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Abstract. In categorical data analysis, the 2×2 contingency tables are commonly used to assess the associ-
ation between groups and responses, this is achieved by using some measures of association, such as the
contingency coefficient, odds ratio, risk relative, etc. In a Bayesian approach, the risk ratio is modeled ac-
cording to a Beta-Binomial model, which has exact posterior distribution, due to the conjugacy property of
the model. In this work, we provide the exact posterior distribution of the relative risk for the non-conjugate
Kumaraswamy–Binomial model. The results are based on special functions and we give exact expressions for
the posterior density, moments, and cumulative distribution. An example illustrates the theory.
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1. Introduction

The 2× 2 contingency tables is one of the most prominent forms of displaying statistical data,
while the tables are very intuitive and easy to interpret, important information also can be ex-
tracted from them. In fact, verifying whether an attribute is more frequent in a group rather than
another is a question which we often want to investigate. For instance, the association between
binary variables is an essential tool for decision-making in many areas, such as classification,
clinical trials, cohort studies, etc. In those studies, several measures can be used, to name a few:
the odds ratio, contingency coefficient, φ coefficient, etc. One of the most widely used measure of
association is the risk ratio (or relative risk). In Bayesian analysis, the groups in a 2×2 table are
modeled as independent Binomial distributions with unknown probabilities of success, and the
corresponding parameters are modeled as Beta distributions with some fixed hyperparameters,
conveniently chosen to represent our prior knowledge about the odds of success. Thus, those
measures usually are estimated through a Beta-Binomial model, which is a conjugate structure,
in the sense that the posterior distribution belongs to the same family as the prior distribution.
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From this setting, the posterior distribution of the risk ratio can be obtained in exact form (Aitchi-
son & Bacon-Shone [1]). The Beta-Binomial model is widely used to obtain posterior estimates for
some measures of association, Smith et al. [11] obtain some hypothesis test involving the proba-
bilities of success, Aitkin & Chadwick [2] provides estimates for several measures of association.

Another perspective may find the Beta distribution rather restrictive, since other prior distri-
butions can better represent our knowledge about the parameters, however using other prior dis-
tributions may require approximate methods such as MCMC, numerical integration, etc., since
there might not have a conjugate structure. This difficulty makes researchers to choose the facil-
ity of the Beta-Binomial model. Nevertheless, the well-established concept, that only conjugate
prior distributions (or some specific reference priors) could yield exact posterior distributions
was broken by Andrade & Rathie [4], where it was showed that a great variety of nonconjugate
models can still produce exact posterior distributions, in the sense that the posterior distribution
and its quantities can be explicitly written in a computable form. In this new field, Andrade &
Rathie [4] and Andrade et al. [6] propose very wide classes of exact posterior nonconjugate mod-
els for a scale and location parameters, respectively. A generalization for location-scale structures
is provided by Andrade & Rathie [5]. The main tool used in these works are the special functions,
in particular the Fox’s H-function [8], which generalizes most of the distributions in Statistics.

In the context of Binomial models, Andrade [3] proposes an alternative to the Beta-Binomial
model, the Kumaraswamy-Binomial model, in which the posterior quantities are also obtained
in exact form. The theory provides exact expressions for the posterior moments, cumulative pos-
terior and predictive distributions. Due to some friendly mathematical properties (e.g. cdf, mo-
ments, median, etc), the Kumaraswamy distribution (Kumaraswamy [9]) has been widely used
as an alternative to Beta distribution (see for instance, Andrade et al. [6] and Fletcher & Pon-
nambalam [7]). In this work, we use the results of Andrade [3], concerning the nonconjugate
Kumaraswamy–Binomial model, in order to obtain the exact posterior distribution and its quan-
tities of the risk ratio in 2×2 contingency tables.

The text is organized as the following. Section 2 provides some preliminary definitions and
results useful to the theory. In Section 3 the main results are presented, in which the explicit
posterior distribution and the posterior quantities are provided. In Section 4 an illustrative
example given, in which the exact results are compared with those obtained by the MCMC
method. In Section 5 some general comments consider possible generalizations of the theory.

2. Preliminaries

Andrade [3] gives the exact posterior quantities for the Kumaraswamy–Binomial model. Firstly,
the results are expressed through unormalized moments, that is, if a random variable X ∼ f (x)
such that f (x) = c × h(x), where c is the normalizing constant and h(x) is the kernel of the
distribution, the unnormalized moment of order r ∈ Z is defined as I (r ) = ∫

X xr h(x)dx. Once
we obtain an expression for I (r ) we can access most of the posterior quantities, such as the
normalizing constant itself, the posterior moments, etc.

Consider the Kumaraswamy–Binomial model{
y1, . . . , yn |θ ∼ Ber(θ) iid

θ ∼ Kum(α,β),
(1)

where 0 < θ < 1 is the parameter of interest, α,β are hyperparameters and Kum(α,β) stands for
the Kumaraswamy distribution p(θ) = αβθα−1(1−θα)β−1. Andrade [3] gives an exact expression
for the unnormalized posterior moment of order r , given by

Iy (r ) =αβΓ(β)Γ(n − y +1)
∞∑

h=0

(−1)hΓ(r + y +α(h +1))

h!Γ(r +n +α(h +1)+1)Γ(β−h)
, (2)
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where α> 1 and y =∑
i yi .

An important result (Luke [10]) uses the fact that, in general, for 0 < b < 1 and c > 0, using the
binomial theorem, we have∫ b

0
zc−1(1− z)d dz =

∞∑
h=0

(−d)h

h!

∫ b

0
zc+r−1dz =

∞∑
h=0

(−d)h

h!

bc+h

c +h
, (3)

where (−d)h is the Pochhammer notation, (−d)h = (−d)(−d−1)...,(−d−h+1)
h! = Γ(h−d)

Γ(−d) .

3. Posterior distribution of the risk ratio

We consider an experiment where n1 and n2 subjects are randomly allocated into the groups 1
and 2, say treatment 1 and 2, the responses to the treatments are marked as “Success/Failure”
(1/0), thus a general 2×2 contingency table is of the form

Group Response
1 0

Treat. 1 θ1 1−θ1

Treat. 2 θ2 1−θ2

The probabilities of success within the two groups are θ1 and θ2 (0 < θ1,θ2 < 1). Thus, we
let P (Xi = 1|θ1) = θ1 (i = 1, . . . ,n1) and P (Y j = 1|θ2) = θ2 ( j = 1, . . . ,n2). Note that Xi and X j are
independent, as well as θ1 and θ2, hence we consider the Binomial model

x1, . . . , xn1 |θ1 ∼ Ber(θ1) iid

y1, . . . , yn2 |θ2 ∼ Ber(θ2) iid

θ j ∼ Kum(α j ,β j ), j = 1,2.

(4)

where α j ,β j are hyperparameters for the Kumaraswamy distribution p j (θ j ) = α jβ jθ
α j −1(1 −

θα j )β j −1 ( j = 1,2). The kernel of the posterior distribution is given by

p(θ1,θ2|x, y) ∝ L(θ1,θ2)p1(θ1)p2(θ2)

∝ θx
1 (1−θ1)n1−x p1(θ1)×θy

2 (1−θ1)n2−y p2(θ2), (5)

where x =∑
i xi , y =∑

i yi and L(θ1,θ2) is the likelihood function. Clearly, the marginal posterior
distributions will not be in the Kumaraswamy family, that is, the likelihood and prior distribution
will not combine their kernels, thus in some regular Bayesian view, some approximate method
would be required.

In our approach, we first obtain the unnormalized moment of order r and s, that is

Ix,y (r, s) =
∫ 1

0

∫ 1

0
θr

1θ
s
2p(θ1,θ2|x, y)dθ1dθ2

=
∫ 1

0
θx+r

1 (1−θ1)n1−x p1(θ1)dθ1 ×
∫ 1

0
θ

y+s
2 (1−θ1)n2−y p2(θ2)dθ2 =: Ix (r )× Iy (s),

where Ix (r ) and Iy (s) are given by (2) and the computable representations (2), replacing con-
veniently α and β by α j , and β j ( j = 1,2), respectively. The posterior normalizing constant
is obtained by evaluating the series up to a required precision, the normalizing constant is
Ix,y (0,0) = Ix (0)×Iy (0), hence the exact posterior distribution is obtained dividing (5) by Ix,y (0,0),
which can be written in terms of the binomial theorem,

p(θ1,θ2|x, y) = α1β1α2β2

Ix (0)Iy (0)

n1−x∑
j=0

n2−y∑
ℓ=0

(
n1 −x

j

)(
n2 − y

ℓ

)
(−1) j+ℓθx+α1+ j−1

1 θ
y+α2+ℓ−1
2

× (1−θα1
1 )β1−1(1−θα2

2 )β2−1 (6)



1066 Jose A. A. Andrade and Pushpa N. Rathie

In order to make inferences about ρ, we need to obtain the posterior distribution of ρ, thus we
consider the posterior distribution (6) to obtain the following exact posterior quantities.

Theorem 1 (Cumulative posterior distribution of the risk ratio). Let ρ = θ1/θ2 be the risk ratio.
Considering (6), the cumulative posterior distribution of ρ is given by

(i) For 0 < ρ0 < 1:

P (ρ < ρ0|x, y) = β1β2

Ix (0)Iy (0)

Γ(β2)

Γ(1−β1)

n1−x∑
j=0

n2−y∑
ℓ=0

(
n1 −x

j

)(
n2 − y

ℓ

)
(−1) j+ℓρx+ j+α1

0

×
∞∑

h=0

ρ
α1h
0 Γ(1−β1 +h)Γ

[
y+ℓ+x+ j+α1+α2

α2
+ α1h

α2

]
h!

[
x+ j+α1
α1

+h
]
Γ

[
y+ℓ+x+ j+α1+α2+α2β2

α2
+ α1h

α2

] . (7)

(ii) For ρ0 > 1:

P (ρ < ρ0|x, y) = 1− α2β1β2Γ(β1)

Ix (0)Iy (0)Γ(1−β2)

n1−x∑
j=0

n2−y∑
ℓ=0

(
n1 −x

j

)(
n2 − y

ℓ

)
(−1) j+ℓρ−(y+ℓ+α2)

0

×
∞∑

h=0

ρ
−α2h
0 Γ(1−β2 +h)Γ[ y+ℓ+x+ j+α1+α2+α1h

α1
]

h!(y +ℓ+α2 +α2h)Γ
[

y+ℓ+x+ j+α1+α2+α2h+β1α1
α1

] . (8)

Proof. (i). For 0 < ρ0 < 1: Let ρ = θ1/θ2 and θ2 = θ2, using (6),

P (ρ < ρ0|x, y) = P (θ1 < ρ0θ2|x, y) =
∫ 1

0

∫ ρ0θ2

0
p(θ1,θ2|x, y)dθ1dθ2

= α1α2β1β2

Ix (0)Iy (0)

n1−x∑
j=0

n2−y∑
ℓ=0

(
n1 −x

j

)(
n2 − y

ℓ

)
(−1) j+ℓ×

×
∫ 1

0
θ

y+α2+ℓ−1
2 (1−θα2

2 )β2−1
∫ ρ0θ2

0
θ

x+α1+ j−1
1 (1−θα1

1 )β1−1dθ1dθ2. (9)

Let θ = θα1
1 , then

A(θ2) =
∫ ρ0θ2

0
θ

x+α1+ j−1
1 (1−θα1

1 )β1−1dθ1

= 1

α1

∫ (ρ0θ2)α1

0
θ

x+ j
α1 (1−θ)β1−1dθ

= 1

α1

∞∑
h=0

(1−β1)h(ρ0θ2)
α1( x+ j

α1
+h+1)

h!( x+ j
α1

+h +1)
,

where the latest identity is due to (3).
Thus, replacing A(θ2) in (9), we have

P (ρ < ρ0|x, y) = α1α2β1β2

Ix (0)Iy (0)

n1−x∑
j=0

n2−y∑
ℓ=0

(
n1 −x

j

)(
n2 − y

ℓ

)
(−1) j+ℓ×

×
∞∑

h=0

(1−β1)h

h!

ρ
x+ j+α1+α1h
0

x + j +α1 +α1h

∫ 1

0
θ

y+α2+ℓ+x+ j+α1+α1h−1
2 (1−θα2

2 )β2−1dθ2

The result follows by evaluating the integral on θ2 as before.
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(ii). For ρ0 > 1: Note that P (ρ < ρ0|x, y) = 1−P (ρ > 1/ρ1|x, y), where ρ1 = 1/ρ0, hence 0 < ρ1 < 1,
then we consider

P (ρ > 1/ρ1|x, y) = P (θ2 < ρ1θ1|x, y) =
∫ 1

0

∫ ρ1θ1

0
p(θ1,θ2|x, y)dθ2dθ1

= α1α2β1β2

Ix (0)Iy (0)

n1−x∑
j=0

n2−y∑
ℓ=0

(
n1 −x

j

)(
n2 − y

ℓ

)
(−1) j+ℓ

×
∫ 1

0
θ

x+α1+ j−1
1 (1−θα1

1 )β1−1
∫ ρ1θ1

0
θ

y+α2+ℓ−1
2 (1−θα2

2 )β2−1dθ2dθ1. (10)

The result follows by the same strategy as before, that is, replacing ρ1 = 1/ρ0 and using P (ρ <
ρ0|x, y) = 1−P (ρ > ρ0|x, y). □

Corollary 2 (Posterior density of the risk ratio). Considering (1), the posterior distribution of the
risk ratio is given by

(i) For 0 < ρ0 < 1:

p(ρ|x, y) = α1β1β2

Ix (0)Iy (0)

n1−x∑
j=0

n2−y∑
ℓ=0

(
n1 −x

j

)(
n2 − y

ℓ

)
(−1) j+ℓ Γ(β2)

Γ(1−β1)

×
∞∑

h=0

ρx+ j+α1+α1h−1Γ(1−β1 +h)Γ
[

y+ℓ+x+ j+α1+α2
α2

+ α1h
α2

]
h!Γ

[
y+ℓ+x+ j+α1+α2+α2β2

α2
+ α1h

α2

] . (11)

(ii) For ρ0 > 1:

P (ρ|x, y) = α2β1β2Γ(β1)

Ix (0)Iy (0)Γ(1−β2)

n1−x∑
j=0

n2−y∑
ℓ=0

(
n1 −x

j

)(
n2 − y

ℓ

)
(−1) j+ℓ

×
∞∑

h=0

ρ−(y+ℓ+α2+α2h+1)Γ(1−β2 +h)Γ[ y+ℓ+x+ j+α2+α1+α2h
α1

]

h!Γ
[

y+ℓ+x+ j+α2+α2h+α1+β1α1
α1

] . (12)

Proof. Straightforward by differentiating the (7) and (8) with respect to ρ0. □

Corollary 3 (Posterior moments of the risk ratio). Considering Corollary (2), the posterior
moment of order r ∈Z of ρ is given by

E[ρr |x, y] =
n1−x∑
j=0

n2−y∑
ℓ=0

∞∑
h=0

[
A jℓ(h)

x + j +α1h + r +α1
+ B jℓ(h)

y +ℓ+α2r − r +α2

]
, (13)

where

A jℓ =
α1β1β2Γ(β2)

Ix (0)Iy (0)Γ(1−β1)

(
n1 −x

j

)(
n2 − y

ℓ

)
(−1) j+ℓ Γ(1−β1 +h)Γ

[
y+ℓ+x+ j+α1+α2

α2
+ α1h

α2

]
h!Γ

[
y+ℓ+x+ j+α1+α2+α2β2

α2
+ α1h

α2

] (14)

and

B jℓ(h) = α2β1β2Γ(β1)

Ix (0)Iy (0)Γ(1−β2)

(
n1 −x

j

)(
n2 − y

ℓ

)
(−1) j+ℓ Γ(1−β2 +h)Γ[ y+ℓ+x+ j+α2+α1+α2h

α1
]

h!Γ
[

y+ℓ+x+ j+α2+α2h+α1+β1α1
α1

] . (15)

Proof. Straightforward by integrating

E[ρr |x, y] =
∫ 1

0

n1−x∑
j=0

n2−y∑
ℓ=0

∞∑
h=0

A jℓ(h)ρr+x+ j+α1+α1h−1dρ

+
∫ ∞

1

n1−x∑
j=0

n2−y∑
ℓ=0

∞∑
h=0

B jℓ(h)ρr−(y+ℓ+α2+α2h+1)dρ
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□

4. Example

In this section we illustrate the theory through an illustrative example, consider the following 2×2
contingency table, considering either the data or the probabilities, that is

Group Response
Yes No

Treat. 1 2 18
Treat. 2 3 8

=⇒
Group Response

Yes No
Treat. 1 θ1 1−θ1

Treat. 2 θ2 1−θ2

Here θ1 = P (Response = Yes|Treat.1) and θ2 = P (Response = Yes|Treat.2) are the parameters that
will be used to estimate the risk ratio. We apply Model (4), noting that n1 = 20, x = 2, n2 = 11 and
y = 3.

It follows that the unnormalized marginal posterior moment of order r of θi (i = 1,2) is
given by

IDi (r ) =αβΓ(β)Γ(ni −Di +1) H 1 1
2 2

[
1

∣∣∣∣ (1− (r +Di +α),α), (β,1)
(0,1), (−(r +ni +α),α)

]
, (16)

and the corresponding computable expression is given by

IDi (r ) =αβΓ(β)Γ(n −Di +1)
∞∑

h=0

(−1)hΓ(r +Di +α(h +1))

h!Γ(r +n +α(h +1)+1)Γ(β−h)
, (17)

where D1 = x, D2 = y and α > 1 and β > 0 are the hyperparameters of the Kumaraswamy
distribution. We define the same prior distribution θi ∼ Kum(α = 1.1,β = 1.1) (i = 1,2), which
are flat (nearly uniform) prior distributions.

As the results, we provide comparisons of the posterior quantities obtained from MCMC
algorithm (OpenBugs package with 10,000 cycles and 8,001 burned in) with the exact form
equivalents. In Table 1, one can notice that the posterior quantities of the posterior expectation,
variance, cumulative distribution are similar in the two methods. Notice that the cumulative
posterior distribution can be used to obtain credible intervals. According to (2), the posterior
density of ρ assumes different expression for 0 < ρ ≤ 1 and ρ > 1, thus we separate the MCMC
simulated values according to these intervals. Note that the comparison between exact and
approximated densities in Figure 1 shows some similarities, however our result is exact.

Table 1. Comparison of the exact posterior estimates with their equivalent obtained by
MCMC (10,000, discarding 8,000)

Posterior Estimates
Quantity MCMC Exact
E[ρ|x, y] 0.5526 0.4881
Var[ρ|x, y] 0.1526 0.0739
P (ρ ≤ 0.8|x, y) 0.8120 0.8167

5. Concluding remarks

In categorical data analysis there are many measures of association to handle 2× 2 tables, the
most prominent of them are the odds ratio and risk ratio. In Bayesian approaches, the risk ratio is
commonly modeled through Beta-Binomial model, which is rather straightforward to apply, due



Jose A. A. Andrade and Pushpa N. Rathie 1069

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

p
o

s

ρ

MCMC
Exact

(a) For values of 0 < ρ ≤ 1

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
.0

0
.2

0
.4

0
.6

0
.8

p
o

s

ρ

MCMC
Exact

(b) For values of ρ > 1

Figure 1: Exact and approximated posterior density of the risk ratio ρ.
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to the conjugancy of the model. In this work, we establish results based on special functions that
bring the same facility of the conjugate models, but with the Kumaraswamy distribution.

Future work will search for some exact models involving the odds ratio, which will increase the
complexity of the model. Note that, once we have set the Binomial and prior distributions for the
proportion of favorable answers, we will have to obtain a posterior distribution for the odds ratio,
we will need to use special functions to assess the distribution of the odds ratio, this may lead to
some very complex distribution.
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