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Abstract. We give necessary conditions for the positivity of Littlewood–Richardson coefficients and SXP
coefficients. We deduce necessary conditions for the positivity of the plethystic coefficients. Explicitly, our
main result states that if Sλ(V ) appears as a summand in the decomposition into irreducibles of Sµ(Sν(V )),
then ν’s diagram is contained in λ’s diagram.

Résumé. Nous donnons des conditions nécessaires de positivité pour les coefficients de Littlewood–
Richardson et pour les coefficients SXP. Nous en déduisons la condition nécessaire de positivité suivante
pour les coefficients du pléthysme: si Sλ(V ) apparaît dans la décomposition en irréductibles de Sµ(Sν(V )),
alors le diagramme de ν est contenu dans celui de λ.
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1. Introduction

The operations of restriction, tensor product, and composition of representations allow us to
combine complex representations of the general lineal groups, and obtain new interesting rep-
resentations of these groups. Breaking these new representations as sums of irreducibles repre-
sentations is a major problem in representation theory. It is in this setting that the families of co-
efficients that we study in this work appear: the Littlewood–Richardson, Kronecker, and plethys-
tic coefficients, respectively, describe the multiplicities that govern these decompositions. In ad-
dition to their importance in representation theory, these coefficients naturally appear in many
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different fields of mathematics from invariant theory, Schubert calculus, and algebraic geometry,
to physics and computer science, [8, 9, 13, 15, 20]. For recent work see [5, 7, 14, 16, 17, 21].

In the language of symmetric functions, the irreducible representation of GL(V ) indexed by a
partition λ translates to the Schur function sλ. The tensor product of irreducible representations
translates to the ordinary product of Schur functions, which allows us to define the Littlewood–
Richardson coefficients as the structural constants for the ordinary product of Schur functions,
sµ · sν = ∑

λ cλµ,νsλ. Since Schur polynomials form an orthonormal basis of the space of symmet-
ric functions, we can also write cλµ,ν = 〈sλ, sµ · sν〉. The operation of composition of representa-
tions translates to the plethysm of symmetric functions, which in turn allows us to define the
plethystic coefficients aλ

µ[ν] as the number 〈sλ, sµ[sν]〉. Finally, the Kronecker coefficients gλ
µ,ν are

the multiplicities governing the decomposition into irreducibles of the restriction of GL(V ⊗W )
to GL(V )×GL(W ), via the Kronecker product of matrices.

A famous result, often attributed to Dvir, gives a necessary condition that a Kronecker coeffi-
cient must satisfy in order to be nonzero. This is a remarkable result, as Dvir’s conditions are both
elegant and very easy to manipulate. Let us identify a partition λ with its Ferrers diagram. Explic-
itly, given partitions µ and ν, Dvir defines a rectangular partition R = (|µ∩ν||µ∩ν′|) and shows that
if gλ

µ,ν is nonzero, then λ⊆ R (see [6]).
Dvir’s result gives a powerful tool in representation theory. To give just two recent applica-

tions, Pak and Panova used it to find a counterexample of the Kirillov–Klyachko conjecture [17],
and Briand, Orellana, and the second author used it to give sharp bounds for the stability of the
Kronecker products of Schur functions [2].

Following the spirit of Dvir’s result, we show in Theorem 24 that if sλ appears as a nonzero
summand on the decomposition of sµ[sν] in the Schur basis, then the diagram of ν is contained
in the diagram of λ. In other words, if aλ

µ[ν] is nonzero, then ν⊆λ.
With this aim in mind, we first show in Theorem 17 how to define a partitionΘ, from partitions

µ and ν, such that cλµ,ν ̸= 0 implies λ⊆Θ. Our main tool comes from plethystic calculus, and the
operation of evaluation into sums and differences of alphabets. This approach to the study of
structural constants has been proven successful in the past for Kronecker [19] and plethystic [11]
coefficients.

In Theorems 19 and 22, we use this result together with the SXP rule [12, 21] to determine
upper and lower bounds for the partitions µ appearing with positive coefficient in the expansion
of pn[sλ] in the Schur basis. Explicitly, we show that λ ⊆ µ ⊆ Ξ, where Ξ is a purposely crafted
partition. Then, we express the plethysm of two arbitrary Schur functions in terms of SXP
coefficients and plethysms of the type pn[sλ] as follows:

sµ[sν] =∑
λ

χµ(λ)

zλ
pλ[sν] =∑

λ

χµ(λ)

zλ

∏
i

pλi [sν] =∑
λ

χµ(λ)

zλ

∏
i

(∑
τ

bτλi [ν]sτ

)
, (1)

where χµ(λ) is the value of the character χµ of the Specht module Sµ on any permutation of
cycle type λ, the number zλ denotes the order of the centralizer of a permutation of cycle type λ,
and bτ

λi [ν] is defined as the number 〈sτ, pλi [sν]〉. The tools thus far developed suffice to show our
aforementioned main result (Theorem 24).

Finally, in Corollary 25, we completely characterize the multiplicity of the trivial and sign rep-
resentations on the decomposition into irreducibles of the composition of arbitrary irreducible
representations. These last results can also be deduced from Yang’s work [22].
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2. Preliminaries

2.1. Partitions and symmetric functions

We follow Stanley [20] for the standard concepts and notations in the theory of symmetric func-
tions, the main exception being that we represent our partitions with the French convention1.

A partition is a weakly decreasing sequence of natural numbers in which there are finitely
many nonzero entries. Define the (Ferrers) diagram of a partition λ as the subset of N2

0 made
of the points (c,r ) such that 0 ≤ c < λr . We will often identify a partition with its diagram. A
partition is a (c,r )-hook if its diagram does not contain the point (c,r ) [18]. Note that a (1,1)-
hook — usually known just as a hook — is also a (c,r )-hook for any c ≥ 1 and r ≥ 1. We say that
(c,r )-hooks fit in a fat-hook region ofN2

0 with c columns and r rows (see Figure 1).

c

r

×

...
...

. . .

. . .
λ

(c,r )

Figure 1. The diagrams of (c,r )-hooks fit in the depicted fat-hook region.

The point (c,r ) is an outer corner if (c,r ) ̸∈ λ but its addition to the diagram produces a
valid partition. Let Outer(λ) be the set of outer corners of λ. For example, Outer((3,3,1)) =
{(0,3), (1,2), (3,0)}. The complement (λ)c of the diagram of a partition λ defines an ideal of N2

0
with respect to the coordinate-wise sum; that is, (λ)c = {(x, y) ̸∈ λ} is closed under the sum. The
set Outer(λ) is the minimal spanning set of (λ)c = 〈Outer(λ)〉. Conversely, the complement of
such an ideal containing at least one point of the form (0,r ) and one point of the form (c,0) is the
diagram of a partition. See Figure 2 for an illustration of these concepts.

×
×

×

Figure 2. On the left, the Ferrers diagram of µ= (3,3,1). On the right, its associated ideal is
shaded. It is spanned by the set Outer(µ) of outer corners of µ (depicted as crosses).

Let the sum of two partitions λ and µ be the partition λ+µ = (λ1 +µ1,λ2 +µ2, . . . ), and let
the union λ∪µ of partitions λ and µ be the partition resulting from the sorting of their parts.
Moreover, for a given n ∈N+, we let nλ= λ+λ+n times. . . +λ and ∪nλ= λ∪λ∪n times. . . ∪λ. We shall
write (⊴) for the dominance order on partitions, letting λ ⊴ µ if

∑
i≤ j λi ≤ ∑

i≤ j µi for all j . We
write µ ⊆ λ and say µ is contained in λ whenever µi ≤ λi for all i . For µ ⊆ λ, we let λ/µ denote
the set of points in λ and not in µ. A rim hook of λ is a skew partition λ/µ whose diagram is
(orthogonally) connected and contains no 2× 2 arrangement. Let n ∈ N+. The n-quotient and
n-core of a partition encode all of the information of the original partition. We list some of their

1In the French convention, we use are bottom-left justified diagrams [13]. The coordinate system is cartesian, the
origin being aligned with the bottom-left corner.
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properties, and refer to Macdonald [13] for their proofs. The n-quotient of a partition λ is defined
as the n-tuple λ∗ = (λ(0),λ(1), . . . ,λ(n−1)), where λ(i ) is made of the points (k, j ) in λ such that
ck := λ′

k +k +1 ≡ i (n) and r j := λ j + j ≡ i (n). Note that ck only depends on the column and r j

on the row. The n-core is defined as the partition λ̃ which remains after removing (step by step)
every rim hook of length n fromλ. The order in which the rim hooks are removed does not matter.
Letting |λ∗| be |λ(0)|+ |λ(1)|+ · · ·+ |λ(n−1)|, we get the following formula

|λ| = |λ̃|+n|λ∗|. (2)

Let Λ be the algebra of symmetric functions. That is, the algebra Q[p1, p2, . . . ] spanned by the
algebraically independent variables pk which we name the power sum symmetric functions. It
will sometimes be useful to identify an element f in Λ with a formal power series. Let X =
x1 + x2 + . . . be an alphabet — a collection of variables called letters. We will identify any f ∈ Λ
with its image f [X ] under the morphism that maps pk to xk

1 + xk
2 + . . . . In particular, we identify

p1 with X . We write f [X ] = f (x1, x2, . . . ) and say that it is the evaluation of f in X .
For f ∈ Λ, let 〈sλ, f 〉 denote the coefficient of sλ in the decomposition of f in the Schur

basis. Hence f = ∑
λ〈sλ, f 〉 · sλ. We let the set {λ : 〈sλ, f 〉 ̸= 0} be the support of f , denoted as

supp( f ). The generalized Littlewood–Richardson coefficient cλ
µ0,µ1,...,µn−1 is defined as the number

〈sλ, sµ0 · sµ1 · · · sµn−1〉. Note that for n = 2, we recover the usual Littlewood–Richardson coefficient
(hereafter, LR coefficient). As an immediate consequence of the Littlewood–Richardson rule, we
get the following lemma.

Lemma 1. If λ ∈ supp(sµ · sν) then µ∪ν⊴λ⊴µ+ν. Moreover, cµ∪νµ,ν = cµ+νµ,ν = 1.

2.2. Plethysm

The notion of plethysm, denoted by · [ · ], comes from that of composition. Let f and g in Λ. If
g [X ] is a sum of monic monomials, g [X ] = g1 + g2 + . . . then f [g [X ]] = f (g1, g2, . . . ). In particular,
since we identify p1 with X , then f [X ] is just the plethysm of f with X .

Example 2. If f [X ] is a power series with positive integers as coefficients, it can be expressed as
a sum of monic terms. For instance, 2p2[X ] = 2x2

1 +2x2
2 +·· · = x2

1 +x2
1 +x2

2 +x2
2 +. . . . Consequently,

pn[2p2[X ]] = pn(x2
1 , x2

1 , x2
2 , x2

2 , . . . ) = 2p2n[X ].

More precisely, the operation of plethysm of symmetric functions is defined axiomatically.

Definition 3. The plethysm of symmetric functions, denoted by ·[·], is the operation Λ×Λ→ Λ

verifying

(1) pn[pm] = pnm for all n,m ∈N0.
(2) For any f ∈Λ, the map g 7→ g [ f ] is a Z-algebra homomorphism onΛ.
(3) For any f ∈Λ, the equality pn[ f ] = f [pn] holds.

Example 4. We use axiom (3) to compute pn[−X ] = pn[−p1] =−p1[pn]. Then, using axiom (2),
we get

s2[−X ] = p1,1 +p2

2
[−X ] = 1

2
p1[−X ]p1[−X ]+ 1

2
p2[X ]

= 1

2
p1[X ]p1[X ]− 1

2
p2[X ] = p1,1 −p2

2
[X ] = s1,1[X ].

The core tools of this work come from plethystic calculus. Namely, from the operation of
evaluation in sums and differences of alphabets. This next lemma is standard. More general
formulas, for sλ[ f ± g ] on two arbitrary symmetric functions, are found in [13].
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Lemma 5. Let X and Y be two alphabets and let λ be a partition. Then:

(1) sλ[−X ] = (−1)|λ|sλ′ [X ].
(2) sλ[X +Y ] =∑

µ⊂λ sµ[X ] · sλ/µ[Y ] =∑
µ,ν cλµ,ν sµ[X ] · sν[Y ].

(3) sλ[X −Y ] =∑
µ⊂λ(−1)|λ/µ| sµ[X ] · s(λ/µ)′ [Y ] =∑

µ,ν(−1)|ν| cλµ,ν sµ[X ] · sν′ [Y ].

Remark 6. Let X and Y be two alphabets. Then, Lemma 5 says that sλ[X −Y ] is the generating
function of the tableaux T on positive letters from X and negative letters from −Y obeying
the semistandarity rules for the positive entries and the opposite rules for the negative ones.
For instance, in Figure 3 we have four such tableaux of weights x2

1 x2x3
3 x4, (−1)8 y1 y2 y3 y3

4 y2
5 ,

(−1)3x2
1 x2x3

3 y1 y2
2 , and (−1)10x2

1 x2
2 y3

1 y3
2 y4

3 , respectively.

4

2 3 3

1 1 1 3

−1

−4 −3

−5 −4

−5 −4 −2

3

−1

−2 2 3

−2 1 1 3

−3

−3 −2 −1

−3 −2 −1 2 2

−3 −2 −1 1 1

Figure 3. Four valid SSYT with positive and/or negative letters.

Notation 7. In general, evaluating on the alphabet X + c times. . . + X is not equivalent to evaluating
on the alphabet cx1 + cx2 + . . . . We denote the first with f [c X ] and the latter with f [t X ]|t=c . In
particular, −pk [X ] = pk [−X ] ̸= pk [t X ]

∣∣
t=−1 = (−1)k pk [X ].

This next theorem enables us to calculate plethysms of the form pn[sλ].

Theorem 8 (SXP rule [12, 21]). For any partitions λ,µ and any n ∈N+,

〈sµ, pn[sλ]〉 = sgnn(µ) ·〈sλ, sµ(0) · sµ(1) · · · sµ(n−1)

〉
,

where (µ(0), . . . ,µ(n−1)) is the n-quotient of µ, and the sign function is defined as in [21].

Remark 9. From Equation (2) and the SXP rule, we can deduce that µ ∈ supp(pn[sλ]) implies
that µ̃=;.

The SXP rule lets us immediately identify some partitions of supp(pn[sλ]). Let us start with two
of them.

Lemma 10. Let n ∈N+. Then,

(1) The partition nλ is in supp(pn[sλ]) and 〈snλ, pn[sλ]〉 = 1.
(2) The partition

⋃n λ is in supp(pn[sλ]) and 〈s∪nλ, pn[sλ]〉 = (−1)|λ|(n−1).

Proof. We prove the first assertion; the second one is shown similarly. Let µ = nλ. To begin
with, the n-core of µ is empty. Now, checking λ ∈ supp(sµ(0) · sµ(1) · · · sµ(n−1) ) will suffice. Since
λ=µ(0) ∪µ(1) ∪·· ·∪µ(n−1), the result holds from Lemma 1. □

2.3. A plethystic substitution lemma

The following lemma links Schur functions evaluations with LR coefficients. This result has
been used implicitly in [11, 19]. Given positive integers a and b, let Xa = x1 + x2 + . . .+ xa and
Xb = x ′

1+x ′
2+·· ·+x ′

b be two alphabets. We will identify the alphabet Xa +Xb with Xa+b by setting
x ′

i 7→ xa+i .

Lemma 11. Let λ be a partition, and let a,b,c,d ∈N+. Then, the evaluation sλ[Xa+b −Yc+d ] ̸= 0
if and only if there exist partitions µ0 and ν0 such that cλµ0,ν0

̸= 0, sµ0 [Xa − Yc ] ̸= 0, and
sν0 [Xb −Yd ] ̸= 0.
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Proof. We know from Lemma 5 that

sλ[Xa+b −Yc+d ] = sλ[(Xa −Yc )+ (Xb −Yd )] =∑
cλµ,ν sµ[Xa −Yc ] sν[Xb −Yd ].

Therefore, if sλ[Xa+b −Yc+d ] ̸= 0 then at least one of the terms in the sum doesn’t vanish.
Conversely, suppose that cλµ0,ν0

sµ0 [Xa −Yc ] sν0 [Xb −Yd ] ̸= 0 for some µ0, ν0 and consider the
equation

sλ[Xa+b − tYc+d ] =∑
cλµ,ν sµ[Xa − tYc ] sν[Xb − tYd ],

where t is a variable as in Note 7. Let t = −1. The positivity of LR coefficients ensure that every
monomial in both sides of the equality is now positive, so there can’t be any cancellation. This
means in particular that sλ[Xa+b − tYc+d ]

∣∣
t=−1 ̸= 0.

On the other hand, we obtain sλ[Xa+b − tYc+d ]
∣∣

t=−1 (that we know that is different than zero)
from sλ[Xa+b −Yc+d ] by setting, for each j , the letter y j to be −y j . Therefore, we can conclude
that sλ[Xa+b −Yc+d ] is also different than zero. □

Remark 12. This result also holds for infinite alphabets. If λ is a partition of n, working with
infinite variables is equivalent to working with n variables, which is the case that we settled in the
previous lemma.

3. Positivity conditions for the Littlewood–Richardson coefficients

We present a general theorem giving necessary conditions for the positivity of the Littlewood–
Richardson coefficients. The following elementary observation will play a crucial role.

Lemma 13. We have sλ[Xr −Yc ] ̸= 0 if and only if λ is a (c,r )-hook.

Proof. Suppose sλ[Xr −Yc ] ̸= 0. Then, λ does not have a (c,r ) point, i.e., (c,r ) ∈ (λ)c . (In order
to see this, think of what would be the value of (c,r ) in a tableau with r positive letters and c
negative letters.) This, in turn, implies that λ fits in a fat-hook region with r rows and c columns
(see Figure 1).

Conversely, if (c,r ) is in (λ)c then sλ[Xr −Yc ] ̸= 0. Indeed, the following SSYT in the alphabet
Xr −Yc is always present. Fill the kth column with (k−c)’s, for k = 0, . . . ,c−1. After this, the empty
cells in the kth row are filled with (k +1)’s. □

Remark 14. In the proof of Lemma 13, we showed that if sλ[Xr −Yc ] ̸= 0 then it fits into a (c,r )-
hook region. Ifλ fits in multiple of these regions, we can then take the intersection of them to find
a smaller region for which λ is a subset. See Example 15.

Example 15. Suppose sλ[X3 −Y1] ̸= 0. This means that there exists a SSYT of shape λ and filled
with the letters {1,2,3,−1}, which implies that the point (1,3) does not belong to λ. Suppose that
we also know that sλ[X4] ̸= 0 and sλ[−Y2] ̸= 0. This implies that neither (0,4) nor (2,0) belong to λ.
Therefore,λmust be a subset of each of the first three regions depicted in Figure 4. Consequently,
λ must also be a subset of (23,1) (see the fourth diagram in Figure 4).

×
×

×

×
×

×

Figure 4. From left to right, the regions 〈(1,3)〉c , 〈(0,4)〉c , 〈(2,0)〉c and 〈(1,3), (0,4), (2,0)〉c =
(23,1).
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In the proof of Lemma 13, we constructed a tableau in the alphabet Xr −Yc for every (c,r )-
hook. We will refer to it as the canonical SSYT of shape λ in the alphabet Xr −Yc or in the corner
(c,r ).

Example 16. Let (c,r ) = (3,2). Let λ = (5,5,3,1). Then, the canonical tableau of shape λ in the
corner (c,r ) is the fourth tableau in Figure 3.

We can now state and prove the main result of this section. For two sets A and B let A +B =
{a +b : a ∈ A,b ∈ B} be their Minkowski sum.

Theorem 17. Let n ∈N+ and let λ,µ0,µ1 . . . ,µn−1 be partitions. If cλ
µ0,µ1,...,µn−1 is nonzero, then

λ⊆
〈n−1∑

k=0
Outer(µk )

〉c

,

where the sum is the Minkowski sum on sets, and the sum inN2
0 is coordinate-wise.

Example 18. Let µ0 = (3,2), µ1 = (1,1) =µ2. Compute their exterior corners:

µ0 = × ×× then Outer(µ0) = {(0,2), (2,1), (3,0)}.

µ1 =µ2 = ×
× then Outer(µ1) = Outer(µ2) = {(0,2), (1,0)}.

Then, add together all possible combinations of exterior corners of our three partitions, to get
a set of 9 points of N2

0,
∑2

0 Outer(µk ) = {(0,6), (1,4), (2,2), (2,5), (3,3), (4,1), (3,4), (4,2), (5,0)}.
The shape 〈∑2

0 Outer(µk )〉c = (5,4,2,2,1,1) arises. Theorem 17 states that the diagram of every
partition in supp(sµ0 sµ1 sµ2 ) must be a subset of said region, illustrated in Figure 5.

×
×
×

×
×
×

×
×
×

Figure 5. The points of
∑2

0 Outer(µk ) are depicted as crosses, and the shaded region repre-
sents the shape 〈∑2

0 Outer(µk )〉c = (5,4,2,2,1,1).

Proof of Theorem 17. Let λ ∈ supp(sµ0 · · · sµn−1 ). Therefore, there exists a partition νn−2 in
supp(sµ0 · · · sµn−2 ) such that λ ∈ supp(sνn−2 sµn−1 ). Take now νn−2. By the same analysis, there ex-
ists a partition νn−3 in supp(sµ0 · · · sµn−3 ) such that νn−2 ∈ supp(sνn−3 sµn−2 ). Iterate this process to
obtain a chain of partitions

λ= νn−1,νn−2, . . . ,ν1,ν0 =µ0.

Choose outer corners (c0,r0) ∈ Outer(µ0) and (c1,r1) ∈ Outer(µ1). As the canonical tableau for
a given corner exists, sµ0 [Xr0 − Yc0 ] ̸= 0 and sµ1 [Xr1 − Yc1 ] ̸= 0. In addition, we know that ν1 ∈
supp(sν0 sµ1 ) = supp(sµ0 sµ1 ). Thus, by Lemma 11, we get sν1 [Xr0+r1 −Yc0+c1 ] ̸= 0. Choose now an
outer corner (c2,r2) ∈ Outer(µ2). Since ν2 ∈ supp(sν1 sµ2 ), we get that sν2 [Xr0+r1+r2 −Yc0+c1+c2 ] ̸= 0,
again by Lemma 11.

After iterating, νn−1 =λ and so sλ[XΣri −YΣc j ] ̸= 0. This means that
(∑

ci ,
∑

r j
)

is not in λ. Any
choices of corners from µ0, . . . ,µn−1 will give a similar result, ending the proof. □
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4. Positivity conditions for the SXP coefficients.

In this section we derive necessary conditions for the positivity of the resulting coefficients of
the expansion of this plethysm in the Schur basis (SXP coefficients), by combining our previous
result for the Littlewood–Richardson coefficients and the SXP rule.

As a corollary of Theorem 1, we get the following result.

Theorem 19. Let n ∈N+ and let µ, λ be partitions. If 〈sµ, pn[sλ]〉 is nonzero, then λ⊆µ.

Proof. Let µ ∈ supp(pn[sλ]). By the SXP rule, we have λ ∈ supp
(
sµ(0) · · · sµ(n−1)

)
. Choose an outer

corner (c,r ) ∈ Outer(µ). Hence sµ[Xr − Yc ] ̸= 0. Let T : µ → {−c, . . . ,−2,−1,1,2, . . . ,r } be the
canonical SSYT of µ for Xr −Yc .

Compute the n-quotient, thus embedding each µ(k) inside µ’s diagram. Considering the
corresponding values T (i , j ) of the canonical tableaux at those embedded cells, we obtain a SSYT
T k of shape µ(k), which we presume to filled with the alphabet Xrk −Yck . Then (ck ,rk ) is an outer
corner of µ(k).

Furthermore, we know that no two partitions of the n-quotient share any common letters, by
construction of T and the n-quotient. Consequently, Xr −Yc = XΣrk −YΣck .

That is, we choose (c,r ) ∈ Outer(µ) and we show that (c,r ) ∈ ∑
Outer(µ(k)). Therefore,

Outer(µ) ⊆∑
Outer(µ(k)). By the Theorem 17 and the SXP rule, (c,r ) is not in λ. □

Example 20. Let n = 2,λ= (3,2). We have p2[s3,2] =−s3,3,2,2+s3,3,3,1+s4,2,2,2−s4,3,3−s4,4,1,1+s4,4,2−
s5,2,2,1 + s5,3,1,1 − s5,5 + s6,2,2 − s6,3,1 + s6,4. One can check that (3,2) ⊆µ for each µ ∈ supp(p2[s3,2]).

Theorem 19 gives us a lower bound on the partitions µ in supp(pn[sλ]). On the other hand,
from the definition of partition we automatically obtain a trivial upper bound. A partition µ ∈
supp(pn[sλ]) must be of size n|λ|. Hence, the maximum size of the r th row is

⌊ n|λ|
r

⌋
. We refine

this upper bound by taking the lower bound into consideration. Let us start with an example.

Example 21. Let µ ∈ supp(p2[s3,2]). Then, µ ⊆ (10,5,3,2,2,1,1,1,1,1). We also know |µ| = |(2)| ·
|(3,2)| = 10. On the other hand, we saw in Example 20 that (3,2) ⊆ µ. However, the only partition
of size 10 such that the first row is equal to 10 is the row partition (10), whose diagram clearly does
not contain the partition (3,2). Therefore, our upper bound is subject to improvement.

By adjusting our argument, the bound on µr when λ⊆µ and |µ| = n|λ| becomes

µr ≤
⌊

n|λ|− |(λr+1,λr+2, . . . )|
r

⌋
=: ar .

A similar analysis for the columns yields the following bounding partition

µ′
c ≤

⌊
n|λ|− |(λ′

c+1,λ′
c+2, . . . )|

c

⌋
=: bc .

Note that these two bounding partitions do not need to be the same. The following result
combines both bounding partitions into a more optimized one.

Theorem 22. Let µ and λ be two partitions, and let Ξ1 = (a1, a2, . . . ) and Ξ2 = (b1,b2, . . . )′ with ar

and bc defined as before. If 〈sµ, pn[sλ]〉 is nonzero, then µ⊆Ξ1 and µ⊆Ξ2. That is, µ⊆Ξ1 ∩Ξ2.

Example 23. Continuing Examples 20 and 21, and by having the lower bound in consideration,
we optimize the upper bound to (8,5,3,2,1,1,1). See Figure 6.
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⊆µ⊆ ⊆

Figure 6. For every µ in supp(p2[s3,2]), Examples 20, 21 and 23 yield the depicted bounds.

5. Positivity conditions for the general plethystic coefficients

We now consider the plethysm of two arbitrary Schur functions. Our main result is the following.

Theorem 24. Let µ, ν and λ be partitions. If aλ
µ[ν] is nonzero, then ν⊆λ.

Proof. We shall bring back Equation (1). We know from the LR rule that τ,π ⊆ θ for all θ in the
support of sτ · sπ. And if bτ

λi [ν] does not vanish, from Theorem 19, we have ν⊆ τ. Hence ν⊆ θ. □

Two cases of particular interest in representation theory can be further studied. The following
corollary can also be deduced from Yang’s work [22].

Corollary 25. Let V be a d-dimensional vector space, and let µ and ν be partitions of m and n
respectively, both of length ≤ d. We have:

(1) The coefficient of smn in sµ[sν] is nonzero if and only if bothµ and ν are one row partitions.
In that case, 〈smn , sm[sn]〉 = 1.

(2) The coefficient of s(1mn ) in sµ[sν] is nonzero if and only if both µ and ν are one column
partitions and n is odd. In that case, 〈s(1mn ), s(1m )[s(1n )]〉 = 1.

Proof. Theorem 24 shows one implication of each assertion.
From Lemma 1, 〈smn , sm[sn]〉 = ∑

λ
χµ(λ)

zλ
, which is the evaluation sµ[1]. This equals 1 if µ is a

row partition and vanishes otherwise.
On the other hand, Lemma 2 implies that 〈s(1mn ), s(1m )[s(1n )]〉 =∑

λ(−1)|ν|(|µ|−l (λ)) χ
µ(λ)
zλ

.
If |ν| is even, this is the evaluation sµ[sν[1]], which vanishes unless both µ and ν are row

partitions. Then ν must be both a row partition of even size and a column partition. This
is impossible. On the other hand, if |ν| is odd, the multiplicity of the sign representation is∑
λ sgn(λ)χ

µ(λ)
zλ

= sµ′ [1], which equals 1 if µ is a column partition and vanishes otherwise. □

The previous lemma can be restated in the language of representation theory as follows.

Corollary 26. Let Sλ(V ) be the irreducible representation of GL(V ) indexed by λ. We have:

(1) The trivial representation appears as a summand of Sµ(Sν(V )) if and only if Sµ and Sν are
trivial representations. In that case, its multiplicity is 1.

(2) The sign representation appears as a summand of Sµ(Sν(V )) if and only if both Sµ and Sν

are sign representations and |ν| is odd. In that case, its multiplicity is 1.

6. Final Remarks

Recently, there has been plenty of interest in the closely related problem of understanding the
complexity of deciding whether Littlewood–Richardson [3], Kronecker [1, 16], and plethystic [10]
coefficients are nonzero. Moreover, and in the cases where it is possible, polynomial algorithms
have been developed to determine the positivity of such coefficients.

In [4], the plethysm s1,1[s4,2,2] is used as and example to illustrate the importance of this
problem, in the case of the plethystic coefficients. A priori, there are p(16) = 231 partitions that
could appear in supp(s1,1[s4,2,2]), but only 40 actually do. By Theorem 24, we bring this initial
number to 142 making it more approachable from the computational perspective.
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We provide one further example. Let µ = (2,1), let ν = (1n). Any partition in the support of
sµ[sν] must be, by our theorem, a partition of 3n with length at least n. This turns out to be a
fairly restrictive condition for large n. See Figure 7.

5 10 15
n

0.25
0.50
0.75
1.00

Figure 7. In black, the ratio of partitions of 3n that are of length ≥ n; in white, the ratio of
partitions of 3n that are in supp(s2,1[s(1n )]). The high computational cost of plethysm only
allowed us to gather data for n ≤ 8.

In addition, the theoretical insights of our main theorem are interesting on their own. We
hope that the elegant nature of our results will serve as a useful lemmas, and contribute to these
complexity results.
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