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Abstract. We give a new family of Karhunen-Loève expansions involving Hahn polynomials. This enables us
to introduce discrete analogues of Watson statistics, and a test for uniformity on Johnson’s graphs. We use the
fact that the zonal spherical functions on these graphs are Hahn polynomials. Our test is consistent against
all alternatives and locally most powerful against some alternative.

Résumé. Nous proposons un nouveau développement de Karhunen-Loève avec les polynômes de Hahn. Cela
nous permet d’introduire une analogue discrète de la statistique de Watson pour tester l’uniformité d’une
distribution sur les graphes de Johnson, dont les fontions sphériques zonales sont les polynômes de Hahn. Ce
test peut être vu comme un test de Sobolev dans le cas discret, nous en déduisons certaines de ses propriétés
asymptotiques.
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1. Introduction

The statistics of Cramér-von Mises (CVM) and Watson, denoted in the literature by W 2
n and U 2

n
respectively, remain two of the most widely used tools for testing the uniformity of a sample from
a distribution over [0,1] or the unit circle (see, e.g., [7, §4-5, in particular formulas (4.1.7), (5.4.2)
p. 27 and 36], or [6, §4.2.2-3, formulas (4.2) p. 100-101]).

Recall that in order to test uniformity on the unit circle, Watson [21] introduced U 2
n , by adapt-

ing W 2
n . The circle is a homogeneous space and the simplest example of a compact continuous
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two-point homogeneous space. The field of directional statistics deals with such sample spaces,
less conventional than the real line. The fundamental reference for an introduction to this quite
recent domain of statistics is [13]. The latter book should be supplemented by [15], which pro-
vides a detailed survey of recent advances in the field. Characteristically, no reference dealing
with data from sample spaces similar to Johnson’s graphs does occur in this survey.

Beran [1] and Giné [8] introduced a wide class of tests for uniformity on homogeneous spaces
and compact Riemaniann manifolds, but the discrete cases have received less attention than
the continuous. As a result, directional statistics dealing with discrete sample spaces, remains
a widely unexplored field.

The aim of the present paper is to contribute to bridge this gap, by building a counterpart of
Watson’s statistic, by means of Karhunen-Loève (K-L) expansions involving classical orthogonal
polynomials, so that our results can be easily extended, mutatis mutandis to other classical
discrete orthogonal polynomials. Our test for uniformity on Johnson graphs can be considered
as a Sobolev test, in the discrete case, introduced by Giné’s [8].

Our paper is organized as follows. In Section 2 we show that the two Karhunen-Loève (K-
L) expansions (3), associated with CVM and Watson’s statistics, via their definitions (2) as V-
statistics, and from which most of their properties can be derived (principal components, limiting
distribution, Bahadur efficiency), are associated with Chebyshev polynomials of the first kind.

This interpretation enables us, in Theorem 1 of Section 3, to give for kernel (18) the K-L
development (19), which is a discrete analogue, valid for Hahn polynomials, of development (3).

Hahn polynomials can be seen as the zonal spherical functions of Johnson graphs. Using this
fact, we build in Section 4 a test for uniformity on these graphs in the same way as Watson’s statis-
tic was built for testing uniformity on a circle from CVM’s statistic. Theorem 3 gives a correspon-
dence between some K-L expansions over Johnson graphs, and a one-variable Fourier series with
Hahn polynomials. Theorem 4 introduces our new statistic and gives the asymptotic distribution
under the hypothesis of uniformity. Theorem 4 also provides an alternative hypothesis under
which the new test is locally most powerful.

2. Cramér - von Mises and Watson statistics revisited

Let (T,µ) be a probability measure space and L2(T,µ) the associated Hilbert space of real, square-
integrable functions endowed with the inner product

〈 f |g 〉µ =
∫

T
f (t )g (t )dµ(t ).

By a K-L expansion (with respect to µ) of the bivariate symmetric kernel K : T ×T → R, we mean
a pointwise convergent series of the form

K (s, t ) = ∑
k≥1

µk ·
fk (s) fk (t )

ck
(s, t ∈ T ), (1)

where the sequences of functions ( fk ) and real positive numbers (µk ) and (ck ) satisfy the integral
and orthogonality relations∫

T
K (s, t ) fk (s)dµ(s) =µk fk (t ), 〈 fk | fl 〉µ = ckδk,ℓ (t ∈ T,k,ℓ≥ 1),

with the Kronecker delta, or Dirac function, defined by

δi , j = δi ( j ) =
{

0 if i ̸= j ,

1 if i = j ,
(i , j ∈Z).

Concerning these expansions and statistical applications, see [18, Chapter 5]. For general
facts about degenerate V −statistics, the reader is referred to [12, §4.3], [20, §12.3 (in particular
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Examples 12.9 and 12.13)], [17, Chapter 5]. Whereas it is not the most standard way, CVM
and Watson statistics can be defined in the form of the V-statistics (see [16, Introduction] and
references therein), computed from samples X1, . . . , Xn ∈ [0,1] and θ1, . . . ,θn ∈ [0,2π],

W 2
n = 1

n

n∑
i=1

n∑
j=1

hW (Xi , X j ), U 2
n = 1

n

n∑
i=1

n∑
j=1

hU (θi ,θ j ), (2)

where the symmetric kernels and their K-L expansions (w.r.t. the uniform distribution) are given,
for 0 ≤ t1 ≤ t2 ≤ 1 or 0 ≤ θ1,θ2 ≤ 2π, by

hW (t1, t2) = t 2
1 + (1− t2)2

2
− 1

6
=

∞∑
k=1

1

k2π2 ·2cos(kπt1)cos(kπt2), (3)

hU (θ1,θ2) = 1

4
hW

(
0,π−1d [P1(θ1),P2(θ2)]

)
(4)

=
∞∑

k=1

1

4k2π2 ·2{cos(kθ1)cos(kθ2)+ sin(kθ1)sin(kθ2)}. (5)

where d [P1(θ1),P1(θ2)] = min(|θ1 − θ2|,2π− |θ1 − θ2|) ∈ [0,π] denotes the distance between the
circle points P1 and P2 associated with angles θ1 and θ2. Therefore U 2

n does not depend on the
origin or the orientation chosen arbitrarily on the circle. In other words, this statistic is well-
defined for circular data, because its kernel is invariant under the action of O(2), the group of
isometries of the unit Euclidean circle. We will define an invariant kernel on Johnson graphs in a
similar way by (27).

Kernels hW and hU , and by extension the associated V −statistics W 2
n and U 2

n , are said to be
degenerate (w.r.t. the uniform distribution) in view of equalities∫ 1

0
hW (t1, t2)dt1 =

∫ 2π

0
hU (θ1,θ2)dθ1 = 0.

Let us express these relations in terms of Chebyshev polynomials of the first kind, whose
sequence (Tk )k≥0 is defined by Tk (cosθ) = cos(kθ). They satisfy, (see [11, §9.8.2]) for 0 ≤ k,ℓ,
the differential equation and the orthogonality relations

(σ(x)ω(x)T ′
k (x))′ =−λkω(x)Tk (x),

∫ 1

−1
Tk (x)Tℓ(x)ω(x)dx = ckδk,ℓ, (6)

with σ(x) = 1− x2, eigenvalues λk = k2 and constants ck = 1/2 for k ≥ 1, the weight function
ω(x) = π−1(1− x2)−1/2 = Ω′(x) being the arcsine probability density function with distribution
functionΩ and the associated tailΩ given by

Ω(x) =
∫ x

−1
ω(y)dy =π−1 arccos(−x) = 1−Ω(x) (−1 ≤ x ≤ 1).

It is easily checked that (3) can be rewritten, for −1 ≤ x1 ≤ x2 ≤ 1, as

π2hW (Ω(x1),Ω(x2)) =
∞∑

k=1

1

λk

Tk (x1)Tk (x2)

ck

=
∫ x1

−1

Ω(u)

σ(u)ω(u)
du +

∫ 1

x2

Ω(u)

σ(u)ω(u)
du −

∫ 1

−1

Ω(u)Ω(u)

σ(u)ω(u)
du . (7)

Now, since expressions appearing on both sides of the second equality in (7) involve functions
and constants associated with Chebyshev polynomials, having their analogues for Hahn polyno-
mials, we are in a position to state the corresponding results.
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3. K-L expansions with Hahn polynomials

Assume N is a positive integer and µ,ν ∈ (−1,∞). In the present paper, Hahn polynomi-
als, denoted by H (µ,ν,N )

k (x) for 0 ≤ k ≤ N , will be those denoted by Qk (x,α,β, N ) in [11, §9.5]
(see formulas (1.4.1) p. 5 and (9.5.1) p. 204) with α = −N − ν − 1,β = −N − µ − 1, or also
h̃(µ,ν)

k (x, N +1)/h̃(µ,ν)
k (0, N +1) in [14] (see the first equality p. 53 and Table 2.4 p. 54), so that

H (µ,ν,,N )
k (x) =

k∑
j=0

(−k) j (−2N −µ−ν+k −1) j (−x) j

(−N −ν) j (−N ) j j !
(0 ≤ k ≤ N ) (8)

where the Pochhammer symbol (a)k is defined to be

(a)0 = 1, (a)k = a(a +1) · · · (a +k −1) (k = 1,2,3, . . . ).

Following [9, (6.31) p. 259], consider the hypergeometric probability mass function (p.m.f.),
supported by the set �0, N� = {0,1, . . . , N }, given by

ω(µ,ν,N )(i ) =
{(N+µ

N−i

)(N+ν
i

)/(2N+µ+ν
N

)
, for i ∈ {0,1, . . . , N },

0 for i ∈Z\ {0,1, . . . , N }.
(9)

The associated cumulative distribution function (c.d.f.) and its tail are given by

Ω(µ,ν,N )(i ) := ∑
j≤i

ω(µ,ν,N )( j ) = 1−Ω(µ,ν,N )
(i ) (i ∈Z). (10)

Hahn polynomials satisfy, for 0 ≤ k,ℓ≤ N , the orthogonality relations

N∑
i=0

(
N +µ
N − i

)(
N +ν

i

)
H (µ,ν,N )

k (i )H (µ,ν,N )
ℓ

(i ) = δk,ℓd (µ,ν,N )
k , (11)

d (µ,ν,N )
k = (2N +µ+ν+1−k)!(N +µ)!(N +ν−k)!(N −k)!k !

(2N +µ+ν+1−2k)(N +µ+ν−k)!(N +ν)!(N +µ−k)!N !2
. (12)

The latter formula is most of the time given with parameters α,β, so that we shall prove ours, for
µ,ν, at the beginning of Section 5, with a reminder of some notations for factorials and binomial
coefficients with non integer parameters.

Hahn polynomials also satisfy the discrete analogue of (6) in the form of the difference
equations

L (µ,ν,N )H (µ,ν,N )
k :=∆[σ(µ,ν)ω(µ,ν,N )∇H (µ,ν,N )

k ] =−λ(µ,ν,N )
k ω(µ,ν,N )H (µ,ν,N )

k , (13)

for 0 ≤ k ≤ N , with

λ
(µ,ν,N )
k = k(2N +µ+ν−k +1), σ(µ,ν)(i ) = i (i +µ) (0 ≤ i ,k ≤ N ) (14)

(see [14, (2.1.18) p. 21]), and where for any function f : Z→ R, the forward and backward shift
operators are defined by

∆ f (i ) = f (i +1)− f (i ), ∇ f (i ) = f (i )− f (i −1) =∆ f (i −1) (i ∈Z).

In order to avoid problems at the endpoints 0 and N when dealing with difference operators,
any function f : �0, N�→R (including Hahn polynomials) will be identified with its extension toZ
obtained by setting f (n) = 0 for n ∉ �0, N�. Note for such a function f the fundamental property,
valid for k = 0, . . . , N ,

L (µ,ν,N ) f =−λ(µ,ν,N )
k ω(µ,ν,N ) f ⇐⇒∃ c ∈R, f = cH (µ,ν,N )

k . (15)

Let us introduce the scalar product

〈 f |g 〉ω =
N∑

i=0
f (i )g (i )ω(µ,ν,N )(i ). (16)
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In this setting, noticing that d (µ,ν,N )
0 = (2N+µ+ν

N

)
, the orthogonality relations (11) take the form

〈H (µ,ν,N )
k |H (µ,ν,N )

ℓ
〉
ω
=

d (µ,ν,N )
k

d (µ,ν,N )
0

δk,ℓ (0 ≤ k,ℓ≤ N ). (17)

Finally, by analogy with (7), consider the kernel

h(µ,ν,N )(i , j ) :=
i∑

ℓ=1

Ω(µ,ν,N )(ℓ−1)

σ(ν)(ℓ)ω(µ,ν,N )(ℓ)
+

N∑
ℓ= j+1

Ω
(µ,ν,N )

(ℓ−1)

σ(ν)(ℓ)ω(µ,ν,N )(ℓ)

−
N∑
ℓ=1

Ω(µ,ν,N )(ℓ−1)Ω
(µ,ν,N )

(ℓ−1)

σ(ν)(ℓ)ω(µ,ν,N )(ℓ)
, (18)

The discrete analogue of (7) is given by

Theorem 1. The K-L expansion

h(µ,ν,N )(i , j ) =
N∑

k=1

1

λ
(µ,ν,N )
k

· d (µ,ν,N )
0

d (µ,ν,N )
k

H (µ,ν,N )
k (i ) H (µ,ν,N )

k ( j ) (19)

holds, for 0 ≤ i , j ≤ N , with respect to the p.m.f. ω(µ,ν,N ).

Proof. From Lemma 7, Lemma 8, and (15) with k = 0, we infer that given j , the two functions
of the variable i appearing on the two sides of the equal sign in (19) are equal up to an additive
constant. The latter is zero in view of Lemma 5, and the equalities

〈H (µ,ν,N )
k |H (µ,ν,N )

0 〉
ω
= 0 (1 ≤ k ≤ N ). □

4. A Sobolev test for uniformity on Johnson’s graph

Let us introduce some notations and basic facts about Johnson’s graphs. These graphs provide
an example of distance-transitive graphs, discrete analogues of the continuous compact two-
point homogeneous (also called rank-one symmetric) spaces. In [4, see §4.1.F p. 136-138 for the
definition of distance transitive graphs and §9.1 p. 255-261 about Johnson graphs]; we will also
use [19, II.3]. In Section 5, our Lemma 9 will restate and give some elements of proof for the
spectrum features (22).

Assume S is a finite set with cardinality m ≥ 2N . The graph of Johnson Γ= J (m, N ) has vertex
set, denoted by V = V (m, N ), the collection of subsets of S whose cardinality is N . The volume,
or size of the graph, is therefore |V (m, N )| = (m

N

)
. Two vertices v1, v2 are adjacent if v1 ∩ v2 has

cardinality N −1. The distance between two vertices v1, v2 is d(v1, v2) = m−|v1∩v2| and can take
any value in �0, N� ; consequently J (m, N ) has diameter N . The volume of any sphere with radius
i is

|Sm,N (i )| =
(

N

N − i

)(
m −N

i

)
= |V (m, N )|ω(0,m−2N ,N )(i ) (0 ≤ i ≤ N ). (20)

Johnson’s graph is r -regular with r = |Sm,N (1)| = N (m −N ). If A denotes the adjacency matrix of
an r -regular graph, then A has a decreasing sequence of, say s, distinct eigenvalues denoted by
(λ′

k )0≤k≤s−1, λ′
k having multiplicity mk . The sequence (λ′

k ,mk )0≤k≤s−1 is the ordinary spectrum
of Γ (see [2, Definition 2.2], [5, p. 23]).

The combinatorial Laplacian matrix (also called Kirchhoff matrix in [3, p. 54], admittance
matrix in [5, p. 27]) of Γ is r I−A, (I being the identity matrix of size the same as A) with eigenvalues
given by the increasing sequence

λk = r −λ′
k (0 ≤ k ≤ s −1) (21)
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and the same multiplicities (see [3, p. 268], [5, (1.33′) p. 30]). The sequence (λk ,mk )0≤k≤s−1

is the Laplacian spectrum of the graph. For a connected graph, λ0 = 0 has multiplicity one,
the corresponding eigenspace E0 consisting of all constant functions. All other eigenvalues are
therefore positive.

Johnson graph J (m, N ) has s = N + 1 distinct eigenvalues and the Laplacian spectrum is
associated with the eigenvalues of Hahn polynomials via relations

(λk ,mk )0≤k≤N = (λ(0,m−2N ,N )
k ,dimE (m,N )

k )0≤k≤N (22)

=
(

k(m −k +1),

(
m

k

)
−

(
m

k −1

))
0≤k≤N

(23)

where E (m,N )
k denotes the eigenspace associated with λk =λ(0,m−2N ,N )

k .
Let us now, using the framework of [8] in the discrete case, introduce the following notations.

Let V1, . . . ,Vn be a sample of vertices drawn from a distribution over V . The uniform distribution
assigns the measure |V |−1 to every vertex v ∈ V .

Assume that for 0 ≤ k ≤ s −1, {gk,ℓ : 1 ≤ ℓ≤ dimE (m,N )
k } is an orthonormal basis of E (m,N )

k , thus
providing an orthonormal basis of L2(J (m, N )) with respect to the scalar product

〈 f |g 〉 = 1

|V |
∑

v∈V

f (v)g (v).

Given the positive real numbersα1, . . . ,αs−1, a consistent, invariant Sobolev test for uniformity,
is provided by the degenerate V -statistic defined by

Tn({αk }) = 1

n

n∑
i=1

n∑
j=1

h(Vi ,V j ), h(v1, v2) =
s−1∑
k=1

α2
ℓ


dimE (m,N )

k∑
ℓ=1

gk,ℓ(v1)gk,ℓ(v2)


(see Theorem 4.4, formula (2.7), (5.5) in [8]), the null hypothesis of uniformity being rejected for
large values of Tn({αk }).

Recall that the function f̃ : V → R is called zonal spherical (with respect to v ∈ V ) if f̃ is an
eigenfunction of the Laplacian and can be written as f̃ (w) = f (d [v, w]) for some one-variable
function f : �0, N�→R. The function f is also referred to as a zonal spherical function, giving rise
to f̃ after the choice of any arbitrary v ∈ V . Following [8, (5.1)], consider the functions defined,
for 0 ≤ k ≤ N , by

f (m,N )
k (i ) = (dimE (m,N )

k )1/2H (0,m−2N ,N )
k (i ) (0 ≤ i ≤ N ). (24)

Proposition 2. Assume that for 0 ≤ k ≤ s −1,
{

gk,ℓ : 1 ≤ ℓ≤ dimE (m,N )
k

}
is an orthonormal base of

E (m,N )
k . Hahn polynomials satisfy

1

|V (m, N )|
N∑

i=0
H (0,m−2N ,N )

k (i )H (0,m−2N ,N )
ℓ

(i )|S(m,N )(i )| = δk,l

dimE (m,N )
k

, (25)

and for functions defined by (24) satisfy, for 0 ≤ k,ℓ≤ N , Giné’s addition formula

dimE (m,N )
k∑

ℓ=1
gk,ℓ(v1)gk,ℓ(v2) = (dimE (m,N )

k )1/2 f (m,N )
k (i ) (26)

holds, whenever d(v1, v2) = i , for v1, v2 vertices of J (m, N ).

Proof. In view of (17), (20) and relation (51) from Lemma 9 of Section 5, (25) is a restatement
of (11). Equality in (26) is the discrete version of Giné’s addition formula ([8, Theorem 3.2]) for the
following reason. From (4) in [10, §13.1.5, p. 492], we can assert, due to (25), that H (0,m−2N ,N )

k (i )

is the k−th zonal spherical function of our graph, normalized by H (0,m−2N ,N )
k (0) = 1. Then we

notice that (a) in Theorem 3.2 of [8] agrees with our normalization f (m,N )
k (0) = (dimE (m,N )

k )1/2, in
view of definition (24). □
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As a corollary of this proposition we obtain

Theorem 3. Assumeα1, . . . ,αN ∈R and let v1, v2 be two vertices of the graph J (m, N ). The equality

N∑
k=1

α2
k ·

dimE (m,N )
k∑

ℓ=1
gk,ℓ(v1)gk,ℓ(v2)

=
N∑

k=1
α2

k ·
d (0,m−2N ,N )

0 H (0,m−2N ,,N )
k (d [v1, v2])

d (0,m−2N ,N )
k

holds. In particular

H (m,N )(v1, v2) :=
N∑

k=1

 1

k(m −k +1)
·

dimE (m,N )
k∑

ℓ=1
gk,ℓ(v1)gk,ℓ(v2)

 (27)

= h(0,m−2N ,N )(0,d [v1, v2]) (28)

Proof. The first equality is a direct consequence of (26) and (51). Then the particular case
α2

k = 1/λ(0,m−2N ,N )
k for 1 ≤ k ≤ N , in view of (19), yields (27). □

A kernel associated with H (m,N ) for statistical purposes in Giné’s framework (see [8, (5.3)′–
(5.4)′]) is

G (m,N )(v1, v2) :=
N∑

k=1

1p
k(m −k +1)


dimE (m,N )

k∑
ℓ=1

gk,ℓ(v1)gk,ℓ(v2)

 . (29)

We will denote by ∥G (m,N )∥∞ the number maxv2 G (m,N )(v1, v2), which is independent upon v1,
since our graph is homogeneous.

If d is a positive integer let χ(d) denote a chi-square random variable with d degrees of
freedom. The following result combines standard properties of degenerate V −statistics with [8,
Theorem 5.3].

Theorem 4. Let J (m, N ) be a Johnson graph, with notations (22) for the Laplacian spectrum and
definitions (18), (27). Let V1,V2, . . . be a sequence of vertices from the uniform distribution over
J (m, N ). Giné’s statistic

Tn

({√
λ(0,m−2N ,N )

k

})
= 1

n

n∑
i=1

n∑
j=1

H (m,N )(Vi ,V j ) = 1

n

n∑
i=1

n∑
j=1

h(0,m−2N ,N )(0,d [Vi ,V j ]) (30)

converges in law toward the random variable

N∑
k=1

χk (dimE (m,N )
k )

λ(0,m−2N ,N )
k

where the random variables χk (dimE (m,N )
k ), 1 ≤ k ≤ N are independent.

Furthermore, the test based on the rejection of uniformity for large values of Tn is most powerful
invariant except for terms of order O(α3), against the alternative p.m.f.

w ∈ V 7→ 1

|V (m, N )|
(
1+αG (m,N )(v, w)

∥G (m,N )∥∞
)

(0 < |α| < 1)

where v is any fixed vertex of J (m, N ).

The lack of data or models from real-life, associated with Johnson graphs, deprives us from any
privileged alternative distribution, under which the power of our new test for uniformity should
be discussed through simulations. Therefore numerical simulations involving some specific
alternatives will only be the object of some forthcoming papers.

To our knowledge no specific probabilistic or statistical models have been discussed in the
literature, so that we just outline directions for further research. Giné’s alternative (29) arises
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from Fourier analysis and might not be of particular interest. Other alternative distributions are
of the form

w ∈ V 7→ 1

|V (m, N )|
(
1+αH (0,m−2N )

1 (d(v, w)
)

(31)

with |α| small enough and where v is any fixed vertex of J (m, N ). They are perturbations of the
uniform distribution by a zonal spherical function associated with the first non-constant Hahn
polynomial, in other words the analogues, for J (m, N ), of the cardioid distributions for the circle
(see [13, §3.5.5]).

Other alternatives can be associated with the subgroups of the full isometry group of J (m, N )
(given, e.g., in [4, Theorem 9.1.2]). The uniform distribution being characterised by its invari-
ance with respect to the full group, some proper subgroup may determine a wider family of dis-
tributions, in the same way as, for instance, on the Euclidean sphere, rotations about a given axis
determine a family of rotationally invariant distributions.

All these alternatives arise from the so-called transformation models, see [13, 3.5.1], and
references therein about this topic.

5. Useful technical results

Throughout this section we will sometimes drop the superscripts and write, e.g. λk instead of
λ

(µ,ν,N )
k .

Following [9, §1.1] and [11, §1.3], we use the generalized factorial and binomial coefficients
defined by

r ! = Γ(r +1),

(
r

k

)
= (−1)k (−r )k

k !
(r >−1,k ∈N),

where Γ is the gamma function, and set(
−r

k

)
= (−1)k

(
r +k −1

k

)
, (r ≥ 1,k ∈N).

Note the identity

(−r )k = (−1)k r !

(r −k)!
(r ≥ k)

The traditional orthogonality relation for Hahn polynomials given by [11, §9.5], reads
N∑

i=0

(
α+ i

i

)(
β+N − i

N − i

)
Qk (i ;α,β, N )Qℓ(i ;α,β, N ) = (−1)k (k +α+β+1)N+1(β+1)k k !

(2k +α+β+1)(α+1)k (−N )k
=: d ′

k (32)

With parameters ν=−α−N −1,µ=−β−N −1, the above identities give(
α+k

k

)(
β+N −k

N −k

)
=

(
−N −ν−1+k

k

)(
−N −µ−1+N −k

N −k

)
= (−1)k

(
N +ν

k

)
(−1)N−k

(
µ+N

N −k

)
(33)

On the other hand,

(k +α+β+1)N+1 = (k −2N −µ−ν−1)N+1 = (−1)N+1 (2N +µ+ν+1−k)!

(N +µ+ν−k)!
, (34)

(β+1)k = (−N −µ)k = (−1)k (N +µ)!

(N +µ−k !)
, (α+1)k = (−N −ν)k = (−1)k (N +ν)!

(N +ν−k)!
, (35)

(−N )k = (−1)k N !

(N −k)!
, (2k +α+β+1) =−(2N +µ+ν+1−2k), (36)

so that

d ′
k = (−1)N (2N +µ+ν+1−k)!(N +µ)!(N +ν−k)!(N −k)!k !

(2N +µ+ν+1−2k)(N +µ+ν−k)!(N +ν)!(N +µ−k)!N !2
,

and (11) readily follows.
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Consider the three-variable kernel, defined over �0, N�3 by

h̃(µ,ν,N )(i , j , z) = 1{i≤z−1} −Ω(µ,ν,N )(z −1)

σ(ν)(z)ω(µ,ν,N )(z)2
· 1{ j≤z−1} −Ω(µ,ν,N )(z −1)

σ(ν)(z)ω(µ,ν,N )(z)2
(z = 1, . . . , N ), (37)

h̃(µ,ν,N )(i , j ,0) = 0, (38)

and h̃(µ,ν,N )(i , j , z) = 0 for i , j or z belonging to Z \ �0, N�. Throughout this subsection, I and Z
will denote two independent random variables with p.m.f. ω(µ,ν,N ).

Elementary computations give, for 0 ≤ i ≤ j ≤ N ,

EZ
[
h̃(i , j , Z )

]= i∑
ℓ=1

Ω(ℓ−1)2

σ(ℓ)ω(ℓ)
−

j∑
ℓ=i+1

Ω(ℓ−1)Ω(ℓ−1)

σ(ℓ)ω(ℓ)
+

N∑
ℓ= j+1

Ω(ℓ−1)2

σ(ℓ)ω(ℓ)

=
i∑

ℓ=1

Ω(ℓ−1)

σ(ℓ)ω(ℓ)
+

N∑
ℓ= j+1

Ω(ℓ−1)

σ(ℓ)ω(ℓ)
−

N∑
ℓ=1

Ω(ℓ−1)Ω(ℓ−1)

σ(ℓ)ω(ℓ)
= h(i , j ) (39)

(for the second equality use relations Ω2 +ΩΩ = Ω and Ω
2 +ΩΩ = Ω). Then from E I [1{I≤z−1} −

Ω(z −1)] = 0, we infer relations E I [h̃(I , j , z)] = 0 for every j , z ∈Z, and EZ {E I [h̃(I , j , Z )]} = 0. Then
by the discrete Fubini theorem we obtain E I {EZ [h̃(I , j , Z )]} = 0, which means E I

[
h(I , j )

]= 0. We
have proved

Lemma 5. The kernel (i , j ) 7→ h(µ,ν,N )(i , j ) is degenerate with respect to ω(µ,ν,N ). In other words

∀ j ∈ {0,1, . . . , N } :
N∑

i=0
h(µ,ν,N )(i , j )ω(µ,ν,N )(i ) = 0.

In view of (17), an expansion of Dirac distribution is given by the dual relations

ω(µ,ν,N )( · )
N∑

k=0

d (µ,ν,N )
0 H (µ,ν,N )

k ( · )H (µ,ν,N )
k ( j )

d (µ,ν,N )
k

= δ j ( · ) (0 ≤ j ≤ N ) (40)

The fact that H (µ,ν,N )
0 = 1 then implies

Lemma 6. Assume 0 ≤ j ≤ N . Then

ω(µ,ν,N )( · )
N∑

k=1

d (µ,ν,N )
0 H (µ,ν,N )

k ( · )H (µ,ν,N )
k ( j )

d (µ,ν,N )
k

= δ j ( · )−ω(µ,ν,N )( · ). (41)

By linearity and in view of (13), we obtain as a corollary

Lemma 7. Assume 0 ≤ j ≤ N . Then

L (µ,ν,N )

{
N∑

k=1

d (µ,ν,N )
0 H (µ,ν,N )

k ( · )H (µ,ν,N )
k ( j )

λ
(µ,ν,N )
k d (µ,ν,N )

k

}
=ω(µ,ν,N )( · )−δ j ( · ) (42)

Lemma 8. Assume 0 ≤ j ≤ N . Then

L (µ,ν,N )[h(µ,ν,N )(·, j )
]=ω(µ,ν,N )( · )−δ j ( · ). (43)

Proof. The difference operators acting on the variable i , we obtain successively

∇{1{i≤z−1} −Ω(z −1)} = 1{i≤z−1} −1{i−1≤z−1} =−1{i=z} (i , z ∈Z), (44)

∇h̃(i , j , z) =−1{i=z} ·
{1{ j≤z−1} −Ω(z −1)}

σ(z)ω(z)2 (i , z ∈ �1, N�), (45)

∇h(i , j ) =∇{EZ h̃(i , j , Z )} = EZ {∇h̃(i , j , Z )} (46)

=−ω(i ) · {1{ j≤i−1} −Ω(i −1)}

σ(i )ω(i )2 (i ∈ �1, N�), (47)

σ(i )ω(i )∇h(i , j ) =Ω(i −1)−1{ j≤i−1} (i ∈ �1, N�). (48)
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The latter is also true for i ≤ 0 or i > N (both sides being equal to zero), so that we may write, for
i ∈Z,

∆[σ(i )ω(i )∇h(i , j )] =∆[Ω(i −1)−1{ j≤i−1}] =ω(i )−δ j (i ), (49)

and the result is proved. □

Lemma 9. The graph J (m, N ) has eigenvalues

λ(0,m−2N ,N )
k = k(m −k +1) (0 ≤ k ≤ N ) (50)

with multiplicities

dimE (m,N )
k =

(
m

k

)
−

(
m

k −1

)
= m!(m −2k +1)

k !(m −k +1)!
= d (0,m−2N )

0

d (0,m−2N )
k

. (51)

Proof. Let us use Theorem 9.1.2 (with n = m,e = N ) in [4, p. 255], or [19, §II.3 p. 431] (with v = m
and n = N ). The eigenvalues of the adjacency matrix of the graph are λ′

k = (N −k)(m−N −k)−k,

0 ≤ k ≤ N , and (50) follows from (21) with r = N (m − N ) and (14). For the value of dimE (m,N )
k ,

see the last equality p. 431 in [19] and the last equality in [4, Theorem 9.1.2]. The second equality
in (51) is simple calculus ; for the third, use (11) yielding,

d (0,m−2N ,N )
k = (m −k +1)!k !

(m −2k +1)(m −N )!N !
, d (0,m−2N ,N )

0 = m!

(m −N )!N !
. (52)

□
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