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On the Birman–Krein Theorem
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Abstract. It is shown that if X is a unitary operator so that a singular subspace of U is unitarily equivalent
to a singular subspace of U X (or XU ), for each unitary operator U , then X is the identity operator. In other
words, there is no nontrivial generalization of Birman–Krein Theorem that includes the preservation of a
singular spectral subspace in this context.

Résumé. On montre que si X est un opérateur unitaire tel qu’un sous-espace singulier de U est unitairement
équivalent à un sous-espace singulier de U X (ou XU ), pour chaque opérateur unitaire U , alors X est
l’opérateur d’identité. En d’autres termes, il n’y a pas de généralisation non triviale du théorème de Birman–
Krein qui inclut la préservation d’un sous-espace spectral singulier dans ce contexte.
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1. Introduction

We are interested in preservations of spectral types of unitary operators U , on a Hilbert space H ,
under multiplicative (compositions, in fact) perturbations, that is, if X is another unitary opera-
tor, the perturbation has the form

U 7→U X . (1)

This is a right perturbation, and U 7→ XU is a left perturbation. Note that both XU and U X
are again unitary operators. Some notation: we shall denote the identity operator by 1 and
T1

∼= T2 means that the linear operators T1 and T2 are unitarily equivalent; µ ⊥ ν means that
the measures µ and ν are mutually singular; T= {c ∈C | |c| = 1} is the one-dimensional torus and
the letter c will always denote an element of T.

The main question to be investigated is what kind of spectral types of (any) U are preserved
under such nontrivial perturbations X ̸= 1, and this study was motivated by the corresponding
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question, addressed by Howland [7], in the context of additive perturbations of self-adjoint op-
erators. Howland has concluded that there is no nontrivial generalization of Kato–Rosenblum
Theorem, that is, only absolutely continuous spectra (with respect to Lebesgue measure) can be
(always) preserved under some nonzero perturbation (for instance, under trace class perturba-
tions). Our main conclusion is similar and appear in Theorem 6, that is, there is no generaliza-
tion of Birman–Krein Theorem [1], so that only the absolutely continuous spectral component of
(any) U can be preserved under certain multiplicative unitary perturbation X ̸=1 (either right or
left perturbations).

Our arguments follow the general lines of [7], and do not go along with the Cayley transform
since it does not take sums of self-adjoint operators to the multiplicative form (4) of unitary ones,
and since there were some nonobvious choices in the construction here, we have found the result
interesting enough to justify publication.

As an additional motivation, it is worth mentioning that multiplicative perturbations (1) of
unitary operators naturally appear in quantum versions of time-periodic kicked systems [3, 5].
Let A be a self-adjoint operator describing certain quantum system (a free one) that, at instants
of time jτ, j ∈Z, undergoes kicked perturbations by a self-adjoint operator B ; the formal operator
describing such system is

A + B
∑
j∈Z

δ(t − jτ),

whose time evolution between two consecutive kicks (the Floquet operator) is given by [3]

e−i B e−i Aτ, (2)

that is, multiplicative perturbations (e−i B ) of unitary operators (e−i Aτ). A historically important
model [3] is the so-called kicked rotator with A = −d2/dθ2 and B = κcosθ, 0 ≤ θ < 2π, and a
real parameter κ > 0; it is expected that, for “most” periods τ > 0, the corresponding Floquet
operator (2) has pure point spectrum and a localized dynamics, specially for κ > 1 (it is a region
where classical and quantum physics would disagree), but currently, there is a mathematical
proof [2] of quantum localized dynamics only for small enough κ.

A basic general discussion of multiplicative perturbations is given in Section 2, including
a precise statement of preservation of spectral types and of our main result, whose proof is
concluded in Section 3.

2. Multiplicative perturbations

Sometimes it is convenient to write the perturbation in the form X = e i Y , with Y a bounded self-
adjoint operator, so that

X = e i Y =
∞∑

j=0

(i Y ) j

j !
=1+

∞∑
j=1

(i Y ) j

j !
=1+W, (3)

with W =∑∞
j=1 (i Y ) j / j !. In this way, we can write

U X =U (1+W ) =U +UW (4)

and if W is a trace class operator, then UW is also trace class and, by Birman–Krein Theorem, the
Lebesgue absolutely continuous subspaces of UW and U are unitarily equivalent for all U (the
same for left perturbations XU ).

An example is the case of multiplicative perturbations of rank one: given φ ∈H with ||φ|| = 1,
let Pφ be the projector operator onto the subspace Lin{φ} generated by φ, i.e.,

Pφξ=
〈
φ,ξ

〉
φ , ∀ ξ ∈H ,
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which is self-adjoint and idempotent. The corresponding perturbing unitary operator, with
“intensity” λ ∈R, is

Xλ = Xλ,φ := e iλPφ , (5)

and by writing e iλPϕ =1+W , it follows by (3) that

W ξ= (e iλ−1)Pφξ,

and the (right) perturbed operator has the action

Uλ :=U Xλ =U1+U (e iλ−1)Pφ, (6)

with U0 = U . To simplify statements, denote by µλψ the spectral measure of the pair (Uλ,ψ),
ψ ∈H , and usually one supposes that φ is cyclic for U , that is, the closure

Lin
{
U jφ | j ∈Z}=H ,

with U 0 =1. Note that ifφ is cyclic for U , then U kφ is also is cyclic for U , for all k ∈Z; furthermore,
if φ is cyclic for U , then it is also cyclic for Uλ for all λ ∈R.

A particularly important result, that will be employed ahead, is the following version, for
unitary operators, of the Aronszajn–Donoghue Theorem for self-adjoint ones (for proofs see [6,
Proposition 8.3] and [4, Proposition 9.1.14]):

Theorem 1. Let φ be cyclic for U . If λ1 −λ2 ̸= 2πn, for all n ∈ Z, then the singular parts of Uλ1

and Uλ2 are mutually singular, i.e., for all 0 ̸=ψ ∈ H , the singular parts of the spectral measures
µ
λ1
ψ and µλ2

ψ are mutually singular.

In order to discuss more general spectral subspaces, for ψ ∈ H , denote by µU
ψ the spectral

measure of the pair (U ,ψ) and, given a (nonzero) finite Borel measure µ on T, let

Hµ(U ) :=
{
ψ ∈H |µU

ψ ≪µ
}

,

which is a closed subspace of the Hilbert space, whose orthogonal complement is{
ψ ∈H |µU

ψ ⊥µ
}

.

Finally, denote by [U ]µ the restriction of U to Hµ(U ), i.e., [U ]µ :=U |Hµ(U ).

Definition 2. A unitary operator X preserves µ on the right if [U X ]µ ∼= [U ]µ, for all unitary
operators U . And X preserves µ on the left if [XU ]µ ∼= [U ]µ, for all unitary operators U .

Remark 3.

(a) The simple case X = c1 translates the spectra in T and so does not preserve measures
if c ̸= 1.

(b) As already mentioned, by Birman–Krein Theorem, if X = 1+W with trace class W , then
X preserves the Lebesgue measure ℓ on T.

(c) If ν≪µ, then

[[U ]µ]ν = [U ]ν. (7)

(d) For real t , define the translated (in T) measure

µt (·) :=µ
(
e i t ·

)
. (8)

Then

[U ]µt = e i t [U ]µ. (9)

It is enough to discuss right or left preservation of a measure, as Proposition 4 ensures. After
this proposition we will just say “X preserves µ” (as already employed above).
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Proposition 4. X preserves µ on the right if and only if X preserves µ on the left.

Proof. Let X ∗ denotes the adjoint of X . If X preservesµ on the right, then pick X ∗U (which is also
a unitary operator); by hypothesis [X ∗U X ]µ ∼= [X ∗U ]µ, and since X is unitary, [X ∗U X ]µ ∼= [U ]µ
and one obtains that [X ∗U ] ∼= [U ]µ, and so X ∗ preserves µ on the left. Now one has [U ]µ =
[X ∗XU ]µ ∼= [XU ]µ, and so X preserves µ on the left.

Similarly, one concludes the reciprocal. □

Corollary 5. X preserves µ if and only if X ∗ preserves µ.

Theorems 6 states the main result of this note.

Theorem 6. If the unitary operator X ̸=1 preserves µ, then µ≪ ℓ.

The completion of the proof of this theorem is the subject of Section 3; in the following we
present some basic and useful properties.

Proposition 7. Suppose that X preserves µ. Then:

(a) If ν≪µ, then X preserves ν.
(b) X preserves µt , for all t ∈R.
(c) If X ∼= Y , then Y preserves µ.
(d) If PE is an orthogonal reducing projection for X (projection onto the closed subspace

E ⊂H ), then PE X preserves µ on PE (H ) = E. Recall that E⊥ will also be reducing for X .
(e) If Y also preserves µ, then X Y preserves µ.

Proof. (a). [U X ]ν ∼= [[U X ]µ]ν ∼= [Uµ]ν ∼= [U ]ν.

(b). [U X ]µt = e i t [U X ]µ = [e i tU X ]µ and since e i tU is a unitary operator, we have [e i tU X ]µ ∼=
[e i tU ]µ =Uµt ; hence [U X ]µt = [U ]µt .

(c). If X ∼= Y , that is, Y =V X V ∗ for some unitary operator V , then

[U Y ]µ = [UV X V ∗]µ = [V (V ∗UV X V ∗V )V ∗]µ
∼= [V ∗UV X V ∗V ]µ = [V ∗UV X ]µ ,

and since V ∗UV is unitary and X preserves µ, one obtains

[V ∗UV X ]µ ∼= [V ∗UV ]µ ∼= [U ]µ,

that is, [U Y ]µ ∼= [U ]µ.

(d). Write H = E ⊕E⊥; then X = X |E ⊕X |E⊥ , which can be written as

X =
(

X |E 0
0 X |E⊥

)
.

Now, if Ũ and Ṽ are unitary operators acting on E and E⊥, respectively, then

U =
(
Ũ 0
0 Ṽ

)
is unitary on H . Thereby,

[U ]µ ∼= [U X ]µ =
[(

Ũ 0
0 Ṽ

)(
X |E 0

0 X |E⊥

)]
µ

=
(
[Ũ X |E ]µ 0

0 [Ṽ X |E⊥ ]µ

)
,

and since [U ]µ =
(

[Ũ ]µ 0

0 [Ṽ ]µ

)
, by equating the first components, one gets [Ũ X |E ]µ ∼= Ũµ, and so X |E

preserves µ on E = PE (H ).

(e). Indeed, if U is a unitary operator, then U X is also unitary and

[U X Y ]µ ∼= [U X ]µ ∼= [U ]µ. □
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3. Proof of Theorem 6

It is supposed that X preserves µ; the goal is to show that µ≪ ℓ. By Remark 3(a), we may suppose
that X ̸= c1. By item (c) of Proposition 7, R∗X R also preserves µ, for any unitary operator R. Pick
the operator R = Xλ from (5), with λ = π and some normalized vector φ (that will be selected
ahead), that is,

Rξ= Xπξ= ξ+ (e iπ−1)
〈
φ,ξ

〉
φ= ξ−2

〈
φ,ξ

〉
φ,

for all ξ ∈H .
By Proposition 7, items (c) and (e), and Corollary 5, the operators R∗X R and

Z := X ∗R∗X R

preserve µ as well. Explicitly, one has

R∗X Rξ=R∗X
(
ξ−2

〈
φ,ξ

〉
φ

)
=R∗ (

X ξ−2
〈
φ,ξ

〉
Xφ

)
=R∗(X ξ)−R∗ (−2

〈
φ,ξ

〉
Xφ

)
=R∗(X ξ)−2

〈
φ,ξ

〉
R∗ (

Xφ
)

=X ξ−2
〈
φ, X ξ

〉
φ−2

〈
φ,ξ

〉(
Xφ−2

〈
φ, Xφ

〉
φ

)
=X ξ+ (

4
〈
φ,ξ

〉〈
φ, Xφ

〉−2
〈
φ, X ξ

〉)
φ−2

〈
φ,ξ

〉
Xφ,

and if ψ= X ∗φ,

Zξ= ξ+ [
4
〈
φ,ξ

〉〈
φ, Xφ

〉−2
〈
φ, X ξ

〉]
ψ−2

〈
φ,ξ

〉
φ =: (1+W )ξ,

with

W ξ= [
4
〈
φ,ξ

〉〈
φ, Xφ

〉−2
〈
φ, X ξ

〉]
ψ−2

〈
φ,ξ

〉
φ .

Since X ̸= c1, one may choose φ so that the set {φ,ψ} is linearly independent and so the
operator W has rank precisely 2 (note that if X = c1, then W = 0, as expected). Let e1 and e2 be
two normalized and independent eigenvectors of W and note that the corresponding eigenvalues
do not vanish, otherwise W would have rank smaller than 2. Observe that e1 and e2 are also
eigenvectors of the unitary operator Z , hence (one may suppose that) e1 ⊥ e2. If E is the
orthogonal complement of e1, which reduces Z , it follows, by Proposition 7(d), that the operator
Z2 := Z |E also preserves µ on E , and since we now have a nonzero rank one perturbation, Z2 has
the form (5), that is,

Z2 =1+ (e iλ−1)Pe2 ,

for some λ ̸= 2πk,k ∈Z.
Finally, pick a unitary operator U̇ on E with e2 one of its cyclic vectors; hence

U̇ Z2 = U̇ +U̇ (e iλ−1)Pe2

has the form (6). Since Z2 preserves µ,

[U̇ Z2]µ ∼= [U̇ ]µ

and, by Theorem 1, if µ has a (nonzero) singular component, Z2 could not preserve µ, and one
concludes that µ is absolutely continuous with respect to Lebesgue measure.
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