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Abstract. Let Π denote the upper half-plane. In this article, we prove that every vertical operator on the
Bergman space A 2(Π) over the upper half-plane can be uniquely represented as an integral operator of the
form (

Sϕ f
)

(z) =
∫
Π

f (w)ϕ(z −w)dµ(w), ∀ f ∈A 2(Π), z ∈Π,

where ϕ is an analytic function onΠ given by

ϕ(z) =
∫
R+

ξσ(ξ)ei zξdξ, ∀ z ∈Π

for some σ ∈ L∞(R+). Here dµ(w) is the Lebesgue measure on Π. Later on, with the help of above integral
representation, we obtain various operator theoretic properties of the vertical operators.

Also, we give integral representation of the form Sϕ for all the operators in the C∗-algebra generated by
Toeplitz operators Ta with vertical symbols a ∈ L∞(Π).
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1. Introduction

This paper is devoted to the integral representation of vertical operators on the Bergman space
over the upper half-plane.

Let Π = {z = x + i y ∈ C : y > 0} be the upper half-plane, and let dµ(z) = d xd y be the standard
Lebesgue plane measure on Π. The Bergman space A 2(Π) is the closed subspace of L2(Π,dµ)
which consists of all funtions analytic in Π. It is well known that A 2(Π) is a reproducing kernel
Hilbert space with the reproducing kernel given by

KΠ,w (z) =− 1

π(z −w)2 ,∀ z, w ∈Π.

Let B(A 2(Π)) denote the collection of all bounded linear operators on A 2(Π). For every h ∈R, let
Hh : A 2(Π) →A 2(Π) be the horizontal translation operator defined by(

Hh f
)

(z) = f (z −h), ∀ f ∈A 2(Π), z ∈Π.

The operator Hh is unitary on A 2(Π) for all h ∈R. An operator T ∈B(A 2(Π)) is said to be vertical
(or horizontal translation invariant) if

T Hh = HhT, ∀ h ∈R.

As A 2(Π) is a reproducing kernel Hilbert space, every operator T ∈B(A 2(Π)) can be uniquely
written as an integral operator of the form

(T f )(z) =
∫
Π

f (w)AT (z, w)dµ(w), z ∈Π, (1)

where AT (z, w) := (T ∗KΠ,z )(w) = 〈T ∗KΠ,z ,KΠ,w 〉A 2 = 〈KΠ,z ,T KΠ,w 〉A 2 =: AT ∗ (w, z). It can be

easily seen that AT (·, (·)) is defined on Π×Π and AT (·, w), AT (z, (·)) ∈ A 2(Π). It is now natural
to ask the following question:

Question. Characterize all the functions A(·, (·)) on Π×Π with A(·, w), A(z, (·)) ∈ A 2(Π) for all
z, w ∈Π such that the integral operator(

TA f
)

(z) =
∫
Π

f (w)A(z, w)dµ(w), z ∈Π,

is bounded on A 2(Π).

In the present article, we consider the following class of integral operators:

For a function ϕ on the upper half-plane such that ϕ((·) − w), ϕ(z − (·)) ∈ A 2(Π) for each
z, w ∈Π, we formally define an integral operator Sϕ : A 2(Π) →A 2(Π) by(

Sϕ f
)

(z) = 1

π

∫
Π

f (w)ϕ(z −w)dµ(w), z ∈Π, f ∈A 2(Π). (2)

By Cauchy–Schwarz inequality, we have |(Sϕ f )(z)| ≤ ∥ f ∥A 2 ∥ϕ(z − (·))∥A 2 for all f ∈ A 2(Π) and
z ∈ C. Also, (SϕKΠ,p )(·) =ϕ((·)−p) ∈ A 2(Π) for all p ∈Π. As span{KΠ,p : p ∈Π} is dense in A 2(Π),
Sϕ is densely defined on A 2(Π). In Section 2, we recall some preliminaries which will be useful
throughout the article. In Section 3, we characterize the symbolϕ so that the operator given by (2)
is bounded on A 2(Π). Indeed, we prove the following result on A 2(Π).

Theorem 1 (Main Theorem). Let ϕ be a function onΠ such that ϕ((·)−w), ϕ(z − (·)) ∈A 2(Π) for
each z, w ∈Π. Then the integral operator Sϕ defined by (2) is bounded on A 2(Π) if and only if there
exists σ ∈ L∞(R+) such that

ϕ(z) =
∫
R+
ξσ(ξ)e i zξdξ, z ∈Π. (3)

Moreover, we have that ∥∥Sϕ
∥∥

A 2→A 2 = ∥σ∥L∞(R+).
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Thus, we answer the Question for the kernels of the form π−1ϕ(z −w), where ϕ is a function

on Π with ϕ((·)−w), ϕ(z − (·)) ∈A 2(Π) for each z, w ∈Π. As a consequence of Theorem 1, we get
that every vertical operator can be uniquely represented as an integral operator of the form (2)
and vice-versa. Thus, the collection{

Sϕ ∈B
(
A 2(Π)

)
:∃σ ∈ L∞(R+) and ϕ(z) =

∫
R+
ξσ(ξ)e i zξdξ, ∀ z ∈Π

}
gives all vertical operators in B(A 2(Π)). Also, we obtain various operator theoretic properties for
the vertical operators such as compactness, normality, C∗-algebra properties, etc..

In mathematics, Toeplitz operators are one of the widely studied operators on holomorphic
function spaces (Hardy space, Bergman space, Fock space, etc.). For a better understanding,
these operators are studied by restricting the defining symbols to a particular class (For example,
see [6, 7, 10–14, 17]). In [14], C∗-algebra generated by Toeplitz operators on A 2(Π) with vertical
symbols from L∞(Π) is described. As every Toeplitz operator Ta with vertical symbol a ∈ L∞(Π) is
a vertical operator on A 2(Π), in Section 4, we represent Ta uniquely in the form (2) and explicitly
give the operators in the C∗-algebra generated by Toeplitz operators with vertical symbols.

2. Notations and definitions

Let H be a Hilbert space and B(H ) be the collection of all bounded operators on H . Let
T ∈ B(H ), then the spectrum of T is defined by σ(T ) = {λ ∈ C : (T − λI )−1 ∉ B(H )} and
the point spectrum of T is given by σp (T ) = {λ ∈ σ(T ) : (T − λI ) is not injective}. A number
λ ∈ σ(T ) is an approximate eigenvalue of T if there exists a sequence (xn) of unit vectors such
that (T −λI )xn → 0 as n →∞. The approximate point spectrum of T , denoted by σa(T ), consists
of all approximate eigenvalues of T . Clearly, σp (T ) ⊆ σa(T ). Let ran(T ) = {T x : x ∈ H } and
ker(T ) = {x ∈ X : T x = 0}. An operator T ∈B(H ) is said to be Fredholm if

(1) ran(T ) is closed;
(2) ker(T ) and ker(T ∗) are finite dimensional.

The essential spectrum of T is defined by σe (T ) = {λ ∈ C : (T −λI ) is not Fredholm}. For more
details, we refer to [3, 5].

Let (X , M ,ν) be a σ−finite measure space and L2(X ,ν) := L2(X ) be the Hilbert space of all
ν−measurable complex valued functions on X such that∥∥ f

∥∥2
L2(X ) =

∫
X

∣∣ f
∣∣2 dν<∞.

The inner product on L2(X ) is given by〈
f , g

〉
L2(X ) =

∫
X

f g dν

for all f , g ∈ L2(X ). Let f be a ν−measurable complex valued function on X . Then the essential
range of f , denoted by ess( f ), is given by{

a ∈C :∀ ϵ> 0, ν
{

x ∈ X :
∣∣ f (x)−a

∣∣< ϵ}> 0
}
.

Let L∞(X ,ν) := L∞(X ) be the collection of all essentially bounded ν−measurable functions on X .
It is a Banach space with the norm given by∥∥ f

∥∥
L∞(X ) = sup

{|a| : a ∈ ess
(

f
)}

.

It is known that, the space L∞(X ) is a commutative C∗-algebra.
Let (X , M ,ν) be a σ-finite measure space and m be a ν-measurable function on X . Let Dm ⊆

L2(X ) be the set of all f ∈ L2(X ) such that m · f ∈ L2(X ). The operator Mm : Dm → L2(X ) defined
by Mm f = m · f for all f ∈ Dm is called a multiplication operator. It is well known that Mm is
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bounded on L2(X ) if and only if m ∈ L∞(X ). If M (L2(X )) = {
Mm : m ∈ L∞(X )

}
, then the map

Λ : L∞(X ) →M (L2(X )) defined by Λ(m) = Mm is a ⋆−isometric isomorphism.

Theorem 2 ([3, 4]). For all m,m1,m2 ∈ L∞(X , M ,ν), we have

(1) M∗
m = Mm ;

(2) Mm1 Mm2 = Mm1m2 = Mm2m1 = Mm2 Mm1 ;
(3) The collection M (L2(X )) is a maximal commutative C∗−subalgebra of B(L2(X )), where

B(L2(X )) denote the set of all bounded linear operators on L2(X );
(4) σ(Mm) =σa(Mm) =σe (Mm) = ess(m);
(5) λ ∈σp (Mm) if and only if the Lebesgue measure of ν({x : m(x) =λ}) is positive.

Theorem 3 ([15, Corollary 1.1]). Let ν be a non-atomic σ-finite measure on X , and let m ∈
L∞(X , M ,ν). Then Mm is compact if and only if m = 0 almost everywhere on X .

Let X = R (or R+) and we denote the Lebesgue measure on R (or R+) by d x. Then the Hilbert
spaces L2(R) and L2(R+) can be defined as above. For f ∈ L2(R)∩L1(R), its Fourier transform is
given by (

F f
)

(x) = 1p
2π

∫
R

e−i x y f
(
y
)

d y, ∀ f ∈ L2(R), x ∈R.

The transform F : L2(R) → L2(R) is unitary. We refer to [9] for more information about the Fourier
transform and it’s various applications.

The following theorems are well known.

Theorem 4 ([14, Lemma 2.1]). Let T be a bounded operator on L2(R) such that T Mei x(·) = Mei x(·) T
for all x ∈ R, where (Mei x(·) f )(y) = e i x y f (y) for all y ∈ R. Then there exists σ ∈ L∞(R) such that
T = Mσ.

Theorem 5 ([14, Lemma 2.2]). Let T be a bounded operator on L2(R+) such that T M+
ei x(·) =

M+
ei x(·) T for all x ∈R, where M+

ei x(·) is the restriction of Mei x(·) to L2(R+). Then there existsσ ∈ L∞(R+)
such that T = Mσ.

In [16], an integral operator R : L2(R+) →A 2(Π) defined by(
R f

)
(z) = 1p

π

∫
R+

√
ξ f (ξ)e i zξdξ, ∀ f ∈ L2(R+), z ∈Π

is introduced and with the help of this transform, it was proved in [14] that the C∗-algebra gener-
ated by Toeplitz operators on A 2(Π) with vertical symbols is isomorphic to a C∗−subalgebra of
L∞(R+). Note that if f ∈ L2(R+), then for any z = x + i y ∈Π, we have

√
ξ f (ξ)e−yξ ∈ L1(R+). Hence∣∣(R f

)
(z)

∣∣≤ ∫
R+

∣∣∣(√ξ f (ξ)e−yξ
)

e i xξ
∣∣∣dξ<∞.

The operator R is shown to be an isometric isomorphism from L2(R+) onto the space A 2(Π) and
its inverse is given by(

R∗F
)

(x) = (
R−1F

)
(x) =

p
xp
π

∫
Π

F (w)e−i w x dµ(w), ∀ F ∈A 2(Π), x ∈R+.

Let w = u + i v ∈Π, then for any F ∈A 2(Π)∩L1(Π) we have∣∣(R∗F
)

(x)
∣∣≤ p

xp
π

∫
Π
|F (w)|

∣∣∣e−i (u−i v)x
∣∣∣dµ(w) ≤

p
xp
π

∫
Π
|F (w)|e−v x dµ(w)

≤
p

xp
π

∫
Π
|F (w)|dµ(w) <∞.

Thus the integral in the definition of R∗ converges in the Lebesgue sense whenever F ∈A 2(Π)∩
L1(Π). The following result for the operator R is proved in [14].
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Lemma 6. For every s ∈R, we have RM+
ei s(·) R∗ = Hs .

We observe that the operator R has properties analogous to that of the Bargmann transform.
We refer to [1, 2, 8, 18, 19] for more information about the Bargmann transform and its various
applications.

3. Integral representation of vertical operators and their operator theoretic proper-
ties

In this section, we prove Theorem 1. As a consequence, we obtain various operator theoretic
properties of the vertical operators. We start with some auxiliary results which will be useful in
proving Theorem 1.

Lemma 7. Let σ ∈ L∞(R+). Then the function

φw (z) =
∫
R+
ξσ(ξ)e i (z−w)ξdξ, z ∈Π,

is analytic on Π for each w ∈Π.

Proof. Let w = u + i v ∈Π be fixed. For z = x + i y ∈Π, we have∣∣ϕw (z)
∣∣= ∣∣∣∫

R+
ξσ(ξ)e i (z−w)ξdξ

∣∣∣≤ ∥σ∥L∞(R+)

∫
R+

∣∣∣ξe i (x−u)ξ−(y+v)ξ
∣∣∣dξ

≤ ∥σ∥L∞(R+)

∫
R+
ξe−(y+v)ξdξ≤ ∥σ∥L∞(R+)

∫
R+
ξe−vξdξ<∞.

Now, we show that ϕw is continuous function on Π. We prove this with the help of dominated
convergence theorem. Let z = x + i y ∈ Π and (zn = xn + i yn)n∈N be a sequence in Π such that
zn → z. For each n ∈ N, define fn(ξ) = ξe i (zn−w)ξσ(ξ) and f (ξ) = ξe i (z−w)ξσ(ξ) for all ξ ∈ R+.
Clearly, ( fn − f )(ξ) → 0 pointwise a.e. on R+. Also∣∣∣( fn − f

)
(ξ)

∣∣∣= ∣∣∣ξσ(ξ)
(
e i znξ−e i zξ)e−i wξ

∣∣∣≤ ∥σ∥L∞(R+)ξe−vξ∣∣e i znξ−e i zξ∣∣
≤ ∥σ∥L∞(R+)ξe−vξ(e−ynξ+e−yξ)≤ 2∥σ∥L∞(R+)ξe−vξ.

Let g (ξ) = ξe−vξ for all ξ ∈ R+. Clearly, g is integrable function on R+. Therefore, by dominated
convergence theorem, we have ∫

R+

(
fn − f

)
(ξ)dξ→ 0.

That is ϕw (zn) → ϕw (z). Since (zn) is any arbitrary sequence converging to z, it implies that ϕw

is continuous at z. As z ∈Π is arbitrary, we get that ϕw is continuous on Π.
Let γ be a simple closed contour in Π. Then∫
γ

∫
R+

∣∣∣ξσ(ξ)e i (z−w)ξ
∣∣∣dξ ∣∣dµ(z)

∣∣≤ ∥σ∥L∞(R+)

∫
γ

∫
R+
ξ
∣∣∣e i zξe−i wξ

∣∣∣dξ ∣∣dµ(z)
∣∣

= ∥σ∥L∞(R+)

∫
γ

∫
R+
ξe−(y+v)ξdξ

∣∣dµ(z)
∣∣≤ ∥σ∥L∞(R+)

∫
R+
ξe−vξdξ

∫
γ

∣∣dµ(z)
∣∣<∞.

Therefore, by Fubini’s theorem, we have∫
γ
ϕw (z)dµ(z) =

∫
γ

∫
R+
ξσ(ξ)e i (z−w)ξdµ(z)dξ=

∫
R+

∫
γ
ξσ(ξ)e i (z−w)ξdξdµ(z)

=
∫
R+
ξσ(ξ)

∫
γ

e i (z−w)ξdµ(z)dξ=
∫
R+
ξσ(ξ)e−wξ(0)dξ= 0.

As γ is any arbitrary simple closed contour in Π, by Morera’s theorem, we get that ϕw is analytic
on Π. This proves the lemma. □
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Lemma 8. Let σ ∈ L∞(R+). Then the function

φw (z) =
∫
R+
ξσ(ξ)e i (z−w)ξdξ, z ∈Π,

belongs to the Bergman space A 2(Π) for each w ∈Π.

Proof. Let w(= u + i v) ∈Π be fixed. By Lemma 7, ϕw is analytic on Π. Therefore, it is enough to
show that ∥ϕw∥A 2 <∞. Note that

∥ϕw∥2
A 2 =

∫
Π

∣∣ϕw (z)
∣∣2 dµ(z) =

∫
Π

∣∣∣∣∫
R+
ξσ(ξ)e i (z−w)ξdξ

∣∣∣∣2

dµ(z)

=
∫
Π

∣∣∣∣∫
R+
ξσ(ξ)e−(y+v)ξe i (x−u)ξdξ

∣∣∣∣2

d xd y.

Define

σ1(x) =
{
σ(x), if x ≥ 0

0, otherwise.

For y, v ∈R+, we denote fy,v (ξ) = ξσ1(ξ)e−(y+v)ξ for all ξ ∈R. Then we get∥∥ϕw
∥∥2

A 2 =
∫
Π

∣∣∣∣∫
R

fy,v (ξ)e i (x−u)ξdξ

∣∣∣∣2

d xd y

=
∫
Π

∣∣(F−1 fy,v
)

(x −u)
∣∣2

d xd y

=
∫
R+

(∫
R

∣∣(F−1 fy,v
)

(x −u)
∣∣2

d x

)
d y.

We know that L2(R) is translation invariant. Therefore,∥∥ϕw
∥∥2

A 2 =
∫
R+

(∫
R

∣∣(F−1 fy,v
)

(x)
∣∣2

d x

)
d y

=
∫
R+

(∫
R

∣∣( fy,v (ξ)
)∣∣2 dξ

)
d y =

∫
R+

(∫
R+

e−2yξd y

)
ξ2 |σ(ξ)|2 e−2vξdξ

=
∫
R+

(
0−1

−2ξ

)
ξ2|σ(ξ)|2e−2vξdξ= 1

2

∫
R+
ξ |σ(ξ)|2 e−2vξdξ

≤ 1

2
∥σ∥2

L∞(R+)

∫
R+
ξe−2vξdξ<∞ (∵ v > 0).

This proves the lemma. □

Lemma 9. Letϕ be a function defined onΠ such thatϕ((·)−w) is analytic for each w ∈Π. Thenϕ
is analytic on Π.

Proof. We show thatϕ is differentiable at each z0 = x0+i y0 ∈Π. Let ϵ> 0 such that U (z0,ϵ) = {z ∈
Π : |z − z0| < ϵ} ⊆Π. Choose w0 = u0 + i v0 such that U (z0,ϵ)+w0 ⊆Π. Then for all z ∈U (z0,ϵ/4),
we have

lim
z→z0

ϕ(z)−ϕ(z0)

z − z0
= lim

z→z0

ϕ(z +w0 −w0)−ϕ(z0 +w0 −w0)

z − z0

Let ϕw0 (z) :=ϕ(z −w0) for all z ∈Π, then

lim
z→z0

ϕ(z)−ϕ(z0)

z − z0
= lim

z+w0→z0+w0

ϕw0 (z +w0)−ϕw0 (z0 +w0)

(z +w0)− (z0 +w0)
.

As ϕw0 is analytic at z0 +w0, it implies that ϕ is differentiable at z0. Since z0 ∈Π is arbitrary, the
function ϕ is analytic onΠ. □
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Proposition 10. Let σ ∈ L∞(R+). Then the function

ϕ(z) =
∫
R+
ξσ(ξ)e i zξdξ, z ∈Π

is analytic on Π and ϕ((·)−w), ϕ(z − (·)) ∈A 2(Π) for each z, w ∈Π.

Proof. By lemmas 7, 8 and 9, it follows that the function ϕ defined by

ϕ(z) =
∫
R+
ξσ(ξ)e i zξdξ, z ∈Π

is analytic onΠ and ϕ((·)−w) ∈A 2(Π) for all w ∈Π. We notice that

ϕ(z −w) =
∫
R+
ξσ(ξ)e i (w−z)ξdξ, z, w ∈Π.

As σ ∈ L∞(R+), it follows that ϕ(z − (·)) ∈A 2(Π). □

Now, we show that every bounded operator Sϕ is of the form RMσR∗ for some σ ∈ L∞(R+).

Lemma 11. Let ϕ be a function on Π such that ϕ((·)−w),ϕ(z − (·)) ∈A 2(Π) for each z, w ∈Π and
Sϕ given by (2). If Sϕ ∈B(A 2(Π)), then there exists σ ∈ L∞(R+) such that Sϕ = RMσR∗.

Proof. We first show that every bounded Sϕ is vertical. If h ∈ R, then for every f ∈ A 2(Π) and
z ∈Π, we have(

SϕHh f
)

(z) = 1

π

∫
Π

(
Hh f

)
(w)ϕ(z −w)dµ(w) = 1

π

∫
Π

f (w −h)ϕ(z −w)dµ(w)

Using the change of variable w 7→ w +h gives(
SϕHh f

)
(z) = 1

π

∫
Π

f (w)ϕ((z −h)−w)dµ(w) = (
HhSϕ f

)
(z).

Since h ∈ R is arbitrary, it follows that SϕHh = HhSϕ for all h ∈ R. Combining Theorem 5 and
Lemma 6, it follows that Sϕ = RMσR∗ for some σ ∈ L∞(R+). □

Lemma 12. Let σ ∈ L∞(R+). Then RMσR∗ = Sψ, where ψ and σ are related by

ψ(z) =
∫
R+
ξσ(ξ)e i zξdξ, z ∈Π.

Proof. For any f ∈A 2(Π)∩L1(Π) and z(= x + i y) ∈Π, we have(
RMσR∗ f

)
(z) = 1p

π

∫
R+

√
ξ
(
MσR∗ f

)
(ξ)e i zξdξ= 1p

π

∫
R+

√
ξσ(ξ)

(
R∗ f

)
(ξ)e i zξdξ

= 1

π

∫
R+

(√
ξ
)2
σ(ξ)

∫
Π

f (w)e−i wξdµ(w)e i zξdξ

= 1

π

∫
R+

∫
Π
ξσ(ξ) f (w)e i(z−w)ξdµ(w)dξ.

If f ∈A 2(Π)∩L1(Π) and z(= x + i y) ∈Π, then

1

π

∫
R+

∫
Π

∣∣∣ξσ(ξ) f (w)e i (z−w)ξ
∣∣∣dµ(w)dξ≤ ∥σ∥L∞(R+)

1

π

∫
R+

∫
Π
ξ
∣∣∣ f (w)e i ((x+i y)−(u−i v))ξ

∣∣∣dµ(w)dξ

≤ ∥σ∥L∞(R+)
1

π

∫
R+

∫
Π
ξ
∣∣ f (w)

∣∣e−yξe−vξdµ(w)dξ

≤ ∥σ∥L∞(R+)
1

π

∫
R+

∫
Π
ξ
∣∣ f (w)

∣∣e−yξdµ(w)dξ

≤ ∥σ∥L∞(R+)
1

π

∫
R+

(
ξe−yξ

)
dξ

∫
Π

∣∣ f (w)
∣∣dµ(w) <∞.
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Therefore, by Fubini’s theorem, we get(
RMσR∗ f

)
(z) = 1p

π

∫
Π

f (w)

(
1p
π

∫
R+
ξσ(ξ)e i (z−w)ξdξ

)
dµ(w).

Define

ψ(z) =
∫
R+
ξσ(ξ)e i zξdξ, ∀ z ∈Π.

By Proposition 10, it follows that ψ is a well-defined analytic function on Π such that ψ((·) −
w),ψ(z − (·)) ∈A 2(Π) for each z, w ∈Π. From above, we get RMσR∗ = Sψ on A 2(Π)∩L1(Π).

Now we show that RMσR∗ = Sψ on A 2(Π). Let g ∈ A 2(Π) and {gn}n∈N be a sequence in
A 2(Π)∩L1(Π) such that gn → g in A 2(Π). For each z ∈Π, let

hz (w) :=ψ(z − (w)), w ∈Π.

Then for each z ∈Π, hz ∈ A 2(Π) and (Sψgn)(z) = 〈gn ,hz〉A 2 → 〈g ,hz〉A 2 = (Sψg )(z). But Sψgn =
RMσR∗gn for all n ∈ N. This implies that (RMσR∗gn)(z) → (Sψg )(z) for all z ∈ Π. RMσR∗ is
bounded on A 2(Π), we get RMσR∗gn → RMσR∗g in A 2(Π). Since A 2(Π) is the reproducing
kernel Hilbert space, (RMσR∗gn)(z) → (RMσR∗g )(z) for all z ∈Π. Hence (RMσR∗g )(z) = (Sψg )(z)
for all z ∈Π and g ∈A 2(Π). That is, RMσR∗g = Sψg for all g ∈A 2(Π). Thus, we get RMσR∗ = Sψ
on A 2(Π). □

In the following lemma, we show that the representation of an operator in the form (2) is
unique.

Lemma 13. Letϕ1,ϕ2 be functions onΠ such thatϕ1((·)−w), ϕ1(z − (·)), ϕ2((·)−w), ϕ2(z − (·)) ∈
A 2(Π) for each z, w ∈Π and Sϕ1 ,Sϕ2 ∈B(A 2(Π)). Then

Sϕ1 = Sϕ2 if and only if ϕ1 =ϕ2.

Proof. Suppose Sϕ1 = Sϕ2 . Let z0 ∈Π be fixed. Then for all f ∈A 2(Π) we get,((
Sϕ1 −Sϕ2

)
f
)

(z0) = 0 =⇒
∫
Π

f (w)
(
ϕ1 −ϕ2

)(
z0 −w

)
dµ(w) = 0. (4)

Define Ψz0 (w) = (ϕ1 −ϕ2)(z0 − w). As ϕ1(z − (·)), ϕ2(z − (·)) ∈ A 2(Π) for each z ∈ Π, we get
Ψz0 ∈A 2(Π). Thus ((

Sϕ1 −Sϕ2

)
f
)

(z0) = 0 =⇒ 〈
f ,Ψz0

〉
A 2 = 0 (5)

for all f ∈A 2(Π). This implies thatΨz0 = 0. That is, (ϕ1−ϕ2)(z0−w) = 0 for all w ∈Π. Since z0 ∈Π
is arbitrary, we get ϕ1(z −w) =ϕ2(z −w) for all z, w ∈Π. Hence, we get ϕ1 =ϕ2.

Conversely, if ϕ1 =ϕ2, then it is easy to see that Sϕ1 = Sϕ2 . □

Now, we are set to give the proof of Theorem 1.

Proof of Theorem 1. Let ϕ be a function on Π such that ϕ((·)− w),ϕ(z − (·)) ∈ A 2(Π) for each
z, w ∈ Π and Sϕ given by (2) be bounded on A 2(Π). By Lemma 11, it follows that there exists
σ ∈ L∞(R+) such that Sϕ = RMσR∗. But, Lemma 12 implies RMσR∗ = Sψ, where ψ and σ

satisfy (3), with ψ instead of ϕ. Thus, we have Sϕ = RMσR∗ = Sψ. By Lemma 13, it follows that
ϕ=ψ. That is,

ϕ(z) =
∫
R+
ξσ(ξ)e i zξdξ, ∀ z ∈Π.

Conversely, suppose (3) holds for some σ ∈ L∞(R+). By Proposition 10, the function ϕ defined
by (3) satisfies the required conditions. We know that Mσ ∈B(L2(R+)) and R : L2(R+) →A 2(Π) is
a unitary operator. Therefore, RMσR∗ is bounded on A 2(Π). By Lemma 12, RMσR∗ = Sϕ. Hence,
Sϕ ∈B(A 2(Π)).

Also, ∥Sϕ∥A 2(Π)→A 2(Π) = ∥Mσ∥L2(R+)→L2(R+) = ∥σ∥L∞(R+). This proves the theorem. □
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Let V be the collection of all vertical operators on A 2(Π). By combining lemmas 11, 12 and
Theorem 1, we get

V =
{

Sϕ ∈B
(
A 2(Π)

)
:∃σ ∈ L∞(R+) and ϕ(z) =

∫
R+
ξσ(ξ)e i zξdξ, ∀ z ∈Π

}
.

3.1. Operator theoretic properties of Sϕ

In this Section, we prove various operator theoretic properties of the operator Sϕ given by (2). We
first find the adjoint of Sϕ.

Theorem 14 (Adjoint of Sϕ). Let ϕ be a function on Π such that ϕ((·)−w),ϕ(z − (·)) ∈ A 2(Π) for
each z, w ∈Π and Sϕ given by (2) be bounded on A 2(Π), then S∗

ϕ = Sϕ̃, where ϕ̃(z) =ϕ(−z) for all
z ∈Π.

Proof. Let ϕ be a function on Π such that ϕ((·)− w), ϕ(z − (·)) ∈ A 2(Π) for each z, w ∈ Π and
Sϕ given by (2) be bounded on A 2(Π). Then by Theorem 1, there exists σ ∈ L∞(R+) such that
Sϕ = RMσR∗, where ϕ and σ satisfy (3). Using Theorem 2, we get S∗

ϕ = RMσR∗. Again by
Theorem 1, RMσR∗ = Sϕ̃, where

ϕ̃(z) =
∫
R+
ξσ(ξ)e i zξdξ=

∫
R+
ξσ(ξ)e−i zξdξ=ϕ(−z), ∀ z ∈Π.

This proves the theorem. □

By Theorem 1, we know that every bounded operator Sϕ is of the form RMσR∗ for some
σ ∈ L∞(R+), where ϕ and σ satisfy (3). Using this, Theorem 2 and Theorem 3, it is easy to prove
the following results. The proofs are left to the reader.

Theorem 15. Let ϕ be a function on Π such that ϕ((·)− w),ϕ(z − (·)) ∈ A 2(Π) for each z, w ∈ Π
and Sϕ given by (2) be bounded on A 2(Π), then

(1) Sϕ is normal, that is, SϕS∗
ϕ = S∗

ϕSϕ.
(2) Sϕ is compact if and only if ϕ≡ 0
(3) The collection V = {Sϕ ∈ B(A 2(Π))} is a maximal commutative C∗−subalgebra of

B(A 2(Π)).

Theorem 16 (Spectrum of Sϕ). Let ϕ be a function on Π such that ϕ((·)−w), ϕ(z − (·)) ∈ A 2(Π)
for each z, w ∈Π and Sϕ given by (2) be bounded on A 2(Π), then

(1) σ(Sϕ) =σa(Sϕ) =σe (Sϕ) = ess(m), where ϕ and m satisfy (3), with m instead of σ.

(2) λ ∈σp (Sϕ) if and only if the Lebesgue measure of {x : m(x) =λ} is positive, where ϕ and m
satisfy (3), with m instead of σ.

Now, we give structure of common reducing subspaces of operators in the collection V . Before
that, we recall some basic definitions and results.

Definition 17 ([5, Definition 4.41]). Let H be a Hilbert space and T ∈ B(H ). A closed subspace
M of H is an invariant subspace of T if T (M ) ⊆M and M is said to be a reducing subspace of T
if it is invariant under both T and T ∗.

Lemma 18 ([5, Proposition 4.42]). Let H be a Hilbert space and T ∈B(H ). Then M is invariant
subspace of T if and only if PM T PM = T PM and it is a reducing subspace of T if and only if
T PM = PM T , where PM is an orthogonal projection associated to M .
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Theorem 19. Let M be a subspace of the Bergman space A 2(Π). Then M is a reducing subspace
of all the operators in V if and only if M = Sϕ0 (A 2(Π)), where

ϕ0(z) =
∫
R+
ξχE (ξ)e i zξdξ (6)

for all z ∈Π, E is a measurable subset of R+ and χE is characteristic function associated to the set E.

Proof. Let M be a closed subspace of A 2(Π). By Lemma 18 and Theorem 1, M is reducing
subspace of operators in V ⇐⇒ SϕPM = PM Sϕ for all Sϕ ∈ V ⇐⇒ Mm(R∗PM R) = (R∗PM R)Mm

for all m ∈ L∞(R+). By Theorem 5, we get (R∗PM R) = Mσ for some σ ∈ L∞(R+).
As Mσ(= R∗PM R) is an orthogonal projection on L2(R+), there exists a Lebesgue measurable

set E ⊆ R+ such that σ= χE almost everywhere on R+ and Mσ = MχE . Hence, PM = RMχE R∗. By
using Theorem 1, we get PM = Sϕ0 , where

ϕ0(z) =
∫
R+
ξχE (ξ)e i zξdξ, ∀ z ∈Π.

This proves the theorem. □

4. Toeplitz operators with vertical symbols

We know that A 2(Π) is a closed subspace of the Hilbert space L2(Π,dµ). Let P denote the
orthogonal projection on L2(Π,dµ) with range A 2(Π). The operator P is an integral operator
given by

(P f )(z) = 〈
f ,Kz

〉
L2(Π) =− 1

π

∫
Π

f (w)
1

(z −w)2 dµ(w), f ∈ L2(Π,dµ).

For a function a ∈ L∞(Π,dµ), the Toeplitz operator Ta on A 2(Π) is defined by Ta f = P (a f ). We
say that the function a ∈ L∞(Π) is vertical if it is invariant under horizontal translations. That is,
for each h ∈R, a((·)−h) = a(·) almost everywhere onΠ. If a ∈ L∞(Π) is a vertical function, then the
Toeplitz operator Ta is also vertical operator. In fact, we have the following known result.

Theorem 20 ([14]). Let a ∈ L∞(Π). Then Ta is vertical operator if and only if a is a vertical function.

Let Vtop denote the collection of all Toeplitz operators with vertical symbols and V T (L∞)
denote the C∗-algebra generated by Vtop . Note that V T (L∞) ⊂ V . In this section, our aim is to
give explicit representation of operators in V T (L∞). We first recall some definitions and results
from [14] which will be useful in this section.

Let f :R+ →C be a bounded function. Then f is said to be very slowly oscillating function if the
compositon f ◦exp is uniformly continuous with respect to the usual metric on R+. Let VSO(R+)
denote the set of all very slowly oscillating functions.

Lemma 21 ([14, Proposition 4.2]). VSO(R+) is a closed C∗-subalgebra of the C∗-algebra Cb(R+)
of all complex valued bounded continuous functions on R+ with pointwise operations.

Since Cb(R+) is closed C∗-subalgebra of L∞(R+), it follows that VSO(R+) is a closed C∗-
subalgebra of L∞(R+). For Toeplitz operators with vertical symbols, the following result is known.

Lemma 22 ([14, Theorem 3.4]). Let a ∈ L∞(Π) be a vertical function and Ta be the Toeplitz
operator with defining symbol a. Then there exists γa ∈ L∞(R+) such that Ta = RMγa R∗, where

γa(x) = 2x
∫ ∞

0
a(y)e−2x y d y, x ∈R+. (7)

Let G denote the collection of all γa ∈ L∞(R+), where a ∈ L∞(Π) is vertical function and γa is
given by (7). In [14], the follwing result is proved.
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Lemma 23. The C∗-algebra generated by G is equal to G = VSO(R+).

Now we give explicit integral representation of the form (2) for all the operators in the C∗-
algebra generated by Vtop .

Theorem 24. The C∗-algebra V T (L∞) generated by Vtop is given by{
Sϕ ∈ V :∃σ ∈ VSO(R+) and ϕ(z) =

∫
R+
ξσ(ξ)e i zξdξ, ∀ z ∈Π

}
.

Proof. Let Ta ∈ Vtop . Then by Lemma 22, we get Ta = RMγa R∗, where γa ∈ L∞(R+) is given by (7).
By Theorem 1, we have RMγa R∗ = Sϕγa

, where ϕγa and γa satisfy

ϕγa (z) =
∫
R+
ξγa(ξ)e i zξdξ, ∀ z ∈Π.

This implies that Ta = Sϕγa
. Hence, we get Vtop = {Sϕγa

: γa ∈ G }. Now, using Lemma 23, we get
V T (L∞) = {Sϕ ∈ V : Sϕ = RMσR∗ for some σ ∈ VSO(R+)}. In fact, we have

V T (L∞) =
{

Sϕ ∈ V :∃σ ∈ VSO(R+) and ϕ(z) =
∫
R+
ξσ(ξ)e i zξdξ, ∀ z ∈Π

}
.

This proves the theorem. □
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