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Abstract. We give a correct proof to the fact that all rational points on the curve

y2 = (x2 +1)(x2 +3)(x2 +7)

are ±∞ and (±1, ±8). This corrects previous works of Cohen [3] and Duquesne [4, 5].
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1. Introduction

The goal of this paper is to prove the following theorems

Theorem 1. All rational points on the curve

C1 : y2 = (x2 +1)(x2 +3)(x2 +7) (1)

are ±∞ and (±1, ±8).

The available proofs of Theorems 1 in [3] and [4] are unfortunately incorrect. The curve (1)
appeared in the work of Flynn and Wetherell [6]. However, Flynn and Wetherell also pointed out
that their method failed in determining all rational points on the curve (1). Duquesne later gave
an incorrect proof of Theorem 1 in his thesis [4, pp. 64–69]. Duquesne also reported Theorem 1
in [5, Theorem 4] and refered to his thesis for the proof. Furthermore, Duquesne’s proof was
reproduced in Cohen’s book [3, Theorem 13.3.10, pp. 459–462]. Duquesne argued as the following:
sinceQ(i ) is a unique factorization domain and

(x + i )(x2 +3)(x − i )(x2 +7) = y2,

it follows that {
αy2

1 = (x + i )(x2 +3),

αy2
2 = (x − i )(x2 +7),

whereα can be taken as a divisor of the resultant of (x+i )(x2+3) and (x−i )(x2+7). The problem is
that polynomials (x+i )(x2+3) and (x−i )(x2+7) have odd (three) degrees and so the denominator
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of x needs to be considered. Specifically, write x = X /Z , where X , Z ∈Z and gcd(X , Z ) = 1, so (1)
takes the form

Y 2 = (X 2 +Z 2)(X 2 +3Z 2)(X 2 +7Z 2).

Certainly, {
βY 2

1 = (X 2 +3Z 2)(X + i Z ),

βY 2
2 = (X 2 +7Z 2)(X − i Z ),

(2)

where β ∈Q(i ). Now

ResultantX ((X 2 +3Z 2)(X + i Z ), (X 2 +7Z 2)(X − i Z )) =−27 ·3 · i ·Z 9,

so that βmay be taken as a squarefree divisor of 2 ·3 ·Z in Z[i ]. Certainly gcd(β, Z ) = 1, otherwise
gcd(X , Z ) > 1, so β|2 ·3. Just as for α. However, the system (2) on dividing by Z 3 corresponds to

β

Z
· y2

1 = (x2 +3)(x + i ),

β

Z
· y2

2 = (x2 +7)(x − i ),

so that the original α has to depend on (the square-free part of) Z .
For a specific example, consider the curve

y2 = (x2 +1)(x2 +15)(x2 +18),

where the resultant of (x + i )(x2 +15) and (x − i )(x2 +18) equals −22 ·32 ·7 ·17i . The curve has a
rational point with x = 3/5, at which point

(x + i )(x2 +15) = (1− i )15(4+ i ) · 3

125
≡ (1− i )(4+ i ) ·3 ·5 (mod Z[i ]2).

The resultant technique will work when applied to polynomials of even degree.
In the next sections, we will prove Theorem 1. The main tools are the elliptic curve Chabauty

method in combination with Bruin and Stoll’s fake-2 Selmer set [2], which have been imple-
mented in MAGMA [1]. See Stoll [7, 8] for concrete examples. The MAGMA codes for the com-
putation of the 2-fake Selmer sets for each curve C1 and C2 are given. The MAGMA codes for the
elliptic curve Chabauty routine are available at https://www.overleaf.com/read/mgsfpypvvbrb

2. A proof of Theorem 1

Step 1. We compute the fake-2 Selmer set Sel(2)
fake(C1):

MAGMA codes:

P<x> := PolynomialRing ( Rationals ( ) ) ;

C1 := HyperellipticCurve ( ( x ^2+1)*( x ^2+3)*( x ^2+7)) ;

Sel , mSel := TwoCoverDescent (C1 ) ;

# Sel ;

A<th> := Domain( mSel ) ;

Sel eq { mSel ( x0 − th ) : x0 in

{ th +1 ,1 , −1}} ;

Output:

3

true

https://www.overleaf.com/read/mgsfpypvvbrb
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The last line shows that for every rational point (x, y) ∈C (Q), there exists a ∈Q such that

x −α ∈ aQ(α)2 ∀α ∈ {i ,
p−3,

p−7}, (3)

or
x −α
1−α ∈ aQ(α)2 ∀α ∈ {i ,

p−3,
p−7}, (4)

or
x −α
−1−α ∈ aQ(α)2 ∀α ∈ {i ,

p−3,
p−7}. (5)

Step 2. We use the elliptic curve Chabauty method:

Case (3). Then
E1 : z2 = (x − i )(x −p−7)(x2 +3),

where z ∈ K = Q(i ,
p−7). The curve E1 has rank 2. The elliptic curve Chabauty routine in

MAGMA [1] works at p = 5 and shows that there are no points (x, z) in E1(K ) with the rational
x-coordinate.

Case (4). Then
E2 : z2 = 2(1− i )(1−p−3)(x − i )(x −p−3)(x2 +7),

where z ∈ K = Q(i ,
p−3). The curve E2 has rank 2. The elliptic curve Chabauty routine works at

p = 5 with the auxiliary prime 13, and shows that every point (x, z) ∈ E2(K ) with x ∈ Q satisfies
x =±1. Hence in (1), we have x =±1 and y =±8.

Case (5). By taking the complex conjugate and mapping x to −x, we have Case (4). Hence x =±1
and y =±8.
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