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Abstract. In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q.
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establish the Riemannian counterpart of the H.-Q. Li inequality. As a byproduct, we provide a simpler proof
of the fact that the constant in H.-Q. Li inequality is strictly larger than 1.
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1. Introduction

The following equivalent characterization of the lower boundedness of the Ricci curvature is well-
known (cf. [17, 27]):

Theorem 1. On a complete Riemannian manifold M, the followings are equivalent:

(I) Ric ≥ ρ;
(II) |∇e t∆ f |2 ≤ e−2ρt e t∆(|∇ f |2), ∀ t > 0, f ∈C∞

c (M);
(III) |∇e t∆ f | ≤ e−ρt e t∆(|∇ f |), ∀ t > 0, f ∈C∞

c (M).

Here Ric denotes the Ricci curvature tensor and ρ is a real number.

For example, on Euclidean spaces we have ρ = 0 and the bounds in (II) and (III) are 1. However,
when it comes to the case of nonabelian nilpotent Lie group with a left-invariant Riemannian
metric, J. Milnor showed in [25] that there exists a direction of strictly negative Ricci curvature.
This implies the bounds in (II) and (III) of Theorem 1 have exponential growth (in t ), although we
expect these spaces are flat in some appropriate sense.

Then on the first Heisenberg group H1, using Malliavin Calculus, B. K. Driver and T. Melcher
established

|∇e t∆ f |p ≤Cp e t∆(|∇ f |p ), ∀ t > 0, f ∈C∞
c (H1) (1)

with p,Cp ∈ (1,∞) in [8], where ∇ and ∆ denote the horizontal gradient and sub-Laplacian
instead of the Riemannian counterparts. Comparing (1) with (II) of Theorem 1, we can say that
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H1 (endowed with the sub-Riemannian structure) is in some sense flat. We believe that this
kind of flatness can be justified by (or even equivalent to) some weak variant of the well-known
curvature-dimension condition, such as the measure contraction property. Recall that on the first
Heisenberg group H1 (endowed with the sub-Riemannian structure), no curvature-dimension
bounds hold but it admits the measure contraction property MCP(0,5) (cf. [15]).

After [8], H.-Q. Li first proved (1) for the remaining case p = 1 in [18], which implies (1) for
p > 1. Such inequality is called H.-Q. Li inequality in [1], where the authors gave more proofs of
it. The corresponding generalizations to the H-type groups and nonisotropic Heisenberg groups
can be found in [10, 14, 31].

To be more precise, all the proofs depend on the precise upper and lower bound estimates of
the heat kernel and suitable upper bound of the gradient of the heat kernel, which are usually
obtained by the heat kernel asymptotics thanks to the explicit formula of the heat kernel given
by oscillatory integral. See for example [9, 19, 20, 22] for related results. Although some general
approach to obtain the heat kernel asymptotics on step-two Carnot groups is given in [23], to get
a suitable expression of the heat kernel bound is still a challenging problem due to the complexity
of the geometry of the underlying group.

The main aim of this work is to establish H.-Q. Li inequality without using the bounds of the
heat kernel. More precisely, we show that H.-Q. Li inequality is preserved under tensorization,
some suitable group epimorphism, and the central sum introduced in [21, Section 8.1]. This
approach is motivated by the work [13] in which their target is to establish the logarithmic
Sobolev inequality w.r.t. the heat kernel measure on nonisotropic Heisenberg groups. After that,
we can construct a lot of concrete examples on which the H.-Q. Li inequality holds but the heat
kernel asymptotics have not been obtained or are rather complicated. Moreover, we reduce the
study of H.-Q. Li inequality to the case of free step-two Carnot groups.

Another target of this work is to use H.-Q. Li inequality to improve the bound in (III) of
Theorem 1 on step-two Carnot groups endowed with the canonical left-invariant Riemannian
structure. As a byproduct, we give a simpler proof of the fact that the constant in the H.-Q. Li
inequality is strictly larger than 1.

Finally we remark that as consequences of the H.-Q. Li inequality, the logarithmic Sobolev
inequality and Poincaré inequality w.r.t. the heat kernel measure also hold. For more details and
more functional inequalities we refer to [1, Section 6] and will not go into details.

This paper is organized as follows. After recalling the background settings and notations in
Section 2, we illustrate tensorization, suitable group epimorphism, and central sum preserve the
H.-Q. Li inequality in Sections 3–5 respectively. After that, we study the counterpart of H.-Q. Li
inequality for the canonical left-invariant Riemannian structure and prove the constant in H.-Q.
Li inequality is strictly larger than 1 in Section 6. Concrete examples are provided in Section 7.

2. Preliminaries and notations

Via the exponential map, any step-two Carnot group (or step-two group, in short) G can be
identified with the direct product of Euclidean spaces Rq ×Rm , q,m ∈ N∗ = {1,2,3, . . .}, with the
group law

(x,u) · (x ′,u′) =
(

x +x ′,u +u′+ 1

2
〈Ux, x ′〉

)
,

where 〈Ux, x ′〉 := (〈U (1)x, x ′〉, . . . ,〈U (m)x, x ′〉) ∈ Rm . See for example [4, Section 3.2]. Here U =
{U (1), . . . ,U (m)} is an m-tuple of linearly independent q × q real skew-symmetric matrices and
〈·, ·〉 denotes the usual inner product on the Euclidean space. We call q and m the rank and
corank ofG respectively. We also use g := (x,u) to write an element ofG. In particular, the identity
element is denoted by e := (0,0). The left translation by g is denoted by LGg and the Haar measure
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dg coincides with the (q + m)-dimensional Lebesgue measure on G. Let U ( j ) = (U ( j )
l ,k )1≤l ,k≤q

(1 ≤ j ≤ m). The horizontal gradient and canonical sub-Laplacian are given by

∇G := (X1, . . . ,Xq ), ∆G :=
q∑

l=1
X2

l , with Xl (g ) := (dLGg )e

(
∂

∂xl

)
= ∂

∂xl
+ 1

2

m∑
j=1

(
q∑

k=1
U ( j )

l ,k xk

)
∂

∂u j

respectively. Note that ∆G is not elliptic but hypoelliptic, corresponding to the left-invariant sub-
Riemannian structure w.r.t. which the horizontal distribution is given by H := span{X1, . . . ,Xq }
and {X1, . . . ,Xq } forms an orthonormal basis at each point.

It is well-known that the heat semigroup (e t∆G )t>0 has a convolution kernel pGt , in the sense
that

(e t∆G f )(g ) = f ∗pGt (g ) =
∫
G

f (g ′) pGt ((g ′)−1 · g )dg ′ for suitable function f .

By H.-Q. Li inequality, we mean the following inequality for the gradient of the heat semigroup:

|∇Ge t∆G f |(g ) ≤Ce t∆G (|∇G f |)(g ), ∀ t > 0, g ∈G, f ∈C∞
c (G),

which is denoted by HQLI(G,C ) in this work. Here and in the following, | · | := p〈· , · 〉 always
denotes the Euclidean norm.

3. The direct product

We begin with the simple tensorization property of H.-Q. Li inequality. Assume we have two
Carnot groups G ∼= Rq ×Rm and G′ ∼= Rq ′ ×Rm′

. Then we consider their direct product G×G′.
In this work we adopt the convention that we write an element of G×G′ as (g , g ′) with g ∈ G and
g ′ ∈G′ instead of an element of Rq+q ′ ×Rm+m′

. It is easy to see

∇G×G′ = (∇G,∇G′ ), ∆G×G′ =∆G+∆G′ ,

and the following theorem holds.

Theorem 2. In the setting of step-two groups, if we have HQLI(G,C ) and HQLI(G′,C ′), then
HQLI(G×G′,max(C ,C ′)) holds.

Proof. For every (g , g ′) ∈G×G′, (α,β) ∈Rq ×Rq ′
with |α|2 +|β|2 = 1, t > 0, and f ∈C∞

c (G×G′), we
have

〈∇G×G′ (e t∆G×G′ f )(g , g ′), (α,β)〉 = 〈∇G(e t∆G′ e t∆G f )(g , g ′),α〉+〈∇G′ (e t∆Ge t∆G′ f )(g , g ′),β〉
= 〈e t∆G′ [∇G(e t∆G f )](g , g ′),α〉+〈e t∆G [∇G′ (e t∆G′ f )](g , g ′),β〉
≤Ce t∆G′ e t∆G (|α||∇G f |)(g , g ′)+C ′e t∆Ge t∆G′ (|β||∇G′ f |)(g , g ′)

≤ max(C ,C ′)e t∆G×G′ (|∇G×G′ f |)(g , g ′).

Taking the supremum w.r.t. (α,β) we prove the theorem. □

4. The group epimorphism

Before proceeding further, we digress a little bit to consider the situation that G ∼= Rq × Rm ,
G′ ∼= Rq ×Rm′

(or equivalently they have the same rank), and there exists a group epimorphism
between G and G′ of the following type:

πB (x,u) := (x,Bu), (2)

where B is a surjective linear map betweenRm andRm′
. This kind of assumption is closely related

to the Rothschild–Stein lifting theorem. See Subsection 7.5 for detailed explanation. The idea of
this section comes from [13] and we generalize it to a slightly more general setting. To be more
precise, we first establish the following lemma.
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Lemma 3. Assume there exists a group epimorphism between G and G′ of type (2). Then we have

∇G( f ◦πB ) = (∇G′ f )◦πB , ∆G( f ◦πB ) = (∆G′ f )◦πB , ∀ f ∈C∞
c (G′), (3)

(πB )#(pGt (g )dg ) = pG
′

t (g ′)dg ′, where # denotes the measure push-forward, (4)

e t∆G ( f ◦πB ) = (e t∆G′ f )◦πB , ∀ t > 0, f ∈C∞
c (G′). (5)

Proof. In the proof we use g ′ := (y, v) ∈ Rq × Rm′
to denote an element in G′. Suppose the

horizontal gradient and canonical sub-Laplacian on G′ are given by

∇G′ := (Y1, . . . ,Yq ), ∆G′ :=
q∑

l=1
Y2

l , with Yl (g ′) := (dLG
′

g ′ )e

(
∂

∂yl

)
respectively.

Recalling that πB is a group homomorphism, we have

LG
′

πB (g ) ◦πB =πB ◦LGg , ∀ g ∈G.

Taking differential at the identity e, we obtain

(dLG
′

πB (g ))e ◦ (dπB )e = (dπB )g ◦ (dLGg )e ,

which implies

(dπB )g ◦(Xl (g )) = (dπB )g ◦(dLGg )e

(
∂

∂xl

)
= (dLG

′
πB (g ))e ◦(dπB )e

(
∂

∂xl

)
= (dLG

′
πB (g ))e

(
∂

∂yl

)
= Yl (πB (g )).

Applying the last equation to the function f ∈ C∞
c (G′) we obtain (3). Now we are in a position

to prove (4). In the following we use µGt := pGt (g )dg to denote the heat kernel measure on G.
Then the second equation of (3), combining with [13, Proposition 2.6] or [7, Theorem 6.15],
yields (πB )#µ

G
t = µG

′
t . We include the theorem below for the sake of completeness. Now we are

left with (5):

e t∆G ( f ◦πB )(g ) =
∫
G

f (πB (g∗)) pGt ((g∗)−1 · g )dg∗ =
∫
G

f (πB (g · g∗))pGt (g∗)dg∗

=
∫
G

f (πB (g ) ·πB (g∗))dµGt (g∗) =
∫
G′

f (πB (g ) · g ′)dµG
′

t (g ′) = (e t∆G′ f )(πB (g )),

where we have used the fact that pGt (g ) = pGt (g−1) (see for example [12, G of Chapter I]) in
the second equality and (πB )#µ

G
t = µG

′
t in the penultimate equality. This ends the proof of

Lemma 3. □

Theorem 4 ([13, Proposition 2.6] or [7, Theorem 6.15]). The {µGt := pGt (g )dg }t>0 is the unique
family of probability measures on G such that

d

dt

∫
G

f dµGt =
∫
G
∆G f dµGt , and lim

t→0+

∫
G

f dµGt = f (e), ∀ f ∈C∞
c (G).

Remark 5. Although we only state that the H.-Q. Li inequality, as well as Lemma 3, holds for
the smooth functions with compact support, we can extend these results without difficulties to a
suitably larger class. For instance, (5) is true for all continuous functions with compact support
after an approximation process by C∞

c functions. In the following, we adopt the convention that
we have extended these results to some larger class and apply these results to functions which
may not belong to C∞

c without further explanations.

Remark 6. Equation (4) implies∫
G

f (πB (g ))pGt (g )dg =
∫
G′

f (g ′)pG
′

t (g ′)dg ′, ∀ f ∈C∞
c (G′). (6)

From the definition of πB , it is linear and thus for every g ′ ∈ G′, π−1
B (g ′) is an affine space. To be

more precise, we can split G into kerπB ⊕ (kerπB )⊥ ∼= kerπB × (kerπB )⊥, and νB := πB |(kerπB )⊥ is
an isomorphism. Thusπ−1

B (g ′) can be identified with kerπB ×{(νB )−1(g ′)}. Applying the change of
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variables formula (cf. [11, Theorem 3.11]) to the LHS of (6), and combining with the identification
above, we obtain

pG
′

t (g ′) =CπB

∫
kerπB

pGt (u, (νB )−1(g ′))du, ∀ g ′ ∈G′,

for some constant CπB > 0. This provides us with a new formula for the heat kernel and may help
to obtain the heat kernel asymptotics on G′, which generalizes the idea of [6, Section 5].

Combining Lemma 3 with HQLI(G,C ) for f ◦πB , we obtain the following theorem immediately.

Theorem 7. Assmue G and G′ are two step-two groups which have the same rank and there exists
a group epimorphism between G and G′ of type (2). If HQLI(G,C ) holds, then HQLI(G′,C ) holds
as well.

5. The central sum introduced in [21]

Recall that in [21, Section 8.1], the author gave a method to construct a new step-two group from
two step-two groups with the same corank other than the direct product, which extends the one
from two copies of H1 to H2 (the Heisenberg group in higher dimensions). Via this construction,
he showed that every step-two group can be embedded into an uncountable number of GM-
groups (a special subclass of step-two groups). Then in [24, Appendix C], some properties of this
construction are studied.

To be more precise, we first recall the construction, which is called central sum in this work.
Throughout this section we assume that G∼=Rq ×Rm , G′ ∼=Rq ′×Rm (or equivalently they have the
same corank), and the group structure of G′ is determined by V := {V (1), . . . ,V (m)}, that is, on G′

we have

(y, v) · (y ′, v ′) =
(

y + y ′, v + v ′+ 1

2
〈V y, y ′〉

)
.

Then the central sum of two step-two Carnot groups G and G′, denoted by G#G′ ∼=Rq+q ′ ×Rm ,
is defined by the group law:

((x, y),u) · ((x ′, y ′),u′) =
(
(x +x ′, y + y ′),u +u′+ 1

2
〈Ux, x ′〉+ 1

2
〈V y, y ′〉

)
.

We now show that central sum shares a similar property with the direct product for the H.-Q.
Li inequality from the results of the previous two sections.

Theorem 8. Under the circumstance of step-two groups, if HQLI(G,C ) and HQLI(G′,C ′) hold,
then HQLI(G#G′,max(C ,C ′)) also holds.

Proof. It suffices to observe that there exists a group epimorphism from G×G′ to G#G′:

((x,u), (y, v)) 7→ ((x, y),u + v).

Then Theorem 8 follows from Theorems 2 and 7. □

6. The Riemannian counterpart

On the step-two Carnot group G, we also consider the following Riemannian gradient and full-
Laplacian

∇R
G := (∇G,∇Z), ∆R

G :=∆G+∆Z, with ∇Z := (Z1, . . . ,Zm), ∆Z :=
m∑

k=1
Z2

k , Zk (g ) := ∂

∂uk

instead of ∇G and ∆G. This corresponds to the left-invariant Riemannian structure w.r.t.
which {X1, . . . ,Xq ,Z1, . . . ,Zm} forms the orthonormal basis at every point. In this case, we use
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HQLRI(G,C ) to denote the following counterpart of H.-Q. Li inequality in the Riemannian set-
ting:

|∇R
Ge t∆R

G f |(g ) ≤Ce t∆R
G (|∇R

G f |)(g ), ∀ t > 0, g ∈G, f ∈C∞
c (G).

Theorem 9. In the framework of step-two groups, if HQLI(G,C ) holds, then so does HQLRI(G,C ).

Proof. First note that ∇Z and ∆Z are nothing but the Euclidean gradient and Laplacian in the
second layer of G. They commute with each other, and also with ∇G and ∆G. As a result, we have
e t∆R

G = e t∆Ge t∆Z = e t∆Z e t∆G . This can also be justified by the expressions of the heat kernels of
(e t∆R

G )t>0 and (e t∆G )t>0 respectively. See for example [5, Section 10] for more details. Then it is
very similar to the case of the direct product. The argument used in the proof of Theorem 2,
combining with the fact that the corresponding gradient bound in the Euclidean case is 1, yields
HQLRI(G,max(C ,1)) without difficulties.

Now we are left with the proof of C > 1. We argue by contradiction. If we assume on the con-
trary that C ≤ 1, then HQLRI(G,1) holds, which implies Ric ≥ 0 by Theorem 1. But it contradicts
with [25, Theorem 2.4], which says that there exists a direction of strictly negative Ricci curva-
ture. □

From the proof above, we can deduce the following corollary easily. In other words, we provide
a different approach to prove the constant in H.-Q. Li inequality is strictly larger than 1.

Corollary 10. In the setting of step-two groups, if HQLI(G,C ) holds, then C > 1.

7. Concrete examples

7.1. The first Heisenberg groupH1 ∼=C×R

In the rest of this work we always identify C with R2 in the canonical way. Recall that the first
Heisenberg group H1 ∼= C× R is the simplest example of step-two Carnot group, which also
plays an important role in several branches of mathematics (see for example [29, 30]). The group
structure onH1 is given by

(z,u) · (z ′,u′) =
(

z + z ′,u +u′+ 1

2
Im(zz̄ ′)

)
.

In [1, 18], the authors established HQLI(H1,C0) for some constant C0 > 1. Then it follows from
Theorem 9 that HQLRI(H1,C0) is also true onH1.

7.2. The step-two group associated to quadratic CR manifoldsH(A)

In [26], the authors introduced the groupH(A) ∼=Cn ×Rm with the group multiplication:

(z,u) · (z ′,u′) =
(

z + z ′,u +u′+ 1

2

n∑
j=1

A j Im(z j z̄ ′
j )

)
with A1, . . . , An ∈ Rm (regarding as column vectors), A = (A1, . . . , An), and rankA = m. The sub-
Riemannian geometry ofH(A) is studied in [24] and the abnormal set can be very complicated on
such group, which implies the heat kernel asymptotic onH(A) can also be very involved.

To show HQLI(H(A),C0) holds with the same C0 in the first Heisenberg group case, we first
consider the case A = In . In fact, if A = In , then it is not hard to show that H(In) ∼=H1 × . . .×H1︸ ︷︷ ︸

n times

and
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it follows from Theorem 2 that HQLI(H(In),C0) holds. For general A, we construct the following
group epimorphism fromH(In) ∼=H1 × . . .×H1︸ ︷︷ ︸

n times

toH(A):

((z1,u1), . . . , (zn ,un)) 7→
(

(z1, . . . , zn),
n∑

k=1
uk Ak

)
,

which implies HQLI(H(A),C0) and HQLRI(H(A),C0) hold by Theorems 7 and 9 respectively.
Finally we remark that the case m = 1 corresponds to the higher dimensional Heisenberg groups
Hn :=H(1n) with 1n := (1, . . . ,1)1×n and the nonisotropic Heisenberg groups (cf. [3]).

7.3. H-type groups

Recall that a step-two Carnot group is a H-type group if and only if U= {U (1), . . . ,U (m)} satisfies

U (i )U ( j ) +U ( j )U (i ) =−2δi j Iq , ∀ 1 ≤ i , j ≤ m. (7)

See [16] for the original definition. On an H-type group H, HQLI(H,C∗) was established for
some constant C∗ > 1 in [10, 14], which implies HQLRI(H,C∗) by Theorem 9.

7.4. Generalized H-type groups

If Iq is replaced with some symmetric, positive definite matrix S in (7), then we call such group a
generalized H-type group. See [2] for the definition. After decomposing Rq into the eigenspaces
of S, we can construct a group epimorphism as we did in Subsection 7.2 and HQLI(G,C∗) as well
as HQLRI(G,C∗) holds on G. Details are left to the interested reader.

7.5. Rank k(k ≥ 3) step-two Carnot groups

The free step-two Carnot group with rank k, Nk,2
∼=Rk ×sok , is defined by the group law:

(x,Λ) · (x ′,Λ′) =
(

x +x ′,Λ+Λ′+ 1

2
x ∧x ′

)
,

where x∧x ′ := x(x ′)T−x ′xT (regarding x, x ′ as column vectors). Here sok denotes the linear space

of all skew-symmetric k ×k matrices, which can be identified with R
k(k−1)

2 . See [4, Section 14] for
more details about free Carnot groups.

By the well-known Rothschild–Stein lifting theorem (cf. [28] or [4, Section 17]), combining
with Theorems 7 and 9, if G has rank k and HQLI(Nk,2,Ck ) holds, then so do HQLI(G,Ck ) and
HQLRI(G,Ck ). In conclusion, we reduce the study of the H.-Q. Li inequality on step-two groups
to the one on free step-two Carnot groups.
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