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Abstract. In this note we prove a sharp reverse weak estimate for Riesz potentials

∥Is ( f )∥
L

n
n−s ,∞ ≥ γs v

n−s
n

n ∥ f ∥L1 for 0 < f ∈ L1(Rn ),

where γs = 2−sπ−
n
2
Γ( n−s

2 )

Γ( s
2 )

. We also consider the behavior of the best constant Cn,s of weak type estimate for

Riesz potentials, and we prove Cn,s =O(
γs
s ) as s → 0.
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1. introduction

The Riesz potentials(fractional integral operators) Is , which play an important part in Analysis,
are defined by

Is ( f )(x) = γs

∫
Rn

f (x − y)

|y |n−s dy,

where 0 < s < n and γs = 2−sπ− n
2
Γ( n−s

2 )
Γ( s

2 ) . Such operators were first systematically investigated

by M.Riesz [11]. The (Lp ,Lq )-boundedness of Riesz potentials were proved by G.Hardy and
J. Littlewood [6] when n = 1 and by S. Sobolev [12] when n > 1. The (L1,L

n
n−s ,∞) -boundedness

were obtained by A. Zygmund [16]. More precisely, they established the following theorem.

Theorem 1. Let 0 < s < n and let p, q satisfy 1 ≤ p < q <∞ and 1
p − 1

q = s
n , then when p > 1,

∥Is ( f )∥Lq (Rn ) ≤C (n, p, s)∥ f ∥Lp (Rn ).

And when p = 1,

∥Is ( f )∥
L

n
n−s ,∞(Rn )

= sup
λ>0

λ|{x ∈Rn : |Is f | >λ}| n−s
n ≤C (n, s)∥ f ∥L1(Rn ).
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The best constant in the (Lp ,Lq ) inequality when p = 2n
n+s , q = 2n

n−s was precisely calculated by
E. Lieb [8] (see also [4]), and E. Lieb and M. Loss also offered an upper bound of C (n, p, s)(see [9,
Chapter 4]).

Although the best constant of (Lp ,Lq ) estimate for Riesz potentials has been studied for
decades, to the best of the authors’ knowledge there is no result about the best constant of
(L1,L

n
n−s ,∞) estimate for Riesz potentials. In this paper, we will provide some estimates for the

best constant of the weak type inequality.
In [14] (see multilinear case in [15]), the second author setted up the following limiting weak-

type behavior for Riesz potentials,

lim
λ→0

λ|{x ∈Rn : |Is f | >λ}| n−s
n = γs v

n−s
n

n ∥ f ∥L1(Rn ) for 0 < f ∈ L1(Rn),

which implies a reverse weak estimate

∥Is ( f )∥
L

n
n−s ,∞(Rn )

≥ γs v
n−s

n
n ∥ f ∥L1(Rn ) for 0 < f ∈ L1(Rn), (1)

where vn is the volume of the unit ball in Rn . So a natural question that arises here is whether the

constant γs v
n−s

n
n is sharp? In the paper, we will give an affirmative answer.

Let Cn,s be the best constant such that the (L1,L
n

n−s ,∞) estimate holds for Riesz potentials, i.e.

Cn,s = sup
f ∈L1(Rn )

∥Is ( f )∥
L

n
n−s ,∞(Rn )

∥ f ∥L1(Rn )
.

Then from (1), one can directly obtain a lower bound for Cn,s ,

Cn,s ≥ γs v
n−s

n
n .

Our another goal in this paper is to provide upper and lower bounds of Cn,s and to study the
behavior of Cn,s as s → 0. Our approach depends on the weak L

n
n−s norm 9 ·9

L
n

n−s ,∞ which is
defined by

9 f 9
L

n
n−s ,∞(Rn )

= sup
0<|E |<∞

|E |− 1
r + n−s

n

(∫
E
| f |r dx

) 1
r

, 0 < r < n

n − s
.

The norm 9 ·9
L

n
n−s ,∞ is equivalent to ∥ ·∥

L
n

n−s ,∞ . In fact there holds(see Exercise 1.1.12 in [5])

∥ f ∥
L

n
n−s ,∞(Rn )

≤9 f 9
L

n
n−s ,∞(Rn )

≤ (
n

n − r (n − s)
)

1
r ∥ f ∥

L
n

n−s ,∞(Rn )
. (2)

Closely related to the Riesz potentials is the centered fractional maximal function, which is
defined by

Ms f (x) = sup
r>0

1

|B(x,r )|1− s
n

∫
B(x,r )

| f (y)|dy, 0 < s < n.

Ms satisfies the same (Lp ,Lq ) and (L1,L
n

n−s ,∞) inequality as Is does, see [1] and [10]. For any

positive function f it is easy to see Ms ( f ) ≤ 1/γ(s)v
s−n

n
n Is ( f ). Although the reverse inequality

dose not hold in general, B.Muckenhoupt and R.Wheeden [10] proved that the two quantities
are comparable in Lp norm(1 < p <∞) when f is nonnegative.

Now let us state our main results. First of all we consider the weak estimate of Is ( f ) and
Ms ( f ) under the norm 9 ·9

L
n

n−s ,∞ . Surprisingly identities for the weak type estimate of Riesz
potentials and fractional maximal function can be established, which implies the two quantities
are comparable in L

n
n−s ,∞ (quasi)norm when f ∈ L1(Rn) is nonnegative.

Theorem 2. Let 0 < s < n and f ∈ L1(Rn). When 1 ≤ r < n
n−s ,

9Is ( f )9
L

n
n−s ,∞(Rn )

≤ γs v
n−s

n
n

(
n

n − (n − s)r

) 1
r ∥ f ∥L1(Rn ),
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and

9Ms ( f )9
L

n
n−s ,∞(Rn )

=
(

n

n − (n − s)r

) 1
r ∥ f ∥L1(Rn ).

Moreover if 0 < f ∈ L1(Rn), then

9Is ( f )9
L

n
n−s ,∞(Rn )

= γs v
n−s

n
n

(
n

n − (n − s)r

) 1
r ∥ f ∥L1(Rn ).

Remark 3. In fact, from the proof one can obtain the reverse weak estimate holds when 0 < r <
n

n−s . More precisely when 0 < r < n
n−s ,

9Is ( f )9
L

n
n−s ,∞(Rn )

≥ γs v
n−s

n
n

(
n

n − (n − s)r

) 1
r ∥ f ∥L1(Rn ), if 0 < f ∈ L1(Rn),

and

9Ms ( f )9
L

n
n−s ,∞(Rn )

≥
(

n

n − (n − s)r

) 1
r ∥ f ∥L1(Rn ), if f ∈ L1(Rn).

Then we prove the following sharp reverse weak estimates for Riesz potentials.

Theorem 4. Let 0 < f ∈ L1(Rn), then

∥Is ( f )∥
L

n
n−s ,∞(Rn )

≥ γs v
n−s

n
n ∥ f ∥L1(Rn ).

And the equality holds when f = ( a
b+|x−x0|2 )

n+s
2 , where a,b > 0 and x0 ∈Rn .

As a corollary of Theorem 2 and Theorem 4, we can obtain the following sharp reverse
inequality.

Corollary 5. Let f ∈ L1(Rn), then

∥Ms f ∥
L

n
n−s ,∞ ≥ ∥ f ∥L1 .

And the equality holds when f (x) = h(|x −x0|) where h is a radial decreasing function.

At last we offer an upper and a lower bound for Cn,s , which implies that the behavior of the
best constant Cn,s for small s is optimal, i.e. Cn,s =O(γs

s ) =O(1) as s → 0.

Theorem 6. When n > 2 and 0 < s < n−2
4 ,

γs v
n−s

n
n

n −2−4s

2s(n −2− s)
≤Cn,s ≤ γs v

n−s
n

n
n

s
.

Remark 7. Besides using the rearrangement inequality to obtain an upper bound γs v
n−s

n
n

n
s , we

can take the heat-diffusion semi-group as a tool (see the Appendix), which was used by E. Stein
and J. Strömberg in [13] to study the (L1,L1,∞) bound for centered maximal function, to obtain

another upper bound which is equal to O(γs v
n−s

n
n

n
s ) =O(1) as (s,n) → (0,∞).

2. The identity for Is( f ) and Ms( f ) in 9 ·9L
n

n−s ,∞

In this section, we will prove Theorem 2. Without loss of generality let us assume ∥ f ∥L1(Rn ) = 1.
Since Is ( f ) ≤ Is (| f |) and r ≥ 1, using Minkowski’s inequality one have for any measurable set E
with |E | <∞,

|E |− 1
r + n−s

n

[∫
E
|Is f (x)|r dx

] 1
r ≤ γs |E |− 1

r + n−s
n

∫
Rn

[∫
E

dx

|x − y |(n−s)r

] 1
r | f (y)|dy. (3)

Then by Hardy Littlewood rearrangement inequality, there holds∫
E

dx

|x − y |(n−s)r
≤

∫
E∗

dx

|x|(n−s)r
= v

n−s
n r

n
n

n − (n − s)r
|E |1− n−s

n r , (4)
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where E∗ is the symmetric rearrangement of the set E , i.e. E∗ is an open ball centered at the origin
whose volume is |E |. Therefore by (3) and (4) one can obtain

9Is ( f )9
L

n
n−s ,∞ ≤ γs v

n−s
n

n

(
n

n − (n − s)r

) 1
r ∥ f ∥L1 .

Next, let us prove when 0 ≤ f ∈ L1(Rn) and 0 < r < n
n−s ,

9Is ( f )9
L

n
n−s ,∞ ≥ γs v

n−s
n

n

(
n

n − (n − s)r

) 1
r ∥ f ∥L1 . (5)

For any ϵ> 0, choose R large enough such that
∫

BR (0) f (y)d y = 1−ϵ. Let E = BlR (0). Since∫
BR (0)

f (y)

|x − y |n−s dy ≥
∫

BR (0)

f (y)

(|x|+R)n−s dy = (1−ϵ)(|x|+R)s−n ,

then

9Is ( f )9
L

n
n−s ,∞ ≥ γs |E |− 1

r + n−s
n

[∫
E

(∫
BR (0)

f (y)

|x − y |n−s dy

)r

dx

] 1
r

≥ γs |E |− 1
r + n−s

n (1−ϵ)

[∫
E

dx

(|x|+R)(n−s)r

] 1
r

= γs v
n−s

n
n n

1
r (1−ϵ)l−

n
r +n−s

[∫ l

0

t n−1

(t +1)(n−s)r
dt

] 1
r

.

By the fact that this inequality holds for any l > 0, then letting l →∞, one obtain

9Is ( f )9
L

n
n−s ,∞ ≥ γs v

n−s
n

n (1−ϵ)

(
n

n − (n − s)r

) 1
r

,

which implies (5). And we finish the proof of the identity for Riesz potential.
For fractional maximal function Ms , since

Ms ( f )(x) ≥ 1

v
n−s

n
n (|x|+R)n−s

∫
|y−x|≤R+|x|

| f (y)|dy

≥ 1

v
n−s

n
n (|x|+R)n−s

∫
|y |≤R

| f (y)|dy = 1−ϵ
v

n−s
n

n (|x|+R)n−s
,

then one can use the same method to get

9Ms ( f )9
L

n
n−s ,∞ ≥

(
n

n − (n − s)r

) 1
r

when 0 < r < n

n − s
.

On the other hand,

9Ms ( f )9
L

n
n−s ,∞ ≤91/γ(s)v

s−n
n

n Is (| f |)9
L

n
n−s ,∞ =

(
n

n − (n − s)r

) 1
r

.

Thus one can obtain the desired identity for Ms .

3. The sharp reverse weak estimate for Is and Ms

In this section, first we prove the sharp reverse weak estimate for Riesz potentials Is . By (2) and
Theorem 2, there holds

∥Is ( f )∥
L

n
n−s ,∞ ≥ γs v

n−s
n

n ∥ f ∥L1 , 0 < f ∈ L1(Rn).

Next, we will prove that the equality can be attained by the function g (x) = ( a
b+|x−x0|2

) n+s
2 ,

where a,b > 0 and x0 ∈ Rn . Since the translation and dilation of g do not change the ra-
tio ∥Is (g )∥

L
n

n−s ,∞/∥g∥L1 , we only need to consider g (x) = ( 2
1+|x|2

) n+s
2 . In our calculus we will
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use the stereographic projection, so we will introduce some notations about the stereographic
projection here.

The inverse stereographic projection S : Rn → Sn \ {S}, where S = −en+1 denotes the south-
pole, is given by

(S (x))i = 2xi

1+|x|2 , i = 1, . . . ,n, (S (x))n+1 = 1−|x|2
1+|x|2 .

Correspondingly, the stereographic projection is given by S −1 :Sn \ {S} →Rn ,

(S −1(ξ))i = ξi

1+ξn+1
, i = 1, . . . ,n.

And the Jacobian of the (inverse) stereographic projection are

JS (x) =
(

2

1+|x|2
)n

and JS −1 (ξ) = (1+ξn+1)−n .

By a change of variables,

∥g∥L1 =
∫
Rn

(
2

1+|x|2
) n+s

2

dx =
∫
Sn

(
2

1+|S −1(ξ)|2
) s−n

2

dξ

=
∫
Sn

(1+ξn+1)
s−n

2 dξ= ∣∣Sn−1∣∣∫ 1

−1
(1+ t )

s−2
2 (1− t )

n−2
2 dt

=πn/22
s+n

2
Γ(s/2)

Γ( s+n
2 )

. (6)

Denote

cn,s =πn/22
s+n

2
Γ(s/2)

Γ( s+n
2 )

.

Since

|S −1(ξ)−S −1(η)|2 =JS −1 (ξ)
1
n |ξ−η|2JS −1 (η)

1
n , for any ξ,η ∈Sn ,

and ∫
Sn

dη

|ξ−η|n−s = 2sπn/2Γ(s/2)

Γ( n+s
2 )

= cn,s

2
n−s

2
, for any η ∈Sn (see [5, D.4]),

one can obtain

Is (g )(x) = γ(s)
∫
Rn

1

|x − y |n−s

(
2

1+|y |2
) n+s

2

dy

= γ(s)
∫
Sn

1

|S −1(ξ)−S −1(η)|n−s

(
2

1+|S −1(η)|2
) s−n

2

dη

= γ(s)
∫
Sn

1

|ξ−η|n−s |JS −1 (ξ)| n−s
2n |JS −1 (η)| n−s

2n

(
2

1+|S −1(η)|2
) s−n

2

dη

= γ(s)
∫
Sn

dη

|ξ−η|n−s (1+ξn+1)
n−s

2 = γ(s)
cn,s

(1+|x|2)
n−s

2
.

Thus for any λ> 0,

|{Is (g ) >λ}| = vn

((
γ(s)cn,s

λ

) 2
n−s −1

) n
2

. (7)

Therefore combining (6) and (7) one has

∥Is (g )∥
L

n
n−s ,∞

∥g∥L1
= v

n−s
n

n sup
λ>0

(
γ(s)

2
n−s −

(
λ

cn,s

) 2
n−s

) n−s
2

= γ(s)v
n−s

n
n .
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Next let us prove the sharp reverse weak estimate for Ms . By the identity in Theorem 2 for Ms

and (2) one can find for any f ∈ L1,

∥Ms ( f )∥
L

n
n−s ,∞ ≥ ∥ f ∥L1 . (8)

On the other hand, since Ms ( f ) ≤ 1/γ(s)v
s−n

n
n Is ( f ) and we already proved that the function

g = ( a
b+|x−x0|2

) n+s
2 satisfies ∥Is (g )∥

L
n

n−s ,∞ = γ(s)v
n−s

n
n ∥g∥L1 , then by (8) the following equality holds

∥Ms (g )∥
L

n
n−s ,∞ = ∥g∥L1 . (9)

In fact, one can prove that (9) holds for any L1 function f (x) = h(|x − x0|), where h is a radial
decreasing function, by using an approach from [2]. First assume ∥ f ∥L1 = 1. Let δx0 denote the
Dirac delta mass placed at x0. It is easy to check that

M(δx0 )(x) = 1

|B(x, |x|)| ,

where M is the centered Hardy–Littlewood maximal function. Hence, for every λ> 0, there holds

λ|{x : M(δx0 )(x) >λ}| n
n−s = 1.

Since h is a radial decreasing function with ∥h∥L1 = 1, then by Lemma 2.1 in [2], one has

M( f )(x) ≤ M(δx0 )(x) for every x ∈Rn .

Then for any r > 0 and x ∈Rn ,

1

|B(x,r )|1− s
n

∫
B(x,r )

f (y)dy ≤
(

1

|B(x,r )|
∫

B(x,r )
f (y)dy∥ f ∥

s
n−s

L1

) n−s
n ≤ (M(δx0 )(x))

n−s
n ,

which implies that

∥Ms f ∥
L

n
n−s ,∞ ≤ 1 = ∥ f ∥L1 . (10)

Combining this inequality with (8), one can obtain the desired result for Ms .
What is noteworthy at the end of the section is that this result is also true for the centered

Hardy–Littlewood maximal function, that is because, using the same method, one can prove (10)
when s = 0, i.e. (10) is true for the centered Hardy–Littlewood maximal function. On the other
hand, using the limiting weak type behavior for the maximal function in [7], (8) is also true for the
centered Hardy–Littlewood maximal function.

4. The upper and lower bounds of Cn,s

In this section, we will provide an upper and a lower bound for Cn,s . Using Theorem 2 and (2), we
can get an upper bound

Cn,s ≤ γs
n

s
v

n−s
n

n .

To obtain the lower bound, we will use the following formula (see [9, Section 5.10]). Let
0 <α< n, 0 < s < n and α+ s < n, then∫

Rn

1

|x − y |n−s

1

|y |n−α dy =Cn,α,s
1

|x|n−s−α (11)

with

Cn,α,s =π
n
2
Γ( s

2 )Γ(α2 )Γ( n−s−α
2 )

Γ( n−s
2 )Γ( n−α

2 )Γ( s+α
2 )

.

Now assume n −2 > 4s. Choose f (y) = 1
|y |n−2χ(|y |≤1) and let us prove

∥Is f ∥ n
n−s ,∞ ≥ γs

v
n−s

n
n

s

n −2−4s

2(n −2− s)
∥ f ∥L1 .
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Since |x| ≤ 1
2 , |y | > 1 implies |y −x| ≥ |y |

2 , using (11) with α= 2 one have

1

γs
Is ( f )(x) =

∫
Rn

1

|x − y |n−s f (y)dy =
∫
|y |≤1

1

|x − y |n−s

1

|y |n−2 dy

=
∫
Rn

1

|x − y |n−s

1

|y |n−2 dy −
∫
|y |>1

1

|x − y |n−s

1

|y |n−2 dy

≥
∫
Rn

1

|x − y |n−s

1

|y |n−2 dy −
∫
|y |>1

2n−s

|y |2n−2−s dy

= c

|x|n−s−2 −d , (12)

where

c = 4πn/2

(n − s −2)Γ(n/2−1)s
and d = 2n−s+1πn/2

(n − s −2)Γ(n/2)
.

Choose λ0 = γs (2n−s−2c−d), since c
d = n−2

s
1

2n−s > 1
2n−s−2 , then λ0 is positive. Thus by (12), there

holds

|{Is f >λ0}| ≥
∣∣∣∣{|x| ≤ 1/2,

c

|x|n−s−α −d > λ0

γs

}∣∣∣∣= vn(
1

2
)n . (13)

Using the fact ∥ f ∥L1(Rn ) = ωn−1
2 and (13) one can obtain

∥Is f ∥ n
n−s ,∞

∥ f ∥L1
≥ λ0|{Is f >λ0}| n−s

n

∥ f ∥L1
=λ0v

n−s
n

n
Γ(n/2)

2n−sπn/2
= γs

v
n−s

n
n

s

n −2−4s

2(n −2− s)
.

So we complete the proof of Theorem 6.

Appendix

In this Appendix, we give an alternative approach to prove the (L1,L
n

n−s ,∞) estimate for Riesz
potentials, and at the same time this approach also provide an upper bound for Cn,s , which
have the same behavior with γs v (n−s)/n

n n/s as (s,n) → (0,∞). First, we state a lemma (see [13,
Section 3], also see the Hopf abstract maximal ergodic theorem in [3]) about the weak estimate of
the average of the heat-diffusion semi-group T t ( f ) = Pt ∗ f , where

Pt = (4πt )−
n
2 e−

|x|2
t .

Lemma 8. For any f ∈ L1(Rn), there holds∣∣∣∣{x ∈Rn : sup
s>0

1

s

∫ s

0
Pt f (x)dt >λ

}∣∣∣∣≤ 1

λ
∥ f ∥L1(Rn ), λ> 0.

Now let prove the (L1,L
n

n−s ,∞) estimate for Riesz potentials Is ( f ), which also can be presented
by the following formula related to T t ( f ),

Is ( f )(x) = 1

Γ(s/2)

∫ ∞

0
t

s
2 −1Pt ∗ f (x)dt .

We divide the integral into two parts∫ ∞

0
t

s
2 −1Pt ∗ f (x)dt = J1( f )(x)+ J2( f )(x),

where

J1( f )(x) =
∫ R

0
t

s
2 −1Pt ∗ f (x)dt ,

J2( f )(x) =
∫ ∞

R
t

s
2 −1Pt ∗ f (x)dt ,

for some R to be determined later.
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Denote M 0 f (x) = supr>0
1
r

∫ r
0 Pt ∗ f (x)d t , then we have

J1( f )(x) =
∞∑

i=1

∫ 2−i+1R

2−i R
t

s
2 −1Pt ∗ f (x)dt

≤
∞∑

i=1

∫ 2−i+1R

2−i R
(2−i R)

s
2 −1Pt ∗ f (x)dt

≤
∞∑

i=1
(2−i R)

s
2 −12−i+1R

(
1

2−i+1R

∫ 2−i+1R

0
Pt ∗ f (x)dt

)

≤ 2R
s
2

2−
s
2

1−2−
s
2
M 0 f (x). (14)

On the other hand, by direct computation, we obtain that

J2( f )(x) ≤
∫ ∞

R
t

s
2 −1∥Pt∥L∞∥ f ∥L1 dt

≤ 2

n − s
(4π)−

n
2 R

s
2 − n

2 ∥ f ∥L1 . (15)

Combining (14) and (15), we obtain that

Is ( f )(x) ≤ 1

Γ(s/2)

(
2R

s
2

2−
s
2

1−2−
s
2
M 0 f (x)+ 2

n − s
(4π)−

n
2 R

s
2 − n

2 ∥ f ∥L1

)
(16)

for all R > 0. The choice of

R =
(

(4π)−
n
2 ∥ f ∥L1

s

2
s
2 −1−1

M 0 f (x)

) 2
n

minimizes the right side of the expression in (16). Thus

Is ( f )(x) ≤ τs (M 0 f (x))
n−s

n ∥ f ∥
s
n

L1 , (17)

where

τs = 2(4π)−
s
2 (2

s
2 −1)

s−n
n

n

n − s

(
1

s

) s
n 1

Γ(s/2)
.

Now using Lemma 8 one can see that

λ|{Is f >λ}| n−s
n ≤λ

∣∣∣{τs
(
M 0 f (x)

) n−s
n ∥ f ∥

s
n

L1 >λ
}∣∣∣ n−s

n

≤λ


τs∥ f ∥

s
n

L1

λ


n

n−s

∥ f ∥L1


n−s

n

≤ τs∥ f ∥L1 .

Notice that

2
s
2 −1 > ln2

2
s for s > 0,

thus,

τs ≤ 2

ln2

(
1

4π

)− s
2 1

Γ( s
2 +1)

n

n − s
.

So by this approach, one can obtain that Cn,s ≤ 2
ln2 ( 1

4π )−
s
2 1
Γ( s

2 +1)
n

n−s and it is easy to check that

when (s,n) → (0,∞),
2

ln2

(
1

4π

)− s
2 1

Γ( s
2 +1)

n

n − s
=O

(
γs v

n−s
n

n
n

s

)
.
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