α0 +M1

|a0|
)

.

Therefore all the zeros of T (q) lie in

|q | ≥ min

(
1,

|a0|
2αλ+|an |−αn −α0 +M1

)
.

This completes the proof of Theorem 17. □

Conclusion

The regular functions of a quaternionic variable have been introduced and intensively studied
since 2006, and they have proven to be a fertile topic in analysis, and their rapid development has
been largely driven by the applications to operator theory. We point out that the Fundamental
Theorem of Algebra for regular polynomials with coefficients in H led to the complete identifi-
cation of the zeros of polynomials in terms of their factorization. Thus it became an interesting
perspective to think about the regions containing some or all the zeros of a regular polynomial
of quaternionic variable. In the literature, we could not find much about the distribution of zeros
of polynomials with quaternionic variable and quaternionic coefficients. Here, we obtain annuli
containing all the zeros of a regular polynomial of quaternionic variable when the real and imag-
inary parts of its coefficients are restricted by virtue of a maximum modulus theorem and the
structure of the zero sets for regular functions.
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