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1. Introduction

In this article, all varieties are defined over the field of complex numbers C. After Mori’s proof
of the Hartshorne conjecture on ample tangent bundles [17], it has been asked to characterize
a smooth projective variety X with certain positivity of its tangent bundle TX . For example, a
conjecture proposed by Campana and Peternell asks whether the homogeneous varieties are the
only smooth Fano varieties X with nef TX , and the conjecture is settled for dimension three [3],
four [4, 8, 16] (see also [19, Corollary 4.4]), and five [10, 24]. Recently, a series of works done by
Höring, Liu, Shao [6], and Höring, Liu [5] investigates smooth Fano varieties X with big TX as
follows.

Theorem 1 ([5, 6]). Let X be a smooth Fano variety.

(1) If X has dimension 2, then TX is big if and only if (−KX )2 ≥ 5.
(2) If X has dimension 3 and Picard number 1, then TX is big if and only if (−KX )3 ≥ 40.
(3) If X has Picard number 1, and if X contains a rational curve with trivial normal bundle,

then TX is not big unless X is isomorphic to the quintic del Pezzo threefold.

The second statement is extended to the following case.

Theorem 2 ([11]). Let X be a smooth Fano variety of dimension 3 and Picard number 2. Then TX

is big if and only if (−KX )3 ≥ 34.
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These results make use of a special divisor on the projective bundle PX (TX ), called the total
dual VMRT C̆ (see [9,21]). In [6], they find a formula for C̆ , which can be written as follows in the
case where X attains a conic bundle structure X → Y .

[C̆ ] ∼ ζ+Π∗KX /Y

whereΠ :PX (TX ) → X is the projection and ζ is the tautological divisor onPX (TX ). In other words,
C̆ arises as the divisor on PX (TX ) corresponding to the natural subsheaf TX /Y → TX of rank 1.

In this article, we deal with a question on the bigness of TX in the case of the projective bundles
X =PC (E) over a smooth projective curve C . When E has rank 2, X becomes a ruled surface, and
the classification of X with big TX is a consequence of some known facts. Indeed, if E is semi-
stable, then h0(Sk TX ) is bounded above by a sum of dimensions of certain families of curves on X ,
whose bound can be obtained from a remark of [22] (see Remark 10). Otherwise, if E is unstable,
then the bigness of TX easily follows from the formula introduced above (cf. [11, Remark 2.4]).
However, when the rank of E gets larger, we cannot apply the formula because X → C is not a
conic bundle.

In the case of higher ranks, when E is unstable, we can find a rank 1 subsheaf of Sk TX instead
of TX to conclude that TX is big. Also, when E is semi-stable, by computing an upper bound of
h0(Sk TX ), we can determine the bigness of TX according to the stability of E as follows.

Main Theorem. Let C be a smooth projective curve and E be a vector bundle on C . Then the
projective bundle X =PC (E) has big tangent bundle TX if and only if E is unstable or C =P1.

The proof is divided into two parts; the case E is semi-stable (Theorem 9), and the case E is
unstable (Theorem 15). The exceptional case C =P1 is explained in Remark 11. It is worth noting
that the result is no longer true for varieties other than curves; there exist stable bundles E of
rank 2 on P2 such that one of E gives big TX whereas another choice of E gives not big TX for
X = PP2 (E) (see No. 24, 27, and 32 of Table 1 in [11]; No. 24 is the only case with non-big TX , and
see also [23]).

2. Preliminaries

Let X be a smooth projective variety of dimension n > 0 and V be a vector bundle of rank r ≥ 2
on X . In this article, PX (V ) denotes the projective bundle with the projection Π : PX (V ) → X in
the sense of Grothendieck. That is, for the tautological line bundle OPX (V )(1) on PX (V ), we have

Π∗OPX (V )(m) =
{

SmV for m ≥ 0,

0 for m < 0

where the 0-th power is taken to be S0V =OX for convenience.
For an integer m >−r and vector bundle W on X ,

R iΠ∗(Π∗W ⊗OPX (V )(m)) =W ⊗R iΠ∗OPX (V )(m) = 0 for all i > 0.

Thus, when m >−r ,

H i (PX (V ),Π∗W ⊗OPX (V )(m)) ∼= H i (X ,W ⊗Π∗OPX (V )(m)) for all i ≥ 0.

In particular, H 0(Π∗W ⊗OPX (V )(−1)) = 0.

2.1. Bigness of Vector Bundle

In this article, we define certain positivity of a vector bundle by the same positivity of the
tautological line bundle on the projective bundle associated to the given vector bundle. The
definition may differ, depending on the article; for example, there are distinct notions of bigness
of vector bundles; L-big and V-big (see [2]).
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Definition. A vector bundle V is said to be ample (resp., nef, big, effective, and pseudo-effective)
on X if the tautological line bundle OPX (V )(1) is ample (resp., nef, big, effective, and pseudo-
effective) on PX (V ).

Remark 3. Recall that a line bundle L = OX (D) on X is big if and only if it satisfies one of the
followings (see [13, Section 2.2]).

• h0(Lk ) ∼ kn (which is the maximum possible).
• mD ∼lin A+E for some integer m > 0, ample divisor A, and effective divisor E on X .
• D lies in the interior of the closure Eff(X ) ⊆ N 1(X ) of the cone of effective divisors (as

bigness is well-defined under numerical equivalence).

If L is a line bundle on X , then the following holds.

• L is big if and only if L⊗k is big for some integer k > 0.

If V is a vector bundle on X , then the following holds (see also [14, Section 6.1]).

• V is big if and only if h0(SkV ) ∼ kn+r−1 (which is the maximum possible). In particular,
TX is big if and only if h0(Sk TX ) ∼ k2n−1.

We will denote by ζ the tautological divisor on PX (V ). Also, for a divisor B on X , we will denote
by B f the divisorΠ∗B on PX (V ).

Lemma 4 (cf. [6, Lemma 2.3]). Let V be a vector bundle on a normal projective variety X . Let
k > 0 and B be a divisor on X . If kζ+ (B −D) f is pseudo-effective for some big divisor D on X , then
kζ+B f is big on PX (V ). In particular, if SkV ⊗OX (−D) is effective for some big divisor D on X ,
then V is big on X .

Proof. Let ζ′ = kζ+B f . Assume that ζ′−D f is pseudo-effective. Note that mD ∼ A+N for some
m > 0, ample divisor A, and effective divisor N on X . By [12, Proposition 1.45], there exists an
integer n > 0 such that ζ′+n A f is ample on X because ζ′ is Π-ample. Then (mn +1)ζ′ is written
by a sum of ample and pseudo-effective divisors as

(mn +1)ζ′ = (ζ′+n A f )+mn(ζ′−D f )+nN f .

Thus (mn +1)ζ′ is big, and it implies that ζ′ = kζ+B f is big on PX (V ). □

As an application of the lemma, we present a proof of the following fact.

Proposition 5. Let X and Y be smooth projective varieties with big tangent bundles TX and TY .
Then the tangent bundle TX×Y of X ×Y is big.

Proof. Let B and D be big and effective divisors on X and Y , respectively. As TX and TY are
big, there exist integers m, n > 0 such that SmTX (−B) and SnTY (−D) are effective by Kodaira’s
Lemma. Note that TX×Y = p∗TX ⊕q∗TY for the natural projections p : X ×Y → X and q : X ×Y →
Y , and p∗B + q∗D is a big divisor on X ×Y . Since Sm+nTX×Y contains Sm p∗TX ⊗ Sn q∗TY as a
direct summand, we have

H 0(Sm+nTX×Y ⊗OX×Y (−p∗B−q∗D)) ⊇ H 0(Sm p∗TX ⊗OX×Y (−p∗B)⊗Sn q∗TY ⊗OX×Y (−q∗D)) ̸= 0.

Thus Sm+nTX×Y ⊗OX×Y (−(p∗B +q∗D)) is effective, and hence TX×Y is big by Lemma 4. □

2.2. Stability of Vector Bundle

In this article, stability is defined in the sense of Mumford and Takemoto. For the definitions
introduced in this section, we add a mild condition (torsion-freeness) from the definitions in the
reference [7, Chapter 1].
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Let Y be a smooth projective variety and E be a torsion-free coherent sheaf on Y . Then there
exists an open dense subset U ⊆ Y such that Y \U has codimension at least two and E |U is locally
free. The rank of E is defined by rankE = rankE |U .

Definition. Fix an ample divisor H on Y . For a torsion-free coherent sheaf E on Y , the H-slope of
E is defined by

µH (E) = degH E

rankE
where the H-degree of E is defined by degH E = c1(E).H n−1.

Let E be a torsion-free coherent sheaf of rank r > 0 on Y . Then E is said to be µH -stable (resp.,
µH -semi-stable) if for every coherent subsheaf F of E with 0 < rankF < r ,

µH (F ) <µH (E) (resp., µ(F ) ≤µ(E)).

Also, E is said to be µH -unstable if it is not µH -semi-stable. If there is no confusion in the choice
of H, then we denote it by µ-stable (resp. µ-semi-stable, µ-unstable), or stable (resp. semi-stable,
unstable) in the case where Y is a curve.

Remark 6. The followings are some known facts on the µ-stability and slope of vector bundles E
and F on Y . For the proofs, we may refer [7, Chapter 3].

• If E and F are µ-semi-stable and µ(E) <µ(F ), then Hom(F,E) = 0.
• If E and F are µ-semi-stable, then E ⊗F is µ-semi-stable.
• If E is µ-semi-stable, then SmE is µ-semi-stable for all m > 0.
• rank(SmE) = (m+r−1

r−1

)
, c1(SmE) = c1(E)⊗

(m+r−1
r

)
, and µ(SmE) = m ·µ(E).

• Assume that E fits into the following exact sequence of vector bundles on Y .

0 → F → E →Q → 0

If µ(F ) = µ(E) = µ(Q), then E is µ-semi-stable if and only if both F and Q are µ-semi-
stable.

• E is µ-semi-stable if and only if its dual E∨ is µ-semi-stable, and µ(E∨) =−µ(E).

For a torsion-free coherent sheaf E on Y , there exists a canonical filtration

0 = E0 ⊂ E1 ⊂ ·· · ⊂ Ek = E ,

which satisfies

• Ei /Ei−1 is µ-semi-stable (also, torsion-free) for all 0 < i ≤ k, and
• µ(Ei+1/Ei ) <µ(Ei /Ei−1) for all 0 < i < k.

This filtration is called the Harder-Narasimhan filtration of E . We call F = E1 the maximal
destabilizing subsheaf of E . When E is µ-unstable, we must have µ(F ) >µ(E). Also, it follows from
the definition that E/F is torsion-free. In the case of curves Y =C , a coherent sheaf is torsion-free
if and only if it is locally free, so we can further say that E/F is locally free.

3. Semi-Stable Case

In this section, let Y be a smooth projective variety of dimension n > 0, and fix an ample divisor H
on Y . Let E be a vector bundle of rank r > 0 on Y . We denote by X =PY (E) the projective bundle
associated to E with the projection π : PY (E) → Y , and by OX (ξ) the tautological line bundle on
X . Then, after taking symmetric powers to the relative Euler sequence

0 →OX →π∗E∨⊗OX (ξ) → TX /Y → 0,

we obtain the following exact sequence on X .

0 → Sm−1π∗E∨⊗OX ((m −1)ξ) → Smπ∗E∨⊗OX (mξ) → SmTX /Y → 0 (1)
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By pushing forward the exact sequence via π, we have the following exact sequence on Y .

0 → Sm−1E∨⊗Sm−1E → SmE∨⊗SmE →π∗SmTX /Y → 0

Lemma 7. Let X = PY (E) and π : PY (E) → Y be the projection. If E is µ-semi-stable, then
π∗SmTX /Y is a µ-semi-stable bundle of degH π∗SmTX /Y = 0 on Y .

Proof. Note that SmE∨⊗SmE isµ-semi-stable for all m > 0 because E isµ-semi-stable. Moreover,
we have degH π∗SmTX /Y = 0 due to the above exact sequence and

degH (SmE∨⊗SmE) = rank(SmE) ·degH (SmE∨)+ rank(SmE∨) ·degH (SmE) = 0.

Since π∗SmTX /C is a quotient of a µ-semi-stable bundle of the same H-slope, it is µ-semi-
stable. □

Proposition 8. Assume that TY is µ-semi-stable and degH TY < 0. If E is µ-semi-stable, then the
tangent bundle TX of X =PY (E) is not big.

Proof. Since the projection π : X → Y is a smooth morphism, there is the following exact
sequence of vector bundles on X .

0 → TX /Y → TX →π∗TY → 0

From this exact sequence, we can find a bound of the dimension of the global sections of Sk TX

as follows.

h0(Sk TX ) ≤
k∑

m=0
h0(SmTX /Y ⊗Sk−mπ∗TY )

By the assumption,
(
Sk−mTY

)∨
is µ-semi-stable, and degH

(
Sk−mTY

)∨ > 0. Due to Lemma 7,
π∗SmTX /Y is µ-semi-stable, and degH SmTX /Y = 0. So we have

h0(SmTX /Y ⊗Sk−mπ∗TY ) = h0(π∗SmTX /Y ⊗Sk−mTY ) = dimHom(
(
Sk−mTY

)∨
,π∗SmTX /Y ) = 0

whenever 0 ≤ m < k. Thus

h0(Sk TX ) ≤ h0(Sk TX /Y ) =O(kn+r−2).

That is, TX is not big. □

Theorem 9. Let C be a smooth projective curve of genus g > 0 and E be a vector bundle on C . If E
is semi-stable, then the tangent bundle TX of X =PC (E) is not big.

Proof. If g ≥ 2, then degTC < 0 and TC is stable as every line bundle is stable. So TX is not
big by Proposition 8. Otherwise, if g = 1, then TC = OC . By [1, Lemma 15], h0(SmTX /C ) =
h0(π∗SmTX /C ) is bounded above by the number of indecomposable direct summands of
π∗SmTX /C as π∗SmTX /C is a semi-stable bundle of degree 0 on C . Thus we have

h0(SmTX /C ) ≤ rank(π∗SmTX /C ) = rank(SmE∨⊗SmE)− rank(Sm−1E∨⊗Sm−1E).

After telescoping, we can conclude that

h0(Sk TX ) ≤
k∑

m=0
h0(SmTX /C ) ≤ rank(Sk E∨⊗Sk E) =O(k2r−2).

That is, TX is not big as X has dimension r = rankE . □

Remark 10. Let E be a semi-stable bundle of rank 2 on a smooth projective curve C of genus
g > 0. Then TX /C is a line bundle on X =PC (E), and

SmTX /C = TX /C
⊗m ∼=OX (2mC0)

for some Q-divisor C0 on X with C0
2 = 0. For a divisor b on C , we denote by b f the divisor π∗b

on X .
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Let D ∼ 2mC0+b f for some m > 0. If degb< 0, then h0(OX (D)) = 0 because there is no effective
divisor D on X with D2 < 0 (cf. [13, Section 1.5.A]). Assume that degb= 0 and D is effective. If D
is integral, then it is known from [22, Remark in p. 122] that h0(OX (D)) = 1. Otherwise, if D is
not integral, then D is written in a sum of effective divisors linearly equivalent to kC0 + a f for
some k > 0 and dega= 0. In this case, we can find an upper bound of h0(OX (2mC0)) by the same
remark and the fact that E splits once we have h0(OX (C0 +a f )) ≥ 2 for some divisor a on C with
dega= 0 [20, Lemma 5.4].

Remark 11. If g = 0 and E is semi-stable, then C = P1 and E = OP1 (a)⊕r for some a ∈ Z. Thus
X =PC (E) ∼=Pr−1 ×P1 and TX is big by Lemma 5.

Remark 12. Using the result on curves, we can state the non-bigness of TX under some special
assumptions on Y and E (cf. Proposition 8). Assume that Y has a fibration p : Y → B over a
smooth base B whose general fiber f is a smooth curve of genus g > 0. If E | f is semi-stable on a
general fiber f , then the tangent bundle TX of X =PY (E) is not big.

Suppose that TX is big. Let Z = P f (E | f ) and π f : Z → f be the induced projection. Then, for
general Z =P f (E | f ), TX |Z is big, and it implies that TZ is big. Indeed, from the exact sequence

0 → TZ → TX |Z → NZ |X → 0,

we have NZ |X ∼=π f
∗N f |Y ∼=π f

∗O⊕n−1
f

∼=O⊕n−1
Z , and it gives the following bound.

h0(Sk TX |Z ) ≤
k∑

m=0
h0(SmTZ ⊗Sk−m(O⊕n−1

f )) =
k∑

m=0
O(kn−2) ·h0(SmTZ ) =O(kn−1) ·h0(Sk TZ )

However, as E | f is assumed to be semi-stable, Z =P f (E | f ) cannot have big TZ due to Theorem 9.
By the contradiction, TX is not big.

4. Unstable Case

In this section, we concentrate on the case where Y is a smooth projective curve C of genus g ≥ 0.
We continue to use the notation in the previous section.

Proposition 13. If E is unstable, then SmE is unstabilized by a line subbundle for some m > 0;
there exists a line subbundle L of SmE with µ(L) >µ(SmE).

Proof. Let F be the maximal destabilizing subbundle of E . Then µ(F ) > µ(E) as E is unstable.
Also, the quotient Q of E by F is locally free, so we obtain the following exact sequence of vector
bundles on C .

0 → F → E →Q → 0

By taking symmetric powers to the exact sequence,

0 → SmF → SmE → Sm−1E ⊗Q → Sm−2E ⊗∧2Q →···→ Sm−rankQ E ⊗∧rankQQ → 0,

we can observe that SmF is a subbundle of SmE . Note thatµ(SmF )−µ(SmE) = m·(µ(F )−µ(E)) > 0.
According to [18], for each m > 0, there exists a line subbundle L of SmF satisfying

µ(SmF )−µ(L) ≤ rank(SmF )− rank(L)

rank(SmF ) · rank(L)
· g < g .

So we can find a line subbundle L of SmF such that

µ(L)−µ(SmE) = {
µ(SmF )−µ(SmE)

}−{
µ(SmF )−µ(L)

}> m · (µ(F )−µ(E))− g > 0

by taking m > 0 large enough. As SmF is a subbundle of SmE , L is also a nonzero subbundle
of SmE . Hence we obtain a line subbundle L of SmE satisfying µ(L) >µ(SmE) for some m > 0. □
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Lemma 14. Let m > 0 and b be a divisor on C with b = degb. If mµ(E)+b > 0, then mξ+b f is big
on PC (E).

Proof. Assume that mµ(E)+b > 0. If E is semi-stable, then mξ+b f is ample on PC (E) by [15,
Theorem 3.1], and hence mξ+b f is big on PC (E).

Otherwise, if E is unstable, then there exists the maximal destabilizing subbundle F of E . Note
that F is semi-stable and µ(F ) > µ(E). Let η= OPC (F )(1) be the tautological line bundle on PC (F ).
Then mη+b f is big on PC (F ) by the previous argument, and so kmη+ (kb−P ) f is effective for
some k > 0 and P ∈ C by Kodaira’s Lemma. Thus SkmF ⊗OC (kb−P ) is effective, and from the
inclusion

SkmF ⊗OC (kb−P ) → SkmE ⊗OC (kb−P ),

we can observe that SkmE ⊗OC (kb−P ) is effective as well. That is, kmξ+(kb−P ) f is effective for
some k > 0 and P ∈C . Therefore, kmξ+kb f is big by Lemma 4, and it implies that mξ+b f is big
on PC (E). □

Theorem 15. If E is unstable, then the tangent bundle TX of X =PC (E) is big.

Proof. Since E∨ is also unstable, there exists an integer m > 0 such that SmE∨ has a line
subbundle L → SmE∨ with µ(L) > µ(SmE∨) = −mµ(E) by Proposition 13. By twisting OX (mξ)
after pulling-back the inclusion L → SmE∨ via π, it gives a nonzero subbundle

π∗L⊗OX (mξ) →π∗SmE∨⊗OX (mξ). (2)

Note that there cannot exist a nonzero morphism π∗L ⊗OX (mξ) → Sm−1π∗E∨⊗OX ((m −1)ξ) as
π∗(Sm−1E∨⊗L−1)⊗OX (−ξ) never has a global section. Thus (2) induces a nonzero subsheaf

π∗L⊗OX (mξ) → SmTX /C (3)

via (1) as follows.

π∗L⊗OX (mξ)

�� ''
0 // Sm−1π∗E∨⊗OX ((m −1)ξ) // Smπ∗E∨⊗OX (mξ) // SmTX /C

// 0

Because SmTX /C is a subbundle of SmTX , (3) induces a nonzero subsheaf

π∗L⊗OX (mξ) → SmTX ,

and hence SmTX ⊗OX (−mξ−b f ) becomes effective for OX (b) = L. Since mµ(E) =µ(SmE)+b > 0
for b = degb = µ(L), the divisor mξ+b f is big on X by Lemma 14. Thus, by applying Lemma 4,
we can conclude that TX is big. □
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